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Введение

Актуальность исследования
Равновесные состояния играют важную роль при исследовании сложных

динамических систем. Равновесным состоянием, или равновесием, называют
такое состояние системы, при котором она способна самостоятельно поддержи-
вать свое существование сколь угодно долго при отсутствии внешних воздей-
ствий [36]. Если система способна вернуться в равновесное состояние после того,
как она была выведена из него внешними воздействиями или динамикой самой
системы, то такое равновесное состояние называется устойчивым [34]. Устойчи-
вые равновесные состояния являются основой для эффективного функциони-
рования системы и ее долговечности.

Помимо обычных положений равновесия также исследуют устойчивость по-
ложений частичного равновесия, т.е. равновесных состояний по части перемен-
ных. Такая задача естественным образом возникает в различных приложениях,
например, теории управления и стабилизации [12].

Исследование вопросов, связанных с равновесием в сложных системах, мо-
жет быть целесообразно в различных областях науки. Так, например, в биоло-
гии активно исследуются модели распространения инфекционных заболеваний
и эпидемий, в которых положение равновесия позволяет определить критиче-
ский уровень переносчиков заболевания (см., например, [50], [10]); в экологии
широко исследуются модели загрязнения окружающей среды, очистки сточных
вод и прогнозирования аварийных ситуаций нефтеперерабатывающих предпри-
ятий, в которых равновесные состояния служат индикатором для принятия
экстренных мер (см., например, [14]); подобные вопросы могут возникать при
моделировании транспортных макросистем (см., например, [1]), в которых рав-
новесное состояние позволяет определить места высокой концентрации транс-
портных потоков, а также целесообразность инвестиций, и другие (см., напри-
мер, [40, 31]).

Задача о нахождении положения равновесия сводится к решению системы
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алгебраических уравнений, вообще говоря, нелинейных. Часто в анализе воз-
никает задача определения равновесных состояний, удовлетворяющих опреде-
ленным ограничениям. В силу ограничений к системе добавляются неравен-
ства, что значительно усложняет ее решение. Задача такого рода очень важна
при анализе экономических систем, в частности, при производственном пла-
нировании, определении конкурентного равновесия (см., например, [39]) и го-
сударственном регулировании цен. Система, сформированная внутри отдельно
взятого государства, непосредственно влияет на уровень доходов [23], прибыль
компаний [24], инвестиционную активность [9], трудоустройство [37] и другие
аспекты жизни общества. Регулирование цен является одной из основных задач
органов государственной власти как при плановой экономике, так и при рыноч-
ной [33]. На сегодняшний день отсутствует возможность определить ориентир
для действенной ценовой политики, позволяющей учесть интересы как постав-
щиков товаров и услуг, так и потребителей в лице населения. Одним из подходов
к решению этой проблемы может служить понятие положения равновесия.

Долгое время считалось, что рыночная экономика должна развиваться в
условиях совершенной конкуренции, без вмешательства государства [38]. Тем
не менее, масштабные экономические кризисы, начиная с 1920-х годов показа-
ли, что невмешательство государства в рыночные отношения может привести к
крайне негативным последствиям, и что даже при рыночной экономике влияние
государства должно сохраняться, поскольку рыночные системы могут оказать-
ся неустойчивыми по отношению к сильным внешним воздействиям [28]. Таким
образом, вопрос устойчивости равновесных состояний играет важную роль в ис-
следовании экономических процессов.

Настоящее исследование посвящено развитию методов анализа положений
равновесия и частичного равновесия в системах, динамика которых определя-
ется разностью отображений метрических пространств, с помощью теории на-
крывающих отображений и точек совпадения, а также приложения полученных
результатов при исследовании динамических систем типа Аллена.

Степень разработанности темы исследования
Математические методы исследования сложных систем, в частности, мето-

ды теории накрывающих отображений и точек совпадения развивались Авако-
вым Е.Р., Арутюновым А.В., Гельманом Б.Д., Дмитруком А.В., Дыхтой В.А.,
Жуковским Е.С., Жуковским С.Е., Милютиным А.А., Обуховским В.В.,
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Шоке Г. и другими. Среди современных приложений математических методов к
исследованию сложных экономических систем можно выделить работы Бекла-
ряна Л.А., Измаилова А.Ф., Новикова Д.А., Павловой Н.Г., Чхартишвили А.Г.,
Шананина А.А. и других. Аналогичный подход используется при исследовании
и иных систем. Здесь можно отметить работы Галяева А.А., Новикова Д.А.,
Орлова Ю.Н., Самуйлова К.Е., Самсонюк О.Н., Уткина А.В., Хлебникова М.В.
и других.

Математический подход к исследованию экономических систем широко при-
меняется многими учеными, начиная с Л. Вальраса [11]. Он рассмотрел неко-
торый эмпирический процесс «нащупывания» равновесных цен как итерацион-
ного процесса, в ходе которого на каждом цикле между участниками рынка
происходит обмен товаров, после которого определяются новые цены с целью
сократить разницу между предложением и спросом (здесь спрос – это количе-
ство проданного товара).

Непосредственные вычисления проводились для различных линейных эко-
номических моделей, в том числе. для модели чистого обмена Эрроу–Дебре,
модели олигополии Курно и некоторых других. Работы по анализу положения
равновесия в нелинейных моделях в то же время немногочисленны.

Таким образом, существует потребность в разработке математических мето-
дов для исследования систем, динамика которых определяется совокупностью
нелинейных уравнений, в частности, разностью отображений метрических про-
странств.

Цель исследования
Целью диссертационной работы является развитие методов исследования

равновесных состояний, удовлетворяющих заданным ограничениям, в систе-
мах, динамика которых определяется разностью отображений метрических про-
странств, с применением полученных результатов для анализа моделей типа
Аллена.

Для достижения поставленной цели были определены следующие задачи.

1) Развить методы исследования равновесных состояний в системах, дина-
мика которых определяется разностью отображений метрических про-
странств, с помощью результатов теории точек совпадения и накрыва-
ющих отображений.

2) Исследовать различные модели из класса моделей типа Аллена с внеш-
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ним воздействием (модель типа Аллена–Эрроу–Дебре, открытая модель
типа Аллена с постоянными и непостоянными эластичностями) методами
теории накрывающих отображений и точек совпадения, а также функци-
онального анализа, на предмет положения равновесия и его свойств.

3) Исследовать различные модели из класса моделей типа Аллена без внеш-
него воздействия (модель типа Аллена–Эрроу–Дебре, закрытая модель
типа Аллена) методами линейной алгебры, функционального анализа, а
также теории накрывающих отображений и точек совпадения, на предмет
положения равновесия и его свойств.

Объект исследования – системы, динамика которых определяется разно-
стью отображений метрических пространств.

Предмет исследования – равновесные состояния динамических систем, а
также их свойства, такие как единственность и устойчивость к малым возму-
щениям параметров системы.

Методы исследования
В работе используются методы линейной алгебры, математического анали-

за, функционального анализа, численных методов, а также теории накрываю-
щих отображений и точек совпадения.

Научная новизна исследования
Научная новизна исследования состоит в разработке метода нахождения по-

ложений равновесия в динамических системах, динамика которых определяется
разностью отображений метрических пространств. С помощью теоремы о точ-
ках совпадения была доказана сходимость алгоритма поиска положения равно-
весия. Полученные результаты успешно применены в исследовании различных
динамических моделей типа Аллена, в рамках которого получены условия су-
ществования положения равновесия, исследованы его свойства.

Теоретическая значимость
Методы, разработанные в настоящей диссертации, не требуют невырожден-

ности матрицы Якоби и гладкость отображений, определяющих динамику рас-
сматриваемой системы, что является основой для использования многих обще-
известных методов. Сходимость предложенного алгоритма поиска точки сов-
падения доказана без априорных предположений гладкости рассматриваемых
отображений.
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Практическая значимость
Результаты настоящей диссертационной работы могут быть использованы

для исследования различных динамических моделей, в том числе построен-
ных по реальным статистическим данным. Разработанные методы могут быть
использованы для формализации и решения задач управления, а также под-
держки и принятия решений в биологии, физике, экологии и других научных
областях.

Апробация результатов
Достоверность полученных утверждений подтверждена строгими матема-

тическими рассуждениями и проведением численных экспериментов.
Результаты работы были доложены на различных российских и междуна-

родных конференциях: Воронежской зимней математической школе «Совре-
менные методы теории функций и смежные проблемы», Международной кон-
ференции «Управление развитием крупномасштабных систем», Международ-
ной конференции «Устойчивость и колебания нелинейных систем управления»,
Международной конференции по дифференциальным уравнениям и динамиче-
ским системам, Всероссийской школе-конференции молодых ученых «Управле-
ние большими системами», Международной молодежной научной школы «Ак-
туальные направления математического анализа и смежные вопросы». Резуль-
таты диссертации обсуждались на семинаре «Оптимизация и нелинейный ана-
лиз» под руководством Арутюнова А.В., Жуковского С.Е и Павловой Н.Г. в
ИПУ РАН, семинаре «Теория автоматического управления» под руководством
Хлебникова М.В. и Резкова И.Г., а также семинара кафедры высшей матема-
тики под руководством Иванова Г.Е. в МФТИ.

Структура диссертации
Диссертация состоит из введения, четырех глав, заключения и списка лите-

ратуры.
В первой главе описан исследуемый класс моделей и формализована постав-

ленная задача. Рассматривается класс моделей, динамика которых описывается
системой нелинейных дифференциальных уравнений в виде разности двух отоб-
ражений метрических пространств. Задача состоит в развитии методов поиска
положения равновесия в рассматриваемой модели, удовлетворяющих заданным
ограничениям в виде неравенств. Описаны несколько экономических моделей,
на примере которых продемонстрировано приложение полученных результатов.
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Вторая глава посвящена методам исследования рассматриваемого класса
моделей. В первом разделе представлены необходимые определения и извест-
ные результаты теории накрывающих отображений и точек совпадения, с по-
мощью которых решается поставленная задача. Во втором разделе предложен
метод поиска положения равновесия для моделей из рассматриваемого класса,
которые удовлетворяют условиям существования точки совпадения двух отоб-
ражений. В третьем разделе описаны вспомогательные результаты из функ-
ционального анализа, а в четвертом разделе – результаты линейной алгебры,
которыми можно воспользоваться при исследовании более простых моделей из
рассматриваемого класса.

В третьей главе наглядно продемонстрировано применение разработанных
методов в исследовании моделей с внешним воздействием, описанных в первой
главе. В первом разделе исследована открытая модель Аллена с постоянными
эластичностями, для которой получены условия существования положения рав-
новесия и частичного равновесия, а также исследован вопрос об устойчивости
и единственности положения равновесия. Проиллюстрировано, как положение
равновесия зависит от входных параметров модели. Во втором разделе иссле-
дована открытая модель Аллена с непостоянными эластичностями. Для нее по-
лучены условия существования положения равновесия и продемонстрировано,
как положение равновесия зависит от входных параметров модели.

В четвертой главе исследован класс моделей без внешнего воздействия. В
первом разделе исследована модель Аллена–Эрроу–Дебре, для которой полу-
чены достаточные условия существования положения равновесия и проиллю-
стрировано, как положение равновесия зависит от входных параметров модели.
Во втором разделе исследована закрыта модель Аллена, для которой получены
необходимые условия и достаточные условия существования положения рав-
новесия, а также полностью исследован вопрос о единственности положения
равновесия. Так же, как и для предыдущих моделей, показано, как положение
равновесия зависит от входных параметров.

В заключении приведены соображения касательно полученных результатов
и оценка дальнейших перспектив развития данного исследования.

Полный объем диссертации составляет 120 страниц с 139 иллюстрациями и
1 таблицей. Список литературы содержит 50 наименований.
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Положения, выносимые на защиту и соответствие пунктам паспорта
специальности 2.3.1:

1) Метод нахождения положения равновесия сложных динамических систем,
динамика которых определяется разностью отображений метрических про-
странств (пункт 1: Теоретические основы и методы системного анализа, оп-
тимизации, управления, принятия решений, обработки информации и ис-
кусственного интеллекта).

2) Условия существования положения равновесия для двух моделей типа Ал-
лена с внешним воздействием (открытых моделей типа Аллена с постоян-
ными и непостоянными эластичностями) (пункт 4: Разработка методов и
алгоритмов решения задач системного анализа, оптимизации, управления,
принятия решений, обработки информации и искусственного интеллекта).

3) Условия существования положения равновесия и его свойства для двух мо-
делей типа Аллена без внешнего воздействия (модели Аллена–Эрроу–Дебре
и закрытой модели типа Аллена) (пункт 4: Разработка методов и алгорит-
мов решения задач системного анализа, оптимизации, управления, принятия
решений, обработки информации и искусственного интеллекта).

