УСКОРЕНИЕ ВЗАИМОДЕЙСТВИЯ ОБЪЕКТОВ РАСПРЕДЕЛЕННЫХ СИСТЕМ УПРАВЛЕНИЯ В ЖЕСТКОМ РЕАЛЬНОМ ВРЕМЕНИ (ЖРВ) (Доклад на Ученом Совете 07/11/2022)

Стецюра Геннадий Георгиевич г.н.с. лаб. 27

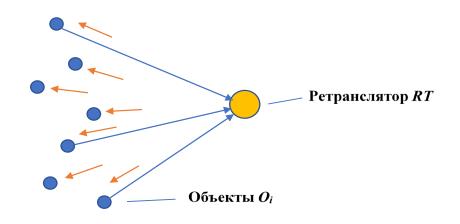
2. ОСНОВНАЯ ЗАДАЧА

Имеются стационарные или мобильные автономно действующие активные цифровые объекты. Требуется, чтобы эти объекты *без внешнего управления* как можно быстрее объединились в синхронно взаимодействующую систему объектов.

Далее приведена последовательность частных задач, решающих поставленную задачу.

Использованы результаты, полученные только в ИПУ.

- 3. Этапы действия объектов при управлении взаимодействием в ЖРВ
- А. Объекты, обнаружившие появление планируемых или непредвиденных событий, могут децентрализовано запросить о взаимодействии все распределенные объекты.


В. Запрашиваемые объекты должны создать совместную команду организации взаимодействия и послать ее объектам-исполнителям команды.

С. Исполнители должны синхронно выполнить команду.

Этапы А, В, С должны выполняться предельно быстро (в соответствии с конкретными требованиями ЖРВ).

Перехожу к деталям этапов, начиная со структуры взаимодействия.

4. СТРУКТУРА ВЗАИМОДЕЙСТВИЯ ОБЪЕКТОВ

Слева на рис. показаны объекты O_i , справа объект-ретранслятор RT, который только принимает оптические или радиосигналы объектовисточников и ретранслирует их на других частотах объектам-приемникам. В RT нет памяти и логических элементов, он не служит средством управления. Этим группа источников заменена простым ретранслятором, что существенно упрощает и ускоряет взаимодействие объектов.

В ряде случаев (раздел 17) RT можно исключить. Для сложных систем, например, суперкомпьютеров, потребуется применить группу RT.

5. ИНСТРУМЕНТ ДЛЯ ИЗМЕРЕНИЯ ИНТЕРВАЛОВ ВРЕМЕНИ

Далее потребуется измерить удаленность объектов от ретранслятора. Без изменений будем использовать следующие решения. Стандарт IEEE 1588-2008 – точность измерения ~ нескольких нсек, Стандарт IEEE 1588-2019 — High Accuracy точность ~ 0,5 псек.

Стандарт IEEE 1588-2019 High Accuracy -- объединение стандарта IEEE 1588-2008 Precise Time Protocol (PTP) и проекта White Rabbit (WR) – CERN

6. РЕШЕНИЕ ЗАДАЧИ ЭТАПА А (ЧАСТЬ І):

Синхронизация запросов объектов по синхросигналу S от RT Пусть определена T_i – удаленность объекта O_i от RT.

Введем условный объект O, удаленный от RT на время T, превышающее время для самых удаленных от RT объектов. Объекты расположены так:

O(T)----- $O_k(T_k)$ ----- $O_i(T_i)$ ------RT. Пока считаем, что RT может создать

синхросигнал, который приходит к объекту O_i через время T_i . На следующем слайде инициатива RT будет заменена действиями объектов.

Объект O_i возвращает сигнал в RT через время $2T_i$ после ухода от RT.

Сигналы объектов приходят в RT несинхронно. Но при задержке в O_i на $d_i = 2(T - T_i)$ сигнал вернется через $T^* = 2(T - T_i) + 2T_i = 2T$. Сигналы всех объектов поступят в RT также через 2T. Синхронизация получена.

Теперь надо уметь создать синхросигнал без инициативы RT.

7. Решение задачи этапа A (часть II): Создание объектами синхросигнала S

Объекты
$$O_i,\,O_k,\,O_m\,,S_{i,k,m}$$
 $T_s\geq T$
$$\underbrace{\hspace{1cm} S_i \hspace{1cm} S_k \hspace{1cm} S_m \hspace{1cm$$

Пусть есть объекты O_i, O_k, O_m , которые при отсутствии сигналов от RT посылают в RT свои синхросигналы $S_{i,k,m}$ длительности $T_s \geq T$. RT ретранслирует их как сигнал S, который начнется с приходом в RT сигнала S_i и завершится в конце сигнала S_m .