Личный вклад. Все основные результаты и расчеты получены лично ав-
тором.

Связь с планами научных исследований
Работа выполнялась при поддержке гранта Российского фонда фундамен-

тальных исследований (проект №20-01-00610) и грантов Российского научного
фонда (проекты №20-11-20131, №22-11-00042).

Публикации. Основные положения и выводы диссертационного исследо-
вания опубликованы в 8 научных работах, из числа которых одна статья в ре-
цензируемом научном издании по специальности 2.3.1 (физ.-мат.), относящемся
к категории К1 Перечня ВАК [21], две работы в журналах, индексированных
в международных базах данных и приравненных к журналам Перечня ВАК
категории К1 [45, 46], 4 публикации – в сборниках трудов международных и
всероссийских конференций [47, 48, 20, 19], одна статья в прочих изданиях [18].
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1.Опиcание классов моделей Mo, Mc и постановка задачи

В диссертационной работе рассматривается класс моделей, динамика ко-
торых определяется разностью отображений метрических пространств. Такие
модели часто встречаются в различных областях науки. Например, в биоло-
гии широко известна модель Лотки–Вольтерры, описывающая поведение двух
групп биологических особей, модели распространения инфекционных заболева-
ний и эпидемий. В экологии исследуются модели очистки сточных вод и про-
гнозирования аварийных ситуаций на нефтеперерабатывающих предприятиях.
Подобные модели могут возникать при моделировании транспортных макроси-
стем, а также различного рода маятников и иных механических систем. Подоб-
ные модели можно встретить и в экономике, на примере нескольких из которых
будет продемонстрированы результаты диссертационного исследования.

1.1.Описание модели

Перейдем к формальному описанию модели. Рассмотрены два класса си-
стем, динамика которых определяется нормальной автономной системой диф-
ференциальных уравнений:

ẋi = Fi(x)−Gi(x) + qi, i = 1,m. (1.1)

ẋi = Fi(x)−Gi(x), i = 1,m. (1.2)

Здесь m ⩽ n, x = (x1, ..., xn) ∈ Rn, ẋ = (ẋ1, ..., ẋn) ∈ Rn, q = (q1, ..., qm) ∈
Rm; F,G : Rn → Rm, F (x) = (F1(x), ..., Fm(x)), G(x) = (G1(x), ..., Gm(x)).

Определение 1.1. Будем говорить, что модель σo принадлежит классу моде-
лей с внешним воздействием Mo (модель σc принадлежит классу моделей без
внешнего воздействия Mc), если ее динамика определяется системой вида (1.1)
((1.2)).
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Диссертационное исследование посвящено исследованию систем (1.1), (1.2)
на предмет положения равновесия, удовлетворяющего определенным ограниче-
ниям, т.е. решения систем следующего вида:

Fi(x)−Gi(x) + qi = 0, x ∈ M, i = 1,m; (1.3)

Fi(x)−Gi(x) = 0, x ∈ M, i = 1,m; (1.4)

где M ⊂ Rn – заданное множество.

Определение 1.2. Если m = n, то решения систем (1.3), (1.4) называются
положением равновесия в моделях σo ∈ Mo, σc ∈ Mc, соответственно. Если
m < n, то решения систем (1.3),(1.4) называются положениями частичного
равновесия в моделях σo, σc, соответственно.

Вектор q зачастую выполняет роль внешнего постояного воздействия на
моделируемую систему. В модели Лотки–Вольтерры в качестве такого воздей-
ствия может выступать охотничий и рыболовный промысел или естественное
вымирание видов. В модели очистки сточных вод в качестве постоянного воз-
действия можно взять допустимое увеличение отходов либо темп природной
очистки водоема. В задачах физики вектор q может выступать постоянно дей-
ствующей внешней силой, такой как сила притяжения или постоянный воздуш-
ный поток.

Интерес для исследования представляют как модели из класса Mo, так и мо-
дели из подкласса Mc. Отсутствие вектора постоянного внешнего воздействия
позволяет использовать общеизвестные результаты для получения условий су-
ществования положений равновесия и частичного равновесия, а также иссле-
дования их свойств, таких как, например, единственность и устойчивость по
отношению к малому изменению входных параметров.

В диссертации показано, что наличие дополнительного слагаемого q может
сильно повлиять на структуру модели и, как следствие, сделать применение тех
или иных общеизвестных методов нахождения равновесия невозможным.

1.2.Примеры моделей из классов Mo и Mc

Теперь перейдем к описанию экономических моделей, на которых будет рас-
смотрено приложение разработанных методов.
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Введем обозначение Rn
+ = {x = (x1, ..., xn) ∈ Rn : xi > 0, i = 1, n}.

1.2.1.Модель типа Аллена–Эрроу–Дебре

Данная модель является обобщением известной модели Эрроу–Дебре [43] и
была описана в [2]. Пусть заданы числа m ∈ N,m ⩽ n; I ∈ R+, векторы a =

(a1, ..., an) ∈ Rn, aj ⩾ 0, j = 1, n; α = (α1, ..., αn) ∈ (0; 1)n, C = (C1, ..., Cm) ∈
Rm

+ и такая матрица B размерности m×n c компонентами βij > 0, i = 1,m, j =

1, n, что:
n∑

j=1

βij < 1, i = 1,m. (1.5)

Пусть заданы векторы c1 = (c11, ..., c1n), c2 = (c21, ..., c2n) ∈ Rn
+ такие, что

c1i < c2i, i = 1, n.
Предположим, что

⟨c2, a⟩ < I. (1.6)

Функция Si : Rn
+ → R в данной модели определяется формулой:

Si(p) = Ki

n∏
j=1

p
−βij

j − Lip
−1
i , i = 1,m, (1.7)

где

Ki =

Cib

n∑
j=1

βij

i

n∏
j=1

β
βij

ij(
n∑

k=1

βki

)−
n∑

l=1

βkl

, Li =
m∑
s=1

bsβsi
n∑

j=1

βsj

, i = 1,m. (1.8)

Функция Di : Rn
+ → R определяется формулой:

Di(p1, ..., pn) = ai +
αi (I − ⟨p, a⟩)

pi
n∑

k=1

αk

, p = (p1, ..., pn) ∈ Rn
+, i = 1,m. (1.9)

Данная модель возникла при описании макроэкономики региона, в котором
присутствуют две группы участников – производители и потребители. Произ-
водители создают товары, тратя на i-й товар объем финансовых средств bi. Ci

являются коэффициентами нейтрального технического прогресса, а βij высту-
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пают в роли эластичностей по ресурсам. Покупатели имеют бюджет I, который
они тратят на приобретение необходимого количества i-го товара в объеме ai,
а затем остаток средств тратят на приобретение товаров в соответствии с цен-
ностью i-го товара αi. Цена на i-й товар обозначена через pi, которая должна
удовлетворять ограничениям c1i < pi < c2i, i = 1, n.

Рассмотрим систему:

ṗi = Di(p)− Si(p), i = 1,m; (1.10)

где D определено формулой (1.9), а S – формулой (1.7).

Определение 1.3. Моделью типа Аллена–Эрроу–Дебре назовем следующий
набор параметров σad = (c1, c2, I, a, α, C,B), удовлетворяющий (1.5), (1.6) и
определяющий систему (1.10). Множество всех таких моделей обозначим через
Σad.

Легко видеть, что эта модель принадлежит подклассу Mc.
Параметры модели имеют следующий экономический смысл: векторы c1, c2

задают естественные ограничения на цены товаров, I – бюджетные ограничения
производителей товаров, вектор a описывает минимальные количества това-
ров, которые не являются предметом выбора и приобретаются в любом случае,
вектор α описывает относительную «ценность» каждого товара, на которую
ориентируется потребитель после того, как приобрел товары в соответствии
с вектором a, вектор C описывает коэффициенты нейтрального технического
прогресса, а матрица B определяет эластичности предложения по ресурсам.

1.2.2.Модели типа Аллена с постоянными эластичностями

Рассмотрим отображения спроса

D : Rn
+ → Rn

+, D(p) = (D1(p), ..., Dn(p)),

и предложения
S : Rn

+ → Rn
+, S(p) = (S1(p), ..., Sn(p)).

Эти отображения в будущем будут иметь специальный вид.
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Предположим, что нам известны векторы p∗ ∈ P,D∗ ∈ Rn
+, D

∗ = (D∗
1, ..., D

∗
n)

и S∗ ∈ Rn
+, S∗ = (S∗

1 , ..., S
∗
n), которые связаны соотношением:

D∗ = D(p∗), (1.11)

S∗ = S(p∗). (1.12)

Пусть также известна матрица E = (Eij)i,j=1,n, где элементы Eij ∈ R удовле-
творяют равенству

Eij =
∂Di

∂pj
(p)

pj
Di(p)

, i, j = 1, n. (1.13)

Аналогично определим матрицу Ẽ = (Ẽij)i,j=1,n с элементами Ẽij ∈ R, кото-
рые удовлетворяют равенству

Ẽij =
∂Si

∂pj
(p)

pj
Si(p)

, i, j = 1, n. (1.14)

Из (1.13), (1.14) мы получаем системы уравнений в частных производных
относительно неизвестных функций Di и Si

∂Di

∂pj
(p) =

EijDi(p)

pj
, i, j = 1, n; (1.15)

∂Si

∂pj
(p) =

ẼijSi(p)

pj
, i, j = 1, n. (1.16)

Решая задачи (1.11), (1.15) и (1.12), (1.16), мы можем получить явный вид
отображений спроса D и предложения S.

Теорема 1.1 ([47]). Набор параметров (p∗, D∗, S∗, E , Ẽ) однозначно определя-
ют отображения

D : Rn
+ → Rn

+, S : Rn
+ → Rn

+. (1.17)

по формулам:

Di(p1, ..., pn) = D∗
i

n∏
j=1

(p∗j)
−Eijp

Eij

j , i = 1, n; (1.18)

Si(p1, ..., pn) = S∗
i

n∏
j=1

(p∗j)
−Ẽijp

Ẽij

j , i = 1, n. (1.19)
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Доказательство. Мы приведем доказательство только для отображения D.
Доказательство для отображения S проводится аналогично, если мы заменим
Di на Si, i = 1, n; Eij на Ẽij, i, j = 1, n; а выражения (1.11), (1.15) на (1.12),
(1.16) соответственно.

Пусть задана модель σo. Докажем, что (1.18) является решением задачи
(1.11), (1.15). Для этого сначала вычислим

∂Di

∂pk
(p) =

D∗
iEij

pk

n∏
j=1

(p∗j)
−Eijp

Eij

j , i = 1, n.

Подставим (1.18) в (1.11):

Di(p
∗) = D∗

i

n∏
j=1

(p∗j)
−Eij(p∗j)

Eij = D∗
i , i = 1, n.

Теперь подставим (1.18) в (1.15) и получим

Eik =
∂Di

∂pk
(p)pk

(
D∗

i

n∏
j=1

(p∗j)
−Eijp

Eij

j

)−1

=
∂Di

∂pk
(p)

pk
Di(p)

.

Таким образом, (1.18) является решением (1.11), (1.15).
Теперь докажем, что решение задачи (1.11), (1.15) единственно. Для этого

рассмотрим следующее выражение

d

(
Di(p)

n∏
j=1

p
−Eij

j

)
=

n∑
k=1

(
∂Di

∂pk
(p)

n∏
j=1

p
−Eij

j − Di(p)Eik

pk

n∏
j=1

p
−Eij

j

)
dpk =

=
n∑

k=1

(
∂Di

∂pk
(p)

n∏
j=1

p
−Eij

j − ∂Di

∂pk
(p)

n∏
j=1

p
−Eij

j

)
dpk = 0, i = 1, n.

(1.20)

Здесь первое равенство выполнено по определению дифференциала сложной
функции, второе равенство – по определению эластичности спроса по цене, а
последнее очевидно.

Система (1.20) эквивалентна системе (1.15). Также заметим, что система
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(1.20) эквивалентна следующей системе:

Di(p)
n∏

j=1

p
−Eij

j = Ci = const, i = 1, n. (1.21)

Эквивалентность последних двух систем вытекает из следствия теоремы о сред-
нем [17]. Так как система (1.21) должна удовлетворять условию (1.11), мы по-
лучаем, что

Di(p
∗)
∏
j=1

(p∗j)
−Eij = D∗

i

∏
j=1

(p∗j)
−Eij = Ci.

Поскольку последнее выражение однозначно определяет константы Ci, в силу
эквивалентности всех приведенных выше систем мы получаем, что решение
зачади (1.11), (1.15) единственно.

Пусть наконец известен вектор a ∈ Rn, a = (a1, ..., an) такой, что ai ⩾ 0 для
любого i = 1, n.

Рассмотрим систему:
ṗ = D(p)− S(p) + a, (1.22)

где D определено формулой (1.18), а S – формулой (1.19).

Определение 1.4. Открытой моделью типа Аллена с постоянными эластич-
ностями назовем набор параметров

σo = (c1, c2, a, p
∗, D∗, S∗, E , Ẽ),

определяющий систему (1.22). Множество таких моделей обозначим через Σo.

Заметим, что данная модель принадлежит классу Mo.
Параметры моделей из класса Σo имеют экономический смысл. Под откры-

тостью здесь подразумевается наличие вектор импорта a, векторы c1, c2 задают
ограничения на цены, векторы S∗, D∗ – это известные значения спроса и пред-
ложения при известных ценах p∗, а матрицы E , Ẽ – матрицы эластичностей
спроса и предложения по цене соответственно.

В диссертации также рассматривается модель из класса Mc, в которой от-
сутствует вектор a. В ней рассматривается система

ṗ = D(p)− S(p), (1.23)
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где D определено формулой (1.18), а S – формулой (1.19).

Определение 1.5. Закрытой моделью типа Аллена с постоянными эластично-
стями называется набор параметров

σc = (c1, c2, p
∗, D∗, S∗, E , Ẽ),

определяющий систему (1.23). Множество таких моделей обозначим через Σc.

Легко видеть, что данная модель принадлежит классу Mc.

1.2.3.Модель типа Аллена с непостоянными эластичностями

В предыдущих моделях матрицы E и Ẽ состояли из действительных чисел.
Теперь опишем модели, в которых эти матрицы в качестве элементов содержат
функции от p.

Пусть λij, λ̃ij, χij, χ̃ij ∈ R и

Eij(p) = λijp
χij

j , Ẽij(p) = λ̃ijp
χ̃ij

j , i, j = 1, n. (1.24)

Обозначим E(p) = (Eij(p))i,j=1,n и Ẽ = (Ẽij(p))i,j=1,n. Для функций Eij(p) и
Ẽij(p) предполагаются выполненными следующие соотношения:

∂Di

∂pj
=

Eij(p)Di(p)

pj
, i, j = 1, n; (1.25)

∂Si

∂pj
=

Ẽij(p)Si(p)

pj
, i, j = 1, n. (1.26)

Докажем следующую теорему.

Теорема 1.2 ([48]). Набор (p∗, S∗, D∗, E(p), Ẽ(p)) однозначно определяет отоб-
ражения спроса и предложения по формулам

Di(p) = D∗
i

n∏
j=1

exp

(
λij

χij
(p

χij

j − (p∗j)
χij)

)
, i = 1, n; (1.27)

Si(p) = S∗
i

n∏
j=1

exp

(
λ̃ij

χ̃ij
(p

χ̃ij

j − (p∗j)
χ̃ij)

)
, i = 1, n. (1.28)
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Отображения D и S, определенные формулами (1.27) и (1.28) являются ре-
шениями задач (1.11), (1.25) и (1.12), (1.26) соответственно.

Доказательство. Доказательство проведем только для отображения D, по-
скольку для отображения S оно будет аналогично. Покажем, что (1.27) – реше-
ние (1.25),(1.11). Для этого вычислим:

∂Di

∂pk
(p) =

λik

pk
D∗

i

n∏
j=1

exp

(
λijp

χij

j

χij
(p

χij

j − p
∗χij

j )

)
= λikp

χik

k

Di(p)

pk
, i = 1, n.

Более того,

Di(p
∗) = D∗

i

n∏
j=1

exp

(
λij

χij
(p

∗χij

j − p
∗χij

j )

)
= D∗

i , i = 1, n.

Теперь докажем, что решение задачи (1.25),(1.11) единственно в модели σf . Для
этого рассмотрим уравнение

d

(
Di(p)

n∏
j=1

exp

(
−λij

χij
p
χij

j

))
=

=
n∑

k=1

(
∂Di

∂pk
(p)

n∏
j=1

exp

(
−λij

χij
p
χij

j

)
−Di(p)

λikp
χik

k

pk

n∏
j=1

exp

(
−λij

χij
p
χij

j

))
=

=
n∑

k=1

(
λikp

χik

k

pk
Di(p)−Di(p)

λikp
χik

k

pk

) n∏
j=1

exp

(
−λij

χij
p
χij

j

)
= 0, i = 1, n.

Эта система эквивалентна следующей системе:

Di(p)
n∏

j=1

exp

(
−λij

χij
p
χij

j

)
= Ci, i = 1, n.

Эта система должна удовлетворять условию (1.11), т.е.:

D∗
i

n∏
j=1

exp

(
−λij

χij
p
∗χij

j

)
= Ci, i = 1, n.

Поскольку выражение Ci в этом равенстве единственно, все системы выше в
силу эквивалентности имеют единственное решение.
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Пусть наконец известен вектор a ∈ Rn, a = (a1, ..., an) такой, что ai ⩾ 0 для
любого i = 1, n.

Рассмотрим систему:
ṗ = D(p)− S(p) + a, (1.29)

где D определено формулой (1.27), а S – формулой (1.28).

Определение 1.6. Открытой моделью типа Аллена с непостоянными эластич-
ностями назовем набор σf = (a, c1, c2, p

∗, S∗, D∗, E(p), Ẽ(p)), где элементы Eij(p)

и Ẽij(p) матриц E(p) и Ẽ(p) соответственно определены формулами (1.24), а
сам набор определяет систему (1.29) Множество всех таких моделей обозначим
через Σf .

Легко видеть, что данная модель принадлежит классу Mo.

Замечание 1.1. Заметим, что Σo ̸⊂ Σf . Действительно, если в модели σf ∈ Σf

элементы матриц E и Ẽ являются постоянными величинами, то χij = 0 ∀i, j =

1, n. Однако в таком случае формулы (1.27), (1.28) не имеют смысла.

Выводы главы 1

В данной главе были описаны модели, динамика которой определяется раз-
ностью отображений метрических пространств. В модели Аллена–Эрроу–Дебре
правая часть системы получена как решение задач условной максимизации, в
моделях типа Аллена с постоянными и непостоянными эластичностями – как ре-
шение систем дифференциальных уравнений с начальным условием. Доказаны
теоремы, которые гарантируют существование и единственность отображений,
входящих в правую часть. Рассматриваемая задача имеет довольно общий вид,
что создает широкий круг приложений для методов, разработанных в следую-
щей главе.

Результаты главы опубликованы в работах [20, 47, 48].
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2.Методы исследования положения равновесия
в классах моделей Mo и Mc

Как было отмечено в предыдущей главе, положение равновесия в модели
Mo является решением уравнения:

F (x)−G(x) + q = 0, x ∈ M ⊂ X. (2.1)

Здесь X, Y – метрические пространства, x ∈ X, q ∈ Y , F,G : X → Y .
В зависимости от вида отображений и метрических пространств для иссле-

дования вопроса о поиске решения уравнения (2.1) могут применяться некото-
рые общеизвестные результаты. Так, если X = Rn, Y = Rm, а F,G – линейные
операторы, то уравнение (2.1) представляет собой систему линейных уравне-
ний и неравенств. Если же Y = X – произвольное метрическое пространство,
а G ≡ Id – тождественный оператор, то задача сводится к нахождению непо-
движной точки отображения F . В более общем случае можно воспользоваться
результатами теории накрывающих отображений и точек совпадения, которые
представлены далее.

2.1.Накрывающие отображения и точки совпадения

Сначала приведем определение точки совпадения двух отображений. Пусть
(X, ρX), (Y, ρY ) – метрические пространства с метриками ρX и ρY соответствен-
но. Пусть заданы отображения Φ,Ψ : X → Y .

Определение 2.1 ([5]). Точкa ξ ∈ X называется точкой совпадения отобра-
жений Ψ,Φ : X → Y , если

Ψ(ξ) = Φ(ξ).

Существование точки совпадения тесно связано с понятием накрывающего
отображения. Сформулируем соответствующее определение.
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Через BX(x, r) обозначим шар с центром в точке x ∈ X радиуса r > 0,
аналогично обозначим BY (y, r).

Определение 2.2 ([5]). Пусть α > 0. Отображение Ψ : X → Y называется
α-накрывающим, если

Ψ(BX(x, r)) ⊇ BY (Ψ(x), αr), ∀x ∈ X, r > 0.

Очевидно, что если отображение Ψ является α-накрывающим, то оно яв-
ляется α′-накрывающим при любом 0 < α′ < α. Точную верхнюю грань всех
α > 0 таких, что отображение Ψ является α-накрывающим, обозначим через
cov(Ψ).

Нас будет интересовать накрывание отображений не на всем пространстве
X, а на его подмножестве. Приведем соответствующее определение. Пусть M ⊆
X – подмножество с непустой внутренностью.

Определение 2.3 ([44]). Пусть α > 0. Отображение Ψ называется α-накры-
вающим на множестве M ⊆ X, если для любых x ∈ M , r > 0 таких, что
BX(x, r) ⊆ M , выполнено включение

Ψ(BX(x, r)) ⊇ BY (Ψ(x), αr).

Точную верхнюю грань всех таких чисел α > 0, что отображение Ψ является
α-накрывающим на множестве M , обозначим через cov(Ψ|M).

В дальнейшем нам также потребуется определение накрывание отображе-
ния в точке.

Определение 2.4 ([44]). Пусть α > 0. Отображение Ψ называется α-накры-
вающим в точке x ∈ intM , если для любого ε > 0 существует δ ∈ (0, ε) такое,
что BX(x, δ) ⊂ M и

Ψ(BX(x, δ)) ⊇ BY (Ψ(x), αδ).

Точную верхнюю грань всех таких чисел α > 0, что отображение Ψ является
α-накрывающим в точке x ∈ X, обозначим через cov(Ψ|x).

Приведем результаты из теории накрывающих отображений и точек совпа-
дения, позволяющие оценить cov(Ψ), cov(Ψ|M) и cov(Ψ|x).

В [44] было также показано, что если X, Y – банаховы пространства, а Ψ :

X → Y строго дифференцируемо в каждой точке открытого множества M ⊂ X
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и Ψ′(x) является α-накрывающим в каждой точке x ∈ M с общей константой
α > 0, то отображение Ψ является α′-накрывающим на M с любой константой
α′ < α, т.е.

cov(Ψ|M) = inf
x∈intM

cov(Ψ|x). (2.2)

В случае, когда отображение Ψ является линейным сюръективным опера-
тором из Rn в Rk, справедлива следующая лемма.

Лемма 2.1 ([6]). Пусть Ψ : Rn → Rk – сюръективный линейный оператор.
Тогда

cov(Ψ) ⩾
1

∥Ψ∗(ΨΨ∗)−1∥
, (2.3)

где Ψ∗ – оператор, сопряженный к Ψ.

Здесь и далее норма произвольного линейного оператора Q, действующего
из нормированного пространства (X , ∥ · ∥X ) с нормой ∥ · ∥X в нормированное
пространство (Y , ∥ · ∥Y) с нормой ∥ · ∥Y определена формулой:

∥Q∥ = sup
∥x∥X=1

∥Qx∥Y .

В прошлой главе был упомянут вопрос об устойчивости положения равнове-
сия в моделях класса Mo. Следующая теорема гарантирует устойчивость этого
решения как точки совпадения двух отображений.

Теорема 2.1 ([2]). Предположим, что пространство X полно, заданы точка
x0 ∈ X и числа α > 0, β ⩾ 0, R > 0, причем α > β, а точка x0 является
точкой совпадения отображений Ψ и Φ, т.е. Ψ(x0) = Φ(x0). Пусть также
имеет место:

1) для любого натурального n отображение Ψn является α-накрывающим
на BX(x0, R) и замкнутым;

2) для любого натурального n отображение Φn удовлетворяет условию
Липшица с константой β на множестве BX(x0, R);

3) ρY (Ψn(x0),Ψ(x0)) → 0, ρY (Φn(x0),Φ(x0)) → 0 при n → ∞.

Тогда существует номер n > 0 и последовательность {xn} ⊂ X такие,

23



что Ψn(xn) = Φn(xn) ∀n > n, xn → x0 при n → ∞ и, более того,

ρX(xn, x0) ⩽
ρY (Ψn(x0),Ψ(x0)) + ρY (Ψn(x0),Φ(x0))

α− β
∀n > n.

Сформулируем условия, гарантирующие существование точки совпадения
для α-накрывающего отображения и отображения, удовлетворяющего условию
Липшица. Соответствующая теорема доказана в [44].