Момент завершения сигнала S для объектов заменяет синхросигнал, созданный ранее по инициативе RT. Условие – длительность $S \ge T$ гарантирует единственность нового синхросигнала. Cинхронизация выполнена.

8. РЕШЕНИЕ ЗАДАЧ ЭТАПА А (ЧАСТЬ III):

Устранение конфликтов при передаче сообщений в RT До этого сигналы объектов приходили в RT одновременно.

В части A (III) они должны приходить поочередно.

Введем Логическую шкалу — двоичную последовательность, число ее разрядов задает количество *одновременно обслуживаемых* объектов. Упорядочим объекты, присвоив им порядковые номера.

Так, для объектов с № № 4, 10, 2 их шкалы содержат нули и только одну единицу в разряде, соответствующем номеру объекта:

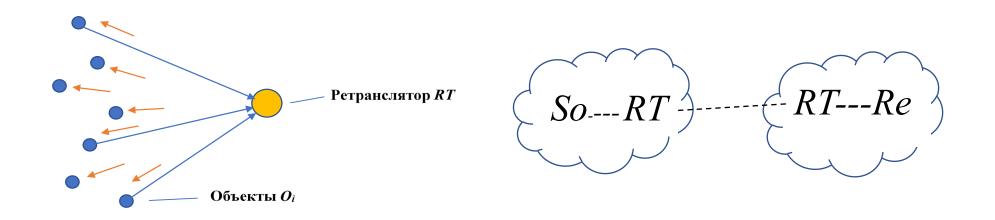
Sc1 0000001000 для шкалы N $\!\!\!_{2}$ 4

Sc2 01000000000 для шкалы № 10

Sc3 00000000010 для шкалы № 2

Из *RT* объекты получат общую шкалу <u>Sc 01000001010</u> и по очереди, пропуская нули, пошлют сообщения. Конфликты устранены <u>одновременно для всех заявок</u> на передачу сообщений.

Допускается динамический учет срочности сообщений.


9. Этап В

Здесь быстро создается совместная команда для реакции на события, все объекты подтверждают созданную команду и отправляют групповую команду объектам - исполнителям. Так как на этапе В объекты действуют также, как объекты этапа А, то не будем рассматривать их действия и перейдем к действиям исполнителей групповой команды.

10. Синхронизация приемников – исполнителей команды (этап С)

Синхронно выполняется команда с минимальной задержкой после возникновения события.

Приемник Re_j получает сообщение от RT через интервал T_j . При задержке $D_j = T - T_j$ все приемники Re одновременно выполнят команду с задержкой T. На правом рисунке источники через свой RT по произвольному каналу связи посылают групповую команду удаленным исполнителям. Точность их синхронизации не уменьшена.

11. ИТОГИ ПЕРВОЙ ЧАСТИ ДОКЛАДА

Предложена децентрализованная однотактная синхронизация.

Предложены групповые операции управления взаимодействием объектов с одновременным участвием в операции *группы объектов*.

В ретрансляторе RT — единственном общесистемном устройстве нет логических узлов и памяти, и RT не служит устройством управления.

Сложность RT не зависит от количества объектов в системе. Сложность средств взаимодействия в объектах также не изменяется.

Введены логические шкалы, необходимые для быстрого управления синхронизацией объектов.

Общий итог: получено самое простое и быстрое распределенное управление взаимодействием распределенных цифровых объектов.

Теперь надо добавить групповые команды быстрого сбора данных о текущем состоянии всех объектов системы.

12. ГРУППОВЫЕ ОПЕРАЦИИ СБОРА ДАННЫХ О СОСТОЯНИИ СИСТЕМЫ (вторая часть доклада)

Распределенные операции сбора данных выполняет простой ретранслятор.

Рассмотрены поразрядные логические И, ИЛИ, операция *тах, тіп,* арифметические сложение / вычитание (используется АЦП).

Применены <u>активные</u> сигналы для битов 1 и 0, значение 0 не может передаваться отсутствием сигнала.