Теорема 2.2 ([44]). Пусть пространство X полное и заданы α > 0, x0 ∈ X

и R > 0. Пусть также Ψ : X → Y является α-накрывающим на BX(x,R) и
замкнутым. Тогда для любого неотрицательного β < α и любого отображе-
ния Φ : BX(x0, R) → Y , удовлетворяющего условию Липшица с константой
β такого, что

ρY (Ψ(x0),Φ(x0)) ⩽ (α− β)R,

для отображений Ψ и Φ существует точка совпадения ξ ∈ X, т.е. Ψ(ξ) =

Φ(ξ), такая, что

ρX(x0, ξ) ⩽
ρY (Ψ(x0),Φ(x0))

α− β
.

В дальнейшем мы будем рассматривать отображения Ψ и Φ, действующие
из BX(x0, r), где r > 0. Для того, чтобы воспользоваться теоремами 2.1, 2.2,
и 2.3, нам необходимо, чтобы эти отображения действовали в одно и то же
метрическое пространство. Для этого была доказана следующая лемма.

Лемма 2.2 ([21]). Пусть выполнены условия Теоремы 2.2 и существует число
R > 0 такое, что

ρY (Ψ(x0),Φ(x0)) ⩽ (α− β)R. (2.4)

Тогда Φ(BX(x0, R)) ⊆ Ψ(BX(x0, R)).

Доказательство. Пусть x ∈ B(x0, R). Тогда

ρY (Φ(x),Ψ(x0)) ⩽ ρY (Φ(x),Φ(x0)) + ρY (Φ(x0),Ψ(x0)) ⩽

⩽ βρX(x, x0) + (α− β)R ⩽ βR + (α− β)R = αR

Следовательно, Φ(x) ∈ Ψ(B(x0, R)), и отсюда в силу произвольности выбора
точки x имеем Φ(BX(x0, R)) ⊆ Ψ(BX(x0, R)).
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Наряду с условиями существования положения равновесия существует идея
построения последовательности [7], которая сходится к точке совпадения двух
отображений и послужит для создания метода нахождения положения равно-
весия систем (1.1) и (1.2), а также его реализации.

Процедура устроена следующим образом. Зафиксируем x0 ∈ X и построим
по индукции xi, i = 1, 2, 3, ... такие, что

ρX(xi+1, xi) ⩽ α−1ρY (Ψ(xi),Φ(xi)), (2.5)

ρY (Ψ(xi+1),Φ(xi)) ⩽ δρY (Ψ(xi),Φ(xi)), (2.6)

где
δ > 0 : β + αδ < α. (2.7)

Существование данной последовательности вытекает из того, что отображение
Ψ является α-накрывающим. В [7] была доказана сходимость этой процедуры
к точке совпадения.

Теорема 2.3 ([7]). Пусть пространство X полное, отображение Ψ является
α-накрывающим и его график gph(Ψ) = {(x, y) ∈ X × Y | y = Ψ(x)} замкнут,
а отображение Φ удовлетворяет условию Липшица с константой Липшица
β < α.

Тогда для любого x0 ∈ X существует последовательность {xi}, которая
удовлетворяет условиям (2.5), (2.6) при всех i, и любая такая последователь-
ность сходится к некоторой точке совпадения ξ = ξ(x0), для которой спра-
ведливо неравенство

ρY (ξ, x0) ⩽ (α− (β + αδ))−1ρY (Ψ(x0),Φ(x0)).

2.2.Метод нахождения положения равновесия динамических систем

Предложенная процедура и теорема 2.3. описывают условия существова-
ния последовательности, сходящейся к точке совпадения, но не предъявляют
саму последовательность. На их основе предлагается следующий метод поис-
ка положений равновесия в динамических системах, реализующий построение
сходящейся такой последовательности.

Для этого динамика системы представляется в виде (2.1), где отображение
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F+q является накрывающим, а G удовлетворяет условию Липшица. Далее при-
меняется алгоритм поиска точки совпадения для отображений Ψ(x) = F (x)+ q

и Φ(x) = G(x).
Напомним важное определение из функционального анализа, которое по-

требуется нам для формулировки метода нахождения.

Определение 2.5 ([22]). Множество M ⊂ X называется вполне ограничен-
ным, если у него существует конечная ε-сеть, то есть ∃{x1, ..., xn} ∈ X : ∀x ∈
M ∃i ∈ (1, n) : ρX(x, xi) ⩽ ε.

Используя неравенства (2.5), (2.6), мы можем составить следующий алго-
ритм при условии, что пространство X конечномерно, а множество M вполне
ограничено. Далее в этом разделе мы предполагаем выполненными условия
теоремы 2.2.

Алгоритм 1
Шаг 0. Зафиксировать ε > 0 – погрешность приближения, x0 ∈ M – на-

чальное приближение, δ ∈ (0; 1 − β/α) – параметр итерационного процесса,
положить номер итерации i = 0.

Шаг 1. Проверить выполнение неравенства ρY (Ψ(xi),Φ(xi)) < ε. Если нера-
венство выполнено, то закончить алгоритм. Если нет, то перейти к шагу 2.

Шаг 2. Положить σi = δ/2 ρY (Ψ(xi),Φ(xi)) и построить σi-сеть Z на множе-
стве BX(xi, α

−1ρY (Ψ(xi),Φ(xi))) (в силу того, что BX(xi, α
−1ρY (Ψ(xi),Φ(xi))) ⊂

M и M – вполне ограничено, эта σi-сеть конечна).
Шаг 3. Поочередно брать точки x̃ ∈ Z ∩ BX(xi, α

−1ρY (Ψ(xi),Φ(xi))) и про-
верять выполнение неравенства:

ρY (Ψ(x̃),Φ(xi)) ⩽ δρY (Ψ(xi),Φ(xi)).

Если подходящая под условие точка найдена, то перейти к шагу 4. Если нет, то
уменьшить σi в два раза, построить новую сеть и повторить перебор.

Шаг 4. Положить xi+1 = x̃, увеличить i на единицу и перейти к шагу 2.
Основным результатом этой главы является следующая теорема.

Теорема 2.4 (О сходимости Алгоритма 1, [21]). Пусть пространство X полно,
M ⊂ X – вполне ограниченное множество и заданы x0 ∈ X, R > 0 такие, что
BX(x0, R) вполне ограничено в X. Далее, пусть отображение Ψ является α-
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накрывающим на BX(x0, R) и замкнутым, а отображение Φ удовлетворяет
условию Липшица на BX(x0, R) с константой β < α.

Тогда для любого δ > 0 такого, что β + αδ < α,

ρY (Ψ(x0),Φ(x0)) < (α− (β + αδ))R,

Алгоритм 1 сходится за конечное число шагов, причем

ρX(x0, ξ) ⩽ (α− (β + αδ))−1 ρY (Ψ(x0),Φ(x0)). (2.8)

Доказательство. Доказательство проводится путем индуктивного построения
последовательности, удовлетворяющей (2.5), (2.6). Докажем сначала, что суще-
ствует x1, такой, что Ψ(x1) = Φ(x0). Положим

r0 = α−1ρY (Ψ(x0),Φ(x0)) < α−1(α− (β + αδ))R ⩽ R.

Следовательно, BX(x0, r0) ⊆ BX(x0, R). Далее, в силу определения накрываю-
щего отображения на множестве:

Ψ(BX(x0, r0)) ⊇ BY (Ψ(x0), αr0).

Отсюда мы получаем, что Φ(x0) ∈ Ψ(BX(x0, r0)), т.к. αr0 = ρY (Ψ(x0),Φ(x0)).
Следовательно, существует x1 ∈ BX(x0, r0) такое, что

Ψ(x1) = Φ(x0).

Пусть теперь x1 ∈ BX(x0, R) такой, что выполнено (2.5), (2.6) при i = 0.
Покажем, что x1 ∈ BX(x0, r0). Положим

r1 =

(
δ +

β

α

)
r0.

Покажем, что BX(x1, r1) ⊂ BX(x0, R). В самом деле, для любого x ∈ BX(x1, r1)
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имеем

ρX(x0, x) ⩽ ρX(x0, x1) + ρX(x1, x) ⩽

⩽ δρY (Ψ(x0),Φ(x0)) + r1 = δr0 +

(
δ +

β

α

)
r0 ⩽

⩽ (α−1(α− (β + αδ))R)

(
1 + δ +

β

α

)
= R

(
1−

(
δ +

β

α

)2
)

⩽ R.

Здесь мы воспользовались тем, что δ < 1 в силу условия β + αδ < α. Теперь
покажем, что Φ(x1) ∈ Ψ(BX(x1, r1)). Действительно,

ρY (Φ(x1),Ψ(x1)) ⩽ ρY (Φ(x1),Φ(x0)) + ρY (Φ(x0),Ψ(x1)) ⩽

⩽ βρX(x1, x0) + δρY (Ψ(x0),Φ(x0)) ⩽

(
β

α
+ δ

)
αr0 = αr1.

Следовательно, Φ(x1) ∈ BY (Ψ(x1), αr1). Поскольку Ψ является α-накрываю-
щим на BX(x0, R), имеем:

Ψ(BX(x1, r1)) ⊇ BY (Ψ(x1), αr1).

Отсюда следует, что Φ(x1) ∈ Ψ(BX(x1, r1)). Следовательно, существует x2 ∈
BX(x1, r1) такой, что Ψ(x2) = Φ(x1).

Далее, возьмем x2 ∈ BX(x0, R), которое удовлетворяет (2.5), (2.6) при i = 2.
Положим

r2 =

(
δ +

β

α

)
r1.

Покажем, что BX(x2, r2) ⊆ BX(x0, R). В самом деле, если x ∈ BX(x2, r2), то

ρX(x0, x) ⩽ ρX(x0, x1) + ρX(x1, x2) + ρX(x2, x) ⩽

α−1ρY (Ψ(x0),Φ(x0)) + α−1ρY (Ψ(x1),Φ(x1)) + r2 =

= r0 + r1 + r2 =

(
1 + δ +

β

α
+

(
δ +

β

α

)2
)
r0 ⩽

(
1−

(
δ +

β

α

))−1

r0 ⩽ R.
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Теперь покажем, что Φ(x2) ∈ Ψ(BX(x2, r2)). Действительно,

ρY (Φ(x2),Ψ(x2)) ⩽ ρY (Φ(x2),Φ(x1)) + ρY (Φ(x1),Ψ(x2)) ⩽

⩽ βρX(x2, x1) + δρY (Ψ(x1),Φ(x1)) ⩽

⩽ α−1βρY (Ψ(x1),Φ(x1)) + δρY (Ψ(x1),Φ(x1)) =

(
δ +

β

α

)
αr1 = αr2.

Следовательно, Φ(x2) ∈ BY (Ψ(x2), αr2). Поскольку Ψ является α-накрываю-
щим на BX(x0, R), имеем

Ψ(BX(x2, r2)) ⊇ BY (Ψ(x2), αr2).

Таким образом, Φ(x2) ∈ Ψ(BX(x2, r2)). Отсюда следует, что существует x3 ∈
BX(x2, r2) такой, что

Ψ(x3) = Φ(x2).

Далее, пусть построены x1, ..., xk−1. Возьмем xk, удовлетворяющее (2.5),(2.6) и
положим

rk =

(
δ +

β

α

)
rk−1.

Покажем, что BX(xk, rk) ⊆ BX(x0, R). Действительно, если x ∈ BX(xk, rk), то:

ρX(x0, x) ⩽ ρX(x0, x1) + ρX(x1, x2) + ...+ ρX(xk−1, xk) + ρX(xk, x) ⩽

⩽ r0 + r1 + ...+ rk−1 + rk =

(
1 +

(
δ +

β

α

)
+

(
δ +

β

α

)2

+ ...

...+

(
δ +

β

α

)k
)
r0 ⩽

(
1−

(
δ +

β

α

))−1

r0 ⩽ R.

(2.9)

Теперь покажем, что Φ(xk) ∈ Ψ(BX(xk, rk)). В самом деле,

ρY (Φ(xk),Ψ(xk)) ⩽ ρY (Φ(xk),Φ(xk−1)) + ρY (Φ(xk−1),Ψ(xk)) ⩽

⩽ βρX(xk, xk−1) + δρY (Φ(xk−1),Ψ(xk−1)) ⩽ βα−1ρY (Ψ(xk−1),Φ(xk−1))+

+δρY (Ψ(xk−1),Φ(xk−1)) =

(
δ +

β

α

)
ρY (Ψ(xk−1),Φ(xk−1)) ⩽

⩽

(
δ +

β

α

)
rk−1 ⩽ αrk.
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Следовательно, Φ(xk) ∈ BY (Ψ(xk), αrk). Поскольку Ψ является α-накрываю-
щим на BX(x0, R), то Ψ(BX(xk, rk)) ⊇ BY (Ψ(xk), αrk). Отсюда следует, что
существует xk+1 ∈ BX(x0, R) такой, что Ψ(xk+1) = Φ(xk). Продолжая процесс
по индукции, мы получаем необходимую последовательность {xk}.

Покажем теперь, что на шаге 3 Алгоритма 1 за конечное число шагов на
каждом шаге i точка, удовлетворяющая (2.5), (2.6), будет найдена.

Выше мы получили, что для любого xi существует такая точка xi+1, что
ρY (Ψ(xi+1),Φ(xi)) = 0. Требуется показать, что любого i и δ > 0 множество

Mi =
{
x ∈ BX(xi, α

−1ρY (Ψ(xi),Φ(xi))) : ρY (Ψ(x),Φ(xi)) < δρY (Ψ(xi),Φ(xi))
}

имеет непустую внутренность. Пусть это не так, т.е. ∀x′ ∈ Mi и ∀ε > 0 ∃x′′ :
ρX(x

′, x′′) ⩽ ε и ρY (Ψ(x′′),Φ(xi)) ⩾ δρY (Ψ(xi),Φ(xi)). Возьмем x′ ∈ Mi и по-
следовательность εn = 1/2n. Согласно предположению существует последова-
тельность {xn}∞n=1 : ρY (Ψ(xn),Φ(xi)) ⩾ δρY (Ψ(xi),Φ(xi)). Полагая n → ∞, мы
получаем, что xn → x′, т.к. εn → 0 и, следовательно, ρX(xn, x′) → 0. Более
того, в силу предположения относительно замкнутости графика отображения
Ψ имеем ρY (Ψ(x′),Φ(xi)) ⩽ δρY (Ψ(xi),Φ(xi)). Но x′ ∈ Mi, откуда следует, что
ρY (Ψ(x′),Φ(xi)) < δρY (Ψ(xi),Φ(xi)). Противоречие.

Таким образом, ∃ε > 0 : BX(xi, ε) ⊂ Mi. Следовательно, множество Mi

имеет непустую внутренность.
Поскольку M вполне ограничено, то вполне ограничены также и множества

BX(xi, α
−1ρY (Ψ(xi),Φ(xi))) для любого i. Следовательно, на каждом из них

всякая ε-сеть будет конечна. Таким образом, уменьшая шаг сетки на шаге 3
Алгоритма 1, мы получим, что за конечное число шагов искомая точка будет
найдена.

Из (2.6) мы получаем, что построенная последовательность является фун-
даментальной. В самом деле,

ρY (Ψ(xi),Φ(xi)) ⩽ ρY (Ψ(xi),Φ(xi−1)) + ρY (Φ(xi−1),Φ(xi)) ⩽

⩽ ρY (Ψ(xi),Φ(xi−1)) + βρX(xi, xi−1) ⩽ δρY (Ψ(xi−1),Φ(xi−1)) + βρX(xi, xi−1) ⩽

⩽

(
δ +

β

α

)
ρY (Ψ(xi−1),Φ(xi−1)).
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Отсюда

ρY (Ψ(xi),Φ(xi)) ⩽

(
δ +

β

α

)i

ρY (Ψ(x0),Φ(x0)) ∀i.

В силу (2.5) мы получаем, что

ρX(xi, x0) ⩽ α−1ρY (Ψ(xi),Φ(xi)) ⩽ α−1

(
δ +

β

α

)i

ρY (Ψ(x0),Φ(x0)).

Наконец, поскольку δ+β/α < 1, мы получаем, что последовательность {xi}
является фундаментальной и

ρX(xi, x0) ⩽ (α− (αδ + β))−1 ρY (Ψ(x0),Φ(x0)).

Так как пространство X полное, {xk} сходится к точке ξ ∈ BX(x0, R). Ис-
пользуя непрерывность отображения Φ и замкнутость отображения Ψ, мы пе-
реходим к пределу и получаем, что существует точка совпадения отображений
Ψ и Φ, т.е. для любого ε > 0 с помощью Алгоритма 1 за конечное число шагов
будет найдена точка ξ такая, что ρY (Ψ(ξ),Φ(ξ)) < ε, и неравенство (2.8).

В результате применения Алгоритма 1 положение равновесия в системах
(1.1) и (1.2) будет найдено с произвольной заданной точностью ε > 0.

Предложенный метод состоит в том, чтобы рассмотреть положение равно-
весия в системах (1.1) и (1.2) как точку совпадения отображений из правых
частей систем, проверить выполнение условий теоремы существования точки
совпадения, проверить выполнения условия теоремы о сходимости Алгоритма
1, а затем применить Алгоритм 1.

Замечание 2.1. Заметим, что если X – конечномерное банахово пространство,
то условие вполне ограниченности множества M выполняется автоматически.

Теперь рассмотрим несколько частных случаев, в которых применимы более
простые методы нахождения положения равновесия и которые будут использо-
ваны в главах 3 и 4.

2.3.Принцип сжимающих отображений

Если в модели из класса Mo одно из двух отображений F,G (без ограничений
общности, F ) является биективным, то вопрос о существовании решения систе-
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мы (2.1) сводится к поиску неподвижной точки отображения F−1◦G. Напомним
определение неподвижной точки, а также принцип сжимающих отображений.
Помимо существования, теорема о неподвижной точке гарантирует также и ее
единственность.

Пусть дано метрическое пространство (X, ρX) с метрикой ρX .

Определение 2.6 ([22]). Точка x ∈ X называется неподвижной точкой отоб-
ражения H : X → X, если

Hx = x.

Существование неподвижной точки можно гарантировать в том случае, если
отображение H является сжимающим.

Определение 2.7 ([22]). Отображение H : X → X называется сжимающим,
если существует такое число c < 1, что для любых x′, x′′ ∈ X выполнено

ρX(Hx′, Hx′′) ⩽ cρX(x
′, x′′).

Для формулировки теоремы о существовании неподвижной точки нам по-
требуется два известных определения из функционального анализа.

Определение 2.8 ([22]). Последовательность {xn} точек метрического про-
странства X называется фундаментальной, если она удовлетворяет критерию
Коши, т.е. если для любого ε > 0 существует такое число Nε, что ρX(xn′, xn′′) < ε

для всех n′, n′′ > Nε.

Определение 2.9 ([22]). Если в пространстве X любая фундаментальная по-
следовательность сходится к элементу этого же пространства, то это простран-
ство называется полным.

Теперь мы можем сформулировать следующую теорему.

Теорема 2.5 (Принцип сжимающих отображений, [22]). Всякое сжимающее
отображение, определенное в полном метрическом пространстве X, имеет
одну и только одну неподвижную точку.

Напомним, что в общем случае отображение Ψ может не быть биективным,
и тогда принцип сжимающих отображений применить нельзя. Однако предло-
женный выше алгоритм все еще может быть применен.
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2.4.Системы линейных уравнений и неравенств

Некоторые модели из класса Mo можно линеаризовать. Тогда для получе-
ния условий существования равновесия можно воспользоваться теоремами о
совместности систем линейных уравнений и неравенств. Приведем соответству-
ющие известные результаты.

Рассмотрим систему линейных уравнений

a11x1 + a12x2 + ...+ a1nxn = b1,

a21x1 + a22x2 + ...+ a2nxn = b2,

...

am1xn + am2x2 + ...+ amnxn = bm.

(2.10)

Здесь aij ∈ R, xi ∈ R, bj ∈ R, i = 1, n, j = 1,m.
В дальнейшем нам потребуется известная теорема Кронекера-Капелли вме-

сте со следствием из нее.
Обозначим

A =

 a11 . . . a1n
... . . . ...

am1 . . . amn

 , A =

 a11 . . . a1n b1
... . . . ... ...

am1 . . . amn bm.


Теорема 2.6 (Теорема Кронекера–Капелли, [42]). Система линейных уравне-
ний (2.10) совместна (т.е. имеет решение) тогда и только тогда, когда ранг
матрицы системы равен рангу расширенной матрицы, т.е. когда rankA =

rankA.

Теорема 2.7 ([42]). Если система линейных уравнений (2.10) совместна, то
она определена (т.е. ее решение единственно) тогда и только тогда, когда
ранг матрицы системы равен числу неизвестных, т.е. rankA = n.

Теперь рассмотрим систему линейных неравенств ранга r > 0
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

a11x1 + a12x2 + ...+ a1nxn − b1 ⩽ 0,

a21x1 + a22x2 + ...+ a2nxn − b2 ⩽ 0,

...

am1x1 + am2x2 + ...+ amnxn − bm ⩽ 0,

(2.11)

Для этой системы в [41] были получены условия существования решения,
которыми мы воспользуемся в следующей главе.

Теорема 2.8 (Теорема 3, [41]). Необходимым и достаточным условием сов-
местности системы линейных неравенств (2.11) является существование
такого отличного от нуля определителя r-го порядка

∆ =

∣∣∣∣∣∣∣
aj1i1 . . . aj1ir

... . . . ...
ajri1 . . . ajrir

∣∣∣∣∣∣∣ ,
что для всех j = 1, 2, ...,m выполняются соотношения

1

∆

∣∣∣∣∣∣∣∣∣∣
aj1i1 . . . aj1ir aj1

... . . . ... ...
ajri1 . . . ajrir ajr
ajr1 . . . ajrj aj

∣∣∣∣∣∣∣∣∣∣
⩾ 0.

Данные теоремы будут использованы для получения условий существова-
ния положения равновесия в модели закрытого рынка, частном случае модели
открытого рынка. В общем случае линеаризовать систему положения равнове-
сия не получится, и для получения условий существования мы воспользуемся
результатами функционального анализа и теории накрывающих отображений
и точек совпадения.

2.5.Выводы главы 2

С помощью результатов теории накрывающих отображений и точек совпаде-
ния был предложен метод нахождения положения равновесия в системах, дина-
мика которых определяется разностью отображений метрических пространств,
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одно из которых является накрывающим, а другое удовлетворяет условию Лип-
шица. Метод основан на алгоритме поиска точек совпадения с доказанной схо-
димостью. Данный алгоритм вкупе с теоремами о точках совпадения, а также
принципом сжимающих отображений и теоремами о совместности систем ли-
нейных уравнений и неравенств применен для исследования положения равно-
весия или частичного равновесия в нескольких моделях из класса Mo и подклас-
са Mc. В следующей главе будут исследованы модели из класса Mo с внешним
воздействием.

Результаты данной главы опубликованы в работе [21].
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3.Положение равновесия в моделях
с внешним воздействием из класса Mo

В главе исследованы модели из класса Mo. К ним относятся модели типа Ал-
лена открытого рынка с постоянными эластичностями из Σo и непостоянными
эластичностями Σf .

3.1.Положение равновесия в открытой модели типа Аллена
с постоянными эластичностями

В модели σo ∈ Σo отображение предложения является биективным, что поз-
воляет использовать принцип сжимающих отображений. Помимо существова-
ния он гарантирует единственность положения равновесия. Помимо этого, рас-
смотрен вопрос о существовании положения частичного равновесия и доказана
его устойчивость к малым изменениям параметров модели с помощью теоремы
об устойчивости точек совпадения к малым возмущениям.

3.1.1.Достаточные условия существования положения равновесия

Рассмотрим модель σo ∈ Σo. Покажем, что S – биекция, если det Ẽ ̸= 0.
Рассмотрим уравнение

S(p) = s, s ∈ S(P ) (3.1)

относительно p ∈ P . Уравнение (3.1) представляет собой систему

Si(p) = si, i = 1, n,

которая эквивалентна следующей системе

S∗
i

n∏
j=1

(p∗j)
−Ẽijp

Ẽij

j = si, i = 1, n. (3.2)
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Взяв логарифм от левой и правой частей в каждом уравнении системы (3.2),
мы получим эквивалентную систему:

lnS∗
i +

n∑
j=1

(Ẽij ln pj − Ẽij ln p
∗
j) = ln si, i = 1, n. (3.3)

Отсюда мы получаем следующую эквивалентную систему

n∑
j=1

Ẽij ln pj = ln

(
Si

S∗
i

)
+

n∑
j=1

Ẽij ln p
∗
j . (3.4)

Поскольку det Ẽ ̸= 0, то система (3.4) совместна по теореме 2.6, а по теореме
2.7 ее решение единственно. Следовательно, по эквивалентности всех приведен-
ных выше систем мы получаем, что решение уравнения (3.1) тоже единственно.

Таким образом, отображение S биективно. Следовательно, существует об-
ратное отображение S−1 и мы можем рассмотреть оператор B : P → Rn

+:

B(p) = S−1(D(p)− a), p ∈ P. (3.5)

Здесь и далее через lip(B|P ) обозначим точную нижнюю грань всех β таких,
что отображение B удовлетворяет условию Липшица на P с константой β.

Теорема 3.1 ([45]). Пусть параметры модели σo ∈ Σo удовлетворяют следу-
ющим условиям:

1) det Ẽ ̸= 0;

2) B(P ) ⊂ P ;

3) lip(B) < 1.

Тогда в модели σo существует единственный вектор равновесных цен p0 ∈ P .