13. Распределенные поразрядные логические операции *И*, *ИЛИ* Объекты передают в *RT* логические шкалы, в них каждый бит соответствует одному из признаков, требуемых для объектов системы. В битах шкалы объект отмечает наличие признака как 1, отсутствие – как 0. Пусть имеется три таких объекта. Они посылают шкалы в *RT*, который создает общую шкалу. Получены показанные ниже результаты.

```
      1
      1
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
```

 1
 0
 0
 0
 0
 0
 1
 0
 результат для поразрядного И

 1
 1
 0
 1
 0
 1
 0
 результат для поразрядного ИЛИ

В операции одновременно участвует группа объектов + время не зависит от числа объектов + операцию выполняет ретранслятор

14. ПОИСК тах/тіп

Представим десятичные цифры логическими девятибитными шкалами. В них 1 есть только в соответствующем значению цифры разряде. При посылке из *RT* старших цифр чисел объекты получат шкалу 010100010. В примере ниже все объекты получат для цифры *max* = 8. Следующую цифру числа отправят только объекты, пославшие 8, и т.д. То же действует для *min*.

В операциях время выполнения не зависит от количества участников.

Пример:

0 = 000000000

2 = 00000010

6 = 000100000

8 = 010000000

 $m = 010100010 \ max = 8 \ min = 2.$

15. ПОЛУЧЕНИЕ СУММЫ, РАЗНОСТИ

Источники посылают в RT сигналы *одинаковой мощности*. В RT есть АЦП, он суммирует уровень принятых одноименных битов. Пусть шесть объектов шкалами посылают цифры 2, 5, 9, 7, 7, 9. Все объекты от RT получат последовательность 2х9; 2х7; 1х5; 1х2 и одновременно получат сумму S = 2х9 + 2х7 + 1х5 +1х2 = 39. Разность $S_1 - S_2$ объекты создадут, получив от RT две суммы S_1 и S_2 .

2 = 00000010 Известная простая технология позволяет

5 = 000010000 одновременно суммировать сигналы до десяти

9 = 100000000 тысяч объектов.

7 = 001000000

7 = 001000000

9 = 100000000 S = 2x9 + 2x7 + 1x5 + 1x2 = 39

Ускоряется создание гистограмм. При линейном *RT* АЦП может быть только у объектов.

16. ИТОГИ ВТОРОЙ ЧАСТИ ДОКЛАДА

Все свойства первой, управляющей части доклада сохранены для распределенных вычислений в ретрансляторе.

Сбор и обработка данных о состоянии системы также получены в ретрансляторе за время, не зависящее от количества объектов системы.

Как и в первой части необходимо представление данных в виде логических шкал.

17. Дополнение для низкоскоростных (грубых) систем

Система грубая, если можно удалить *RT* и не измерять время переноса сигналов. Грубая система полностью однородна! В результате таких упрощений:

Объект как и при наличии RT передаст бесконфликтно все сообщение на высокой скорости в интервале T.

Но все групповые операции выполнятся с ограничением: соседние разряды сообщений групповой операции должны передаваться реже интервала времени T = L/c, где L - размеры системы, c – скорость света. При $T \le L/c$ разноименные разряды сообщений совместятся, что недопустимо.

Пример: L = 30 метров $T = 30/3 \times 10^8$ секунд = 0,1 микросекунды.

Объектам грубой системы для синхронизации не требуется измерять интервалы времени и проводить вычисления, поэтому они могут быть *нецифровыми*.

18. ОСНОВНЫЕ ИТОГИ ДОКЛАДА

Предложена быстрая, однотактная синхронизация объектов.

Для распределенных систем ЖРВ введены распределенные групповые операции, каждая выполняется за время, не зависящее от количества участвующих в ней объектов системы. Введены необходимые для групповых операций логические шкалы.

Замена сети на средства взаимодействия с одновременным приходом сигналов в одну точку позволила для распределенных алгоритмов управления и сбора данных не замедлить, а ускорять их при обращении к средствам взаимодействия.

Системы устойчивы к рассинхронизации и однотактно ее само восстанавливают.

19. СВЯЗЬ С ИЗВЕСТНЫМИ РЕШЕНИЯМИ И ОТЛИЧИЕ ОТ НИХ

У предложенных решений есть связь с системными сетями и ассоциативными суперкомпьютерами -ACK, работающими в ЖРВ (например, с известной системой STARAN).

Подобно сетям средства взаимодействия рассредоточены и объединяют независимые группы распределенных объектов. Подобно *АСК* в них в пределах одной операции *одновременно* обрабатываются данные группы объектов.

В отличие от сетей получена без использования компьютеров одновременная обработка данных группы объектов в процессе передачи данных.

В отличие от *АСК* управление взаимодействием объектов и одновременная обработка их данных полностью децентрализованы.

Судя по последним публикациям, новый технологический уровень возрождает интерес к системам, подобным ACK.