Доказательство. Рассмотрим пространства (X, ρX), (Y, ρY ) где X = Y = Rn
+,

а метрики ρX и ρY определены формулами

ρX(x, y) = max
i=1,n

2|xi − yi|
c2i − c1i

, x = (x1, ..., xn), y = (y1, ..., yn); (3.6)

ρY (x, y) = max
i=1,n

|yi − xi|, x = (x1, ..., xn), y = (y1, ..., yn). (3.7)
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Заметим, что в выбранных метриках P = BX(c̃, 1). Для использования прин-
ципа сжимающих отображений нам будет достаточно полноты множества P

внутри Rn
+.

В силу условия 2) отображение B действует в себя, а в силу условия 3)
отображение B является сжимающим. Тогда по теореме 2.5 существует един-
ственное решение p0 уравнения B(p) = p, т.е.

S−1(D(p0)− a) = p0,

откуда
D(p0) = S(p0) + a.

Следовательно, в модели σo существует единственное положение равновесия
p0 ∈ P .

Замечание 3.1. Легко видеть, что проверка условий существования положе-
ния равновесия в модели σo сводится к оценке константы Липшица отображе-
ния B. Однако, данная задача может быть трудоемкой. Приведем более простые
для проверки условия, которые могут гарантировать единственное положение
равновесия в модели σo.

Положим

α(σo) = max
i=1,n

2

c2i − c1i

n∑
k=1

|F̃ki|max{c1−Ẽki

1i , c1−Ẽki

2i }

S∗
k

n∏
j=1

(p∗j)
−Ẽkj

n∏
j=1
j ̸=i

min{cẼkj

1i , c
Ẽkj

2i }
, (3.8)

β(σo) = max
i=1,n

D∗
i

(
n∏

j=1

(p∗j)
−Eij

)
×

×
n∑

k=1

|Eik| max
m=1,2

{cEik−1
mk }c2k − c1k

2

n∏
j=1
j ̸=k

max
m=1,2

{cEij

mj},
(3.9)

γ(σo) = max
i=1,n

|Si(c̃) + ai −Di(c̃)| , (3.10)

где F̃ij – элемент матрицы F̃ , обратной к матрице Ẽ , а c̃ = c1+c2
2 .

Теорема 3.2 ([45]). Пусть параметры модели σo ∈ Σo удовлетворяют следу-
ющим условиям:
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1) det Ẽ ̸= 0;

2) γ(σo) < α(σo)− β(σo).

Тогда в модели σo существует единственное положение равновесия p0 ∈ intP .

Доказательство. Рассмотрим метрические пространства (X, ρX), (Y, ρY ), где
X = Y = Rn

+, а метрики ρX и ρY порождены нормами, определенными форму-
лами (3.18), (3.19) соответственно. Рассмотрим отображения D,S : X → Y .

Наша цель – применить теорему 2.2. Сначала оценим lip(S−1|S(P )). Заме-
тим, что отображение S удовлетворяет условиям теоремы об обратном отобра-
жении, согласно которой для любого вектора p ∈ intP

∂S−1

∂s
(S(p)) =

(
∂S

∂p
(p)

)−1

.

Из (1.14) имеем
∂Si

∂pk
(p) =

S∗
i Ẽik

pk

n∏
j=1

(p∗j)
−Ẽijp

Ẽij

j .

Следовательно,

lip(S−1|S(P )) = sup
p∈intP

∥∥∥∥∥
(
∂S

∂p
(p)

)−1
∥∥∥∥∥ .

Таким образом, для того, чтобы вычислить lip(S−1|S(P )), нам надо найти(
∂S
∂p (p)

)−1

. Сначала найдем det
(
∂S
∂p (p)

)−1

. Обозначим

πi =
n∏

j=1

(p∗j)
−Ẽijp

Ẽij

j .

Тогда:

det

(
∂S

∂p
(p)

)−1

=

∣∣∣∣∣∣∣
Ẽ11S

∗
1p

−1
1 π1 . . . Ẽ1nS

∗
1p

−1
n π1

... . . . ...
Ẽn1S

∗
np

−1
1 πn . . . ẼnnS

∗
np

−1
n πn

∣∣∣∣∣∣∣ =
Вынесем из каждой строчки этого определителя множитель S∗

i πi, i = 1, n,
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а из каждого столбца – множитель p−1
k , k = 1, n:

=
n∏

i=1

(
S∗
i

pi
πi

) ∣∣∣∣∣∣∣
Ẽ11 . . . Ẽ1n
... . . . ...

Ẽn1 . . . Ẽnn

∣∣∣∣∣∣∣ =
n∏

i=1

(
S∗
i

pi
πi

)
det E .

Аналогичным образом мы можем найти элементы присоединенной матрицы
к матрице

(
∂S
∂p (p)

)
. Обозначим через Sik алгебраическое дополнение элемента

∂Si

∂pk
(p) матрицы ∂S

∂p (p), а через Ẽik – алгебраическое дополнение элемента Ẽik

матрицы Ẽ . Тогда

Sik = (−1)i+k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂S1

∂p1
(p) . . . ∂Si

∂pk−1
(p) ∂Si

∂pk+1
(p) . . . ∂Si

∂pn
(p)

... . . . ... ... . . . ...
∂Si−1

∂p1
(p) . . . ∂Si−1

∂pk−1
(p) ∂Si−1

∂pk+1
(p) . . . ∂Si−1

∂pn
(p)

∂Si+1
∂p1

(p) . . . ∂Si+1

∂pk−1
(p) ∂Si+1

∂pk+1
(p) . . . ∂Si+1

∂pn
(p)

... . . . ... ... . . . ...
∂Sn

∂p1
(p) . . . ∂Sn

∂pk−1
(p) ∂Sn

∂pk+1
(p) . . . ∂Sn

∂pn
(p)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

= (−1)i+k

 n∏
m=1
m ̸=k

p−1
m


 n∏

l=1
l ̸=i

S∗
l πl



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ẽ11 . . . Ẽ1,k−1 Ẽ1,k+1 . . . Ẽ1n
... . . . ... ... . . . ...

Ẽi−1,1 . . . Ẽi−1,k−1 Ẽi−1,k+1 . . . Ẽi−1,n

Ẽi+1,1 . . . Ẽi+1,k−1 Ẽi+1,k+1 . . . Ẽi+1,n
... . . . ... ... . . . ...

Ẽn1 . . . Ẽn,k−1 Ẽn,k+1 . . . Ẽnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

=

 n∏
m=1
m ̸=i

p−1
m


 n∏

l=1
l ̸=k

S∗
l πl

 Ẽik.

Таким образом,

(
∂S

∂p
(p)

)−1

ik

=

(
det

(
∂S

∂p
(p)

)−1
)−1

Sik =
piF̃ik

S∗
kπk

,

где F̃ik – элемент матрицы F̃ , обратной к Ẽ .
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Теперь мы можем оценить lip(S−1|S(P )). Для любого p ∈ P имеем:

∥∥∥∥∥
(
∂S

∂p
(p)

)−1
∥∥∥∥∥ = max

∥s∥2=1

∥∥∥∥∥
(
∂S

∂p
(p)

)−1

s

∥∥∥∥∥ =

= max
∥s∥2=1

max
i=1,n

2

c2i − c1i

∣∣∣∣∣
n∑

k=1

piF̃ik

S∗
kπk

sk

∣∣∣∣∣ ⩽ max
∥s∥2=1

max
i=1,n

n∑
k=1

∣∣∣∣∣∣∣∣∣
piF̃ki

S∗
k

n∏
j=1

(p∗j)
−Ẽkjp

Ẽkj

j

sk

∣∣∣∣∣∣∣∣∣ ⩽
⩽ max

i=1,n

2

c2i − c1i

n∑
k=1

pi|F̃ki|

S∗
k

n∏
j=1

(p∗j)
−Ẽkjp

Ẽkj

j

⩽ max
i=1,n

2

c2i − c1i

n∑
k=1

p1−Ẽki

i |F̃ki|

S∗
k

n∏
j=1

(p∗j)
−Ẽkj

n∏
j=1
j ̸=i

p
Ẽkj

j

⩽

⩽ max
i=1,n

2

c2i − c1i

n∑
k=1

|F̃ki|max{c1−Ẽki

1i , c1−Ẽki

2i }

S∗
k

n∏
j=1

(p∗j)
−Ẽkj

n∏
j=1
j ̸=i

min{cẼkj

1i , c
Ẽkj

2i }
=

1

α(σo)
.

Таким образом,

lip(S−1|S(P )) = sup
p∈intP

∥∥∥∥∥
(
∂S

∂p

)−1

(p)

∥∥∥∥∥ ⩽
1

α(σo)
. (3.11)

Теперь мы оценим lip(D|P ), что проводится аналогично. Из (1.13) следует,
что для любого p ∈ P

∂Di

∂pk
(p) =

D∗
iEik

pk

n∏
j=1

(p∗j)
−Eijp

Eij

j .
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Тогда ∥∥∥∥∂D∂p (p)
∥∥∥∥ = max

∥x∥1=1

∥∥∥∥∂D∂p (p)x
∥∥∥∥ = max

∥x∥=1
max
i=1,n

n∑
k=1

∣∣∣∣∂Di

∂pk
(p)xk

∣∣∣∣ ⩽
⩽ max

∥x∥=1
max
i=1,n

n∑
k=1

D∗
i |Eik|
pk

|xk|
n∏

j=1

(p∗j)
−Eijp

Eij

j ⩽

⩽ max
i=1,n

D∗
i

(
n∏

j=1

(p∗j)
−Eij

)
n∑

k=1

|Eik| pEik−1
k

c2k − c1k
2

n∏
j=1
j ̸=k

p
Eij

j ⩽

⩽ max
i=1,n

D∗
i

(
n∏

j=1

(p∗j)
−Eij

)
n∑

k=1

|Eik| max
m=1,2

{cEik−1
mk }c2k − c1k

2

n∏
j=1
j ̸=k

max
m=1,2

{cEij

mj} = β(σo).

Таким образом,

lip(D|P ) = max
p∈P

∥∥∥∥∂D∂p (p)
∥∥∥∥ ⩽ β(σo). (3.12)

Из неравенств (3.11), (3.12) и условия 2) мы получаем, что существуют такие
числа α > 0, β > 0, что γ(σo) < α − β и отображение D удовлетворяет на P

условию Липшица с константой β, а отображение S удовлетворяет условию
Липшица на S(P ) с константой 1/α.

Теперь покажем, что отображение B является сжимающим. Прежде всего
заметим, что

lip(S−1 ◦ (D − a)|P ) ⩽ lip(S−1|(D − a)(P )) · lip(D − a|P ).

Действительно, если D : X → Y – липшицево с константой Липшица lip(D|P ),
а S−1 : Y → X – липшицево с константой lip(S−1|(D − a)(P )), то для любых
p′, p′′ ∈ P выполнено

∥B(x′)−B(x′′)∥ = ∥(S−1 ◦ (D − a))(x′)− (S−1 ◦ (D − a))(x′′)∥ ⩽

⩽ lip(S−1|(D − a)(P ))∥(D − a)(x′)− (D − a)(x′′)∥ ⩽

⩽ lip(S−1|(D − a)(P )) · lip(D − a|P )∥x′ − x′′∥,
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откуда вытекает требуемое неравенство. Далее, очевидно, что

lip(D − a|P ) = lip(D|P ),

поскольку для любых p′, p′′ ∈ P выполнено ∥D(p′)−a−(D(p′′)−a)∥ = ∥D(p′)−
D(p′′)∥ = lip(D|P )∥p′ − p′′∥. Наконец, покажем, что

lip(S−1|(D − a)(P )) ⩽ lip(S−1|S(P )).

Для этого достаточно показать, что (D− a)(P ) ⊆ S(P ). Пусть y ∈ (D− a)(P ).
Тогда существует x ∈ P такой, что (D − a)(x) = y. Рассмотрим

ρY ((D − a)(x), S(c̃)) = ρY (D(x)− a, S(c̃)) ⩽ ρY (D(x), D(c̃))+

+ρY (D(c̃), S(c̃) + a) < βρX(x, c̃) + α− β ⩽ β + α− β = α.

Следовательно, y ∈ BY (S(c̃), α). Далее, поскольку отображение S−1 является
α-липшицевым, то

ρX(S
−1(S(c̃)), S−1 ◦ (D − a)(x)) ⩽

1

α
ρY (S(c̃), (D − a)(x)) ⩽ 1,

откуда мы получаем, что (D−a)(x) ∈ S(P ). Таким образом, (D−a)(x) ⊆ S(P ).
Теперь оценим величину lip(B|P ):

lip(B|P ) ⩽ lip(S−1|(D − a)(P )) · lip(D − a|P ) ⩽

⩽ lip(S−1|S(P )) · lip(D|P ) =
1

α
β < 1,

Так как β < α.
Наконец, покажем, что B(P ) ⊆ P . Действительно, для любого p ∈ P имеем:

ρX(B(p), c̃) = ρX(S
−1 ◦ (D − a)(p), S−1(S(c̃))) ⩽

1

α
ρY ((D − a)(p), S(c̃)) < 1.

Таким образом, отображение B является сжимающим. Поскольку P – полное
метрическое пространство, по теореме 2.5 мы получаем, что существует един-
ственное решение p0 уравнения B(p) = p, откуда непосредственно вытекает, что
в модели σo существует единственное положение равновесия p0 ∈ P .
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3.1.2.Устойчивость положения равновесия

Покажем, что при выполнении условий теоремы 3.2 положение равновесия
в модели открытого рынка устойчиво к малым возмущениям.

Теорема 3.3 ([47]). Пусть модель σo удовлетворяет всем условиям теоремы
3.2 и последовательность моделей {σN

o } ⊂ Σo сходится к σo. Тогда для любого
вектора равновесных цен p ∈ P в модели σo существует натуральное число
N > 0 и последовательность {pN} ⊂ Rn

+ такие, что:

1. при любом N > N вектор pN является вектором равновесных цен в
модели σN ;

2. pN → p при N → ∞.

Доказательство. Доказательство этой теоремы опирается на применение тео-
ремы 2.1. Сначала проведем вспомогательные построения. Для произвольного
ε > 0 положим

vε1 = c̃− (1− ε)(c̃− c1), vε2 = c̃+ (1− ε)(c2 − c̃),

M ε = [vε11, v
ε
21]× ...× [vεn1; v

ε
n2].

Очевидно, что для любого положительного ε < 1 справедливы vεj1 < vεj2, j =

1, n и включение M ε ⊂ PN для любого N > N1(ε).
Рассмотрим метрические пространства (X, ρX), (Y, ρY ), где X = Y = Rn

+, а
метрики ρX , ρY порождены нормами (3.18), (3.19) соответственно.

Выберем произвольные положительные числа α и β такие, что β(σo) < β <

α < α(σo). В силу непрерывности функций α(·), β(·) существует положитель-
ное число ε2 < 1 такое, что

β(a, vε1, v
ε
2, p

∗, S∗, D∗, E , Ẽ) < β, α < α(a, vε1, v
ε
2, p

∗, S∗, D∗, E , Ẽ)

для любого ε < ε2. Кроме того, для любого ε > 0 существует номер N2(ε) > 0

такой, что

β(aN , vε1, v
ε
2, p

∗N , S∗N , D∗N , EN , ẼN) < β, α < α(aN , vε1, v
ε
2, p

∗N , S∗N , D∗N , EN , ẼN)
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для любого N > N2(ε). Положим ε = 2−1min{ε1, ε2}, N3 = max{N1(ε), N2(ε)}+
1. Пусть SN , DN : X → Y – функции спроса и предложения соответственно в
модели σN = (aN , vε1, v

ε
2, p

∗N , S∗N , D∗N , EN , ẼN).
Повторяя рассуждения, проведенные при доказательстве теоремы 3.2, по-

лучаем, что отображения SN при любом N > N3 являются накрывающими
относительно M ε с константой накрывания α(aN , vε1, v

ε
2, p

∗N , S∗N , D∗N , EN , ẼN).
Следовательно, они являются α-накрывающими относительно M ε, а функции
DN при любом N > N3 на множестве M ε удовлетворяют условию Липшица с
константой β < α.

Выберем произвольное R > 0 такое, что BX(p,R) ⊂ M ε. Из формул (1.7),
(1.9) следует, SN → S, DN → D при N → ∞. Следовательно, по теореме 2.1
существует номер N > N3 и последовательность {pN} ⊂ BX(p,R) такие, что
SN(pN) + a = DN(pN) и pN → p] при N → ∞. Поскольку pN ∈ BX(p,R) ⊂
M ε ⊂ PN = [c11, c21]× ...× [c1n, c2n] для любого N > N , то вектор PN является
вектором равновесных цен в модели σN .

3.1.3.Метод нахождения положения равновесия

Данный метод является модификацией Алгоритма 1 с поправкой на специ-
фику конкретной модели.

Алгоритм 2
Шаг 0. Вычислить константы α(σo) и β(σo) по формулам (3.8), (3.9). За-

фиксировать метрики ρX и ρY по формулам (3.6), (3.7).
Шаг 1. Зафиксировать ε > 0 – погрешность приближения, p0 ∈ P – на-

чальное приближение, δ ∈ (0; 1 − β/α) – параметр итерационного процесса,
положить номер итерации k = 0.

Шаг 2. Проверить выполнение неравенства

max
i=1,n

|S(pk) + a−D(pk)| < ε,

где D(p) определено формулой (1.18), а S(p) – формулой (1.19). Если неравен-
ство выполнено, то закончить алгоритм. Если нет, то перейти к шагу 3.
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Шаг 3. Используя приближение pk, вычислить hk = (hk1, ..., hkn) по формуле

|hki| ⩽
c2i − c1i

2α
max
j=1,n

|Sj(pk) + a−Dj(pk)|
c2j − c1j

, i = 1, n. (3.13)

Шаг 4. На BRn(pk, hk) построить σk-сеть Z при

σk =
δ

2
max
i=1,n

|S(pk) + a−D(pk)| .

Шаг 5. Поочередно брать точки x̃ ∈ Z∩BRn(pk, hk) и проверять выполнение
неравенства:

max
i=1,n

|S(p) + a−D(pk)| ⩽ σk max
i=1,n

|S(pk) + a−D(pk)| . (3.14)

Если подходящая под условие точка найдена, то перейти к шагу 6. Если нет, то
уменьшить σi в два раза, построить новую сеть и повторить перебор.

Шаг 6. Положить pk+1 = p̃, увеличить k на единицу и перейти к шагу 2.

3.1.4.Модельный пример

Проиллюстрируем применение метода на нескольких моделях σo ∈ Σo и
установим закономерности между входными параметрами и положением рав-
новесия.

Случай n = 1. Рассмотрим следующую модель σo ∈ Σo:

a = 7.99, c1 = 77.36, c2 = 138.17, p∗ = 85.46,

S∗ = 50.74, D∗ = 66.77, E = −0.13, Ẽ = 0.49.

Используя Алгоритм 2, мы получаем следующее положение равновесия:

p0 = 107.8562405, ρY (S(p
0) + a,D(p0)) = 0.00000975.

Заметим, что равновесная цена p0 оказалась ниже, чем p∗, что может гово-
рить о недостаточно эффективном ценообразовании в моделируемом регионе.

В данной модели легко прослеживается связь между положением равнове-
сия и входными параметрами.
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Параметр a обратно пропорционален положению равновесия. При возрас-
тании параметра a возрастает значение функции S + a. Поскольку E < 0, мы
получаем, что значение функции D будет возрастать, если положение равнове-
сия p0 будет убывать.

Рис. 3.1. Зависимость
p0 от a (n = 1).

Рис. 3.2. Зависимость
p0 от p∗ (n = 1).

Параметр p∗ прямо пропорционален положению равновесия. При возраста-
нии этого параметра значение функции S будет убывать, поскольку Ẽ > 0, а
значение функции D – возрастать, так как E < 0. Так как |E| < |Ẽ|, мы полу-
чаем, что функция S убывает быстрее функции D. Следовательно, положение
равновесия будет возрастать.

Изменение параметров c1, c2 не влияет на равновесные цены (рис. 3.3, 3.4).

Рис. 3.3. Зависимость
p0 от c1 (n = 1).

Рис. 3.4. Зависимость
p0 от c2 (n = 1).

Параметр S∗ обратно пропорционален положению равновесия (рис. 3.5). При
возрастании параметра S∗ значение функции S будет также возрастать. По-
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скольку E < 0, для возрастания значения D положение равновесия должно
убывать.

Рис. 3.5. Зависимость
p0 от S∗ (n = 1).

Рис. 3.6. Зависимость
p0 от D∗ (n = 1).

Параметр D∗ прямо пропорционален положению равновесия (рис. 3.6). При
возрастании параметра D∗ значение функции D возрастает. Поскольку Ẽ > 0,
для возрастания значения функции S необходимо, чтобы положение равновесия
возрастало.

Положение равновесия находится в прямой зависимости от параметра E

(рис. 3.7). Если параметр E возрастает, то значение функции D будет возрас-
тать, поскольку p0 > p∗. Следовательно, так как Ẽ > 0, положения равновесия
будет возрастать.

Положение равновесия обратно пропорционально параметру Ẽ (рис. 3.8).
При возрастании этого параметра значение функции S будет возрастать, так
как Ẽ > 0. Так как E < 0, для возрастания значения функции D положение
равновесия должно убывать.
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Рис. 3.7. Зависимость
p0 от E (n = 1).

Рис. 3.8. Зависимость
p0 от Ẽ (n = 1).

Случай n = 2. Рассмотрим следующую модель из Σo:

a = (44.88, 49.73)T , c1 = (69.09, 55.33)T , c2 = (160.32, 99.16)T ,

p∗ = (108.15, 83.69)T , S∗ = (808.64, 632.05)T , D∗ = (855.30, 674.91)T ,

E =

(
−0.0003 −0.0021

−0.0013 0.0094

)
, Ẽ =

(
0.0375 0.0878

−0.088 0.0311

)
.

С помощью Алгоритма 2 было найдено следующее положение равновесия:

p0 = (121.88, 81.54)T , ρY (S(p
0) + a,D(p0)) = 0.00000187.

В данной модели p01 > p∗1, p02 < p∗2, что говорит о переоценённости первого
товара и недооценённости второго товара.

В данной модели взаимосвязь между положением равновесия и входными
параметрами установить достаточно трудно. Выясним, как положение равнове-
сия будет зависеть от входных параметров модели с помощью предложенного
алгоритма.

С помощью метода нахождения положения равновесия были получены сле-
дующие результаты (рис. 3.9–3.28).

49



p01 p02

Рис. 3.9. Зависимость положения равновесия от a1(n = 2).

p01 p02

Рис. 3.10. Зависимость положения равновесия от a2(n = 2).

p01 p02

Рис. 3.11. Зависимость положения равновесия от p∗1(n = 2).

p01 p02

Рис. 3.12. Зависимость положения равновесия от p∗2(n = 2).
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p01 p02

Рис. 3.13. Зависимость положения равновесия от c11(n = 2).

p01 p02

Рис. 3.14. Зависимость положения равновесия от c12(n = 2).

p01 p02

Рис. 3.15. Зависимость положения равновесия от c21(n = 2).

p01 p02

Рис. 3.16. Зависимость положения равновесия от c22(n = 2).
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p01 p02

Рис. 3.17. Зависимость положения равновесия от D∗
1(n = 2).

p01 p02

Рис. 3.18. Зависимость положения равновесия от D∗
2(n = 2).

p01 p02

Рис. 3.19. Зависимость положения равновесия от S∗
1(n = 2).

p01 p02

Рис. 3.20. Зависимость положения равновесия от S∗
2(n = 2).
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p01 p02

Рис. 3.21. Зависимость положения равновесия от E11(n = 2).

p01 p02

Рис. 3.22. Зависимость положения равновесия от E12(n = 2).

p01 p02

Рис. 3.23. Зависимость положения равновесия от E21(n = 2).

p01 p02

Рис. 3.24. Зависимость положения равновесия от E22(n = 2).

53



p01 p02

Рис. 3.25. Зависимость положения равновесия от Ẽ11(n = 2).

p01 p02

Рис. 3.26. Зависимость положения равновесия от Ẽ12(n = 2).

p01 p02

Рис. 3.27. Зависимость положения равновесия от Ẽ21(n = 2).

p01 p02

Рис. 3.28. Зависимость положения равновесия от Ẽ22(n = 2).
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3.1.5.Достаточные условия существования
положения частичного равновесия

Напомним определение из Главы 1.

Определение 3.1 ([21]). Положением частичного равновесия в модели σo на-
зовем такой вектор p̂ ∈ P , что

Si(p̂) + ai = Di(p̂), i = 1,m, m ⩽ n.

Задача состоит в том, чтобы получить условия, при которых в модели σo

существует положение частичного равновесия.

Замечание 3.2. Здесь мы рассматриваем отображения

S̃, D̃ : Rn
+ → Rm

+ , S̃ = P ◦ S, D̃ = P ◦D,

где P : Rn
+ → Rm

+ – оператор проектирования из Rn
+ в Rm

+ , определяемый сле-
дующей формулой

P =
(
Im×m 0m×n−m

)
,

где I – единичная матрица.

Используя теорему о точках совпадения, мы можем получить достаточные
условия существования положения частичного равновесия. Введем обозначе-
ния:

α̂(σo) = min
p∈P

∥∥∥∥∥∥
(
∂S

∂p
(p)

)T
((

∂S

∂p
(p)

)(
∂S

∂p
(p)

)T
)−1

∥∥∥∥∥∥
−1

, (3.15)

β̂(σo) = max
i=1,m

D∗
i

(
n∏

j=1

(p∗j)
−Eij

)
n∑

k=1

|Eik|
c2k − c1k

2
max
l=1,2

{
cEik−1
lk

} n∏
j=1
j ̸=k

max
l=1,2

c
Eij

lj ,

(3.16)

γ̂(σo) = max
i=1,m

|Si(c̃) + ai −Di(c̃)|. (3.17)

Теорема 3.4 ([21]). Пусть параметры модели σo удовлетворяют условиям:

1) det
(
∂S
∂p (p)

)(
∂S
∂p (p)

)T
̸= 0;

55



2) γ̂(σo) < α̂(σo)− β̂(σo).

Тогда в модели σo существует положение частичного равновесия p̂ ∈ intP .

Доказательство. В пространстве Rn определим две нормы:

∥x∥1 = max
i=1,n

2|xi|
c2i − c1i

, x = (x1, ..., xn); (3.18)

∥y∥2 = max
i=1,n

|yi|, y = (y1, ..., yn). (3.19)

Рассмотрим отображения D,S : (X, ρX) → (Y, ρY ), где X = Y = Rn
+, а метрики

ρX и ρY порождены нормами ∥ · ∥1 и ∥ · ∥2 соответственно.
Сначала оценим lip(D|P ). Из равенства

∂Di

∂pj
(p) =

EijDi(p)

pj

мы получаем∥∥∥∥∂D∂p (p)
∥∥∥∥ = max

∥x∥1=1

∥∥∥∥∂D∂p (p)x
∥∥∥∥
2

= max
∥x∥1=1

max
i=1,m

∣∣∣∣∣
n∑

k=1

∂Di

∂pk
(p)xk

∣∣∣∣∣ =
= max

∥x∥1=1
max
i=1,m

∣∣∣∣∣
n∑

k=1

Eik
Di(p)

pk
xk

∣∣∣∣∣ = max
∥x∥1=1

max
i=1,m

∣∣∣∣∣
n∑

k=1

Eik
D∗

i

pk
xk

n∏
j=1

(p∗j)
−Eijp

Eij

j

∣∣∣∣∣ ⩽
⩽ max

∥x∥1=1
max
i=1,m

n∑
k=1

|Eik|
D∗

i

pk
|xk|

n∏
j=1

(p∗j)
−Eijp

Eij

j ⩽

⩽ max
i=1,m

D∗
i

n∑
k=1

|Eik|
c2k − c1k

2pk

n∏
j=1

(p∗j)
−Eijp

Eij

j ⩽

⩽ max
i=1,m

D∗
i

n∑
k=1

|Eik|
c2k − c1k

2

(
n∏

j=1

(p∗j)
−Eij

)
max
l=1,2

{
cEik−1
lk

} n∏
j=1
j ̸=k

p
Eij

j ⩽

⩽ max
i=1,m

D∗
i

(
n∏

j=1

(p∗j)
−Eij

)
n∑

k=1

|Eik|
c2k − c1k

2
max
l=1,2

{
cEik−1
lk

} n∏
j=1
j ̸=k

max
l=1,2

c
Eij

lj = β̂(σo).

Таким образом,

lip(D|P ) = max
p∈P

∥∥∥∥∂D∂p (p)
∥∥∥∥ ⩽ β̂(σo).
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Теперь перейдем к оценке величины cov(S|P ). Из [44] известно, что

cov(S|P ) = min
p∈P

cov

(
∂S

∂p
(p)

)
.

Кроме того, в силу Леммы 2.1 мы имеем

cov

(
∂S

∂p
(p)

)
⩾

∥∥∥∥∥∥
(
∂S

∂p
(p)

)T
((

∂S

∂p
(p)

)(
∂S

∂p
(p)

)T
)−1

∥∥∥∥∥∥
−1

= α̃(p),

В силу условия 1) норма в последнем выражении конечна.
Следовательно,

cov(S|P ) = min
p∈P

cov(S|p) ⩾ min
p∈P

cov

(
∂S

∂p
(p)

)
⩾ min

p∈P
α̃(p) = α̂(σo).

В силу условия 2) и неравенств

cov(S|P ) ⩾ α̂(σo), lip(D|P ) ⩽ β̂(σo)

следует, что существуют такие α, β, что γ̂(σo) < α−β, отображение S является
α-накрывающим на P , а отображение D удовлетворяет условию Липшица на P

с константой β. Поскольку P – полное метрическое пространство, то по теореме
2.2 существует вектор p̂ ∈ intP такой, что

S(p̂) + a = D(p̂).

Более того, в силу условия 2) мы получаем, что p̂ ∈ intP , так как в силу
теоремы 2.2

ρX(p̂, c̃) ⩽
ρY (S(c̃), D(c̃))

α− β
< 1.

3.1.6.Метод нахождения положения частичного равновесия

Ниже приведена модификация Алгоритма 1 для модели типа Аллена от-
крытого рынка с постоянными эластичностями.
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Алгоритм 3
Шаг 0. Вычислить константы α(σo) и β(σo) по формулам (3.15), (3.16). За-

фиксировать метрики ρX и ρY по формулам (3.6), (3.7).
Шаг 1. Зафиксировать ε > 0 – погрешность приближения, p0 ∈ P – на-

чальное приближение, δ ∈ (0; 1 − β/α) – параметр итерационного процесса,
положить номер итерации k = 0.

Шаг 2. Проверить выполнение неравенства

max
i=1,n

|S(pk) + a−D(pk)| < ε,

где D(p) определено формулой (1.18), а S(p) – формулой (1.19). Если неравен-
ство выполнено, то закончить алгоритм. Если нет, то перейти к шагу 3.

Шаг 3. Используя приближение pk, вычислить hk = (hk1, ..., hkn) по формуле

|hki| ⩽
c2i − c1i

2α
max
j=1,n

|Sj(pk) + a−Dj(pk)|
c2j − c1j

, i = 1, n. (3.20)

Шаг 4. На BRn(pk, hk) построить σk-сеть Z при

σk =
δ

2
max
i=1,n

|S(pk) + a−D(pk)| .

Шаг 5. Поочередно брать точки x̃ ∈ Z∩BRn(pk, hk) и проверять выполнение
неравенства:

max
i=1,n

|S(p) + a−D(pk)| ⩽ σk max
i=1,n

|S(pk) + a−D(pk)| . (3.21)

Если подходящая под условие точка найдена, то перейти к шагу 6. Если нет, то
уменьшить σi в два раза, построить новую сеть и повторить перебор.

Шаг 6. Положить pk+1 = p̃, увеличить k на единицу и перейти к шагу 2.

3.1.7.Модельный пример

Случай n = 2,m = 1. Рассмотрим вопрос о существовании положения рав-
новесия в следующей модели из Σop (здесь были опущены параметры модели,
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не использующиеся при ее исследовании)

a1 = 27.5, c1 = (61.91, 43.75)T , c2 = (143.62, 75.40)T , p∗ = (69.59, 43.93)T ,

S∗ = 34.17, D∗ = 71.41, E = (0.14, 0.53)T , Ẽ = (0.63, 0.93)T ,

т.е. решения уравнения

S∗
1

(
p1
p∗1

)Ẽ11
(
p2
p∗2

)Ẽ12

+ a1 = D∗
1

(
p1
p∗1

)E11
(
p2
p∗2

)E12

(3.22)

С помощью Алгоритма 3 было найдено следующее положение равновесия:

p̂ = (115.99, 62.09)T , ρY (S(p
0) + a,D(p0)) = 0.00000951.

Легко видеть, что p01 > p∗1, p02 > p∗2. Это говорит о том, что цена на товары
может быть увеличена, поскольку S∗

1 < D∗
1.

Здесь также легко проследить зависимость между положением равновесия
и входными параметрами. Проиллюстрируем это ниже.

Параметр a1 в модели обратно пропорционален положению частичного рав-
новесия (рис. 3.29). С возрастанием этого параметра возрастает значение функ-
ции S + a. Поскольку Ẽ12 > E12 > 0, мы получаем, что положение равновесия
будет убывать.

Рис. 3.29. Зависимость
p01 от a1 (n = 2,m = 1).

Положение равновесия находится в прямой зависимости от параметров p∗1, p∗2
(рис. 3.30–3.31), так как Ẽ11 > E11 > 0, Ẽ12 > E12 > 0.
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Рис. 3.30. Зависимость
p01 от p∗1 (n = 2,m = 1).

Рис. 3.31. Зависимость
p01 от p∗2 (n = 2,m = 1).

Параметр S∗ обратно пропорционален положению равновесия (рис. 3.32).
Так как при возрастании значения функции S + a возрастает при возрастании
параметра S∗, то положение равновесия будет убывать, поскольку Ẽ11 > E11 >

0. В силу тех же рассуждений параметр D∗ оказывает обратный эффект по
сравнению с параметром S∗ (рис. 3.33).

Рис. 3.32. Зависимость
p01 от S∗

1 (n = 2,m = 1).
Рис. 3.33. Зависимость
p01 от D∗

1 (n = 2,m = 1).

Параметры c11, c12, c21, c22, очевидно, не оказывают влияние на положение
равновесия в модели (рис. 3.34–3.35).
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c11 c12

Рис. 3.34. Зависимость p01 от c1(n = 2,m = 1).

c21 c22

Рис. 3.35. Зависимость p01 от c2(n = 2,m = 1).

Параметры E11 и E12 прямо пропорциональны положению равновесия по
первому аргументу (рис. 3.36, 3.37). При возрастании параметра E11 возрас-
тает правая часть уравнения (3.22). Для достижения равенства в уравнении
равновесная цена будет возрастать, так как Ẽ11 < Ẽ11. В силу этого же условия
равновесная цена возрастает при возрастании параметра Ẽ12.

Параметры Ẽ11 и Ẽ12 обратно пропорциональны положению равновесия (рис.
3.38, 3.39). Это следует из тех же соображений, что и в случае изменения па-
раметров E11, E12.

Рис. 3.36. Зависимость
p01 от E11 (n = 2,m = 1).

Рис. 3.37. Зависимость
p01 от E12 (n = 2,m = 1).
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Рис. 3.38. Зависимость
p01 от Ẽ11 (n = 2,m = 1).

Рис. 3.39. Зависимость
p01 от Ẽ12 (n = 2,m = 1).

3.2.Положение равновесия в открытой модели типа Аллена
с непостоянными эластичностями

3.2.1.Достаточные условия существования положения равновесия

Следующий пример показывает, что в модели σf ∈ Σf отображение S, опре-
деленное формулой (1.28), может быть не биективно и применить принцип сжи-
мающих отображений нельзя.

Пример 3.1. Пусть n = 2 и

c1 = (1, 0.5), c2 = (5, 8), S∗ = (1, 1), p∗ = (1, 1),

λ̃11 = 2, λ̃12 = −2, λ̃21 = 3, λ̃22 = −3,

χ̃11 = 2, χ̃12 = 1, χ̃21 = 1, χ̃22 = −3.

Тогда
P = {p = (p1, p2) | 1 ⩽ p1 ⩽ 5, 0.5 ⩽ p2 ⩽ 8}

и отображение S принимает вид

S1(p) = e(p
2
1−1)e−2(p2−1),

S2(p) = e3(p1−1)e(p
−3
2 −1).
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Рассмотрим уравнение S(p) = s, s = (e7, e10) в виде следующей системы:e(p
2
1−1)e−2(p2−1) = e7,

e3(p1−1)e(p
−3
2 −1) = e10.

Прологарифмируем эту системуp21 − 1− 2(p2 − 1) = 7,

3(p1 − 1) + p−3
2 − 1 = 10.

Данная система имеет два решения, принадлежащих P :p1 = 2.664

p2 = 0.550
и

p1 = 4.666

p2 = 7.886

(получены численно методом Ньютона). Следовательно, отображение S не бу-
дет биективным.

Воспользуемся теоремой о точках совпадения. Введем обозначения

α(σf) = min
p∈P

(∥∥∥∥∥
(
∂S

∂p
(p)

)∗((
∂S

∂p
(p)

)(
∂S

∂p
(p)

)∗)−1
∥∥∥∥∥
)−1

, (3.23)

β(σf) = max
i=1,n

D∗
i

n∏
j=1

max
m=1,2

(
exp

(
λij

χij
(c

χij

mj − p
∗χij

j )

)) n∑
k=1

c2k − c1k
2

|λik|
c1k

, (3.24)

γ(σf) = max
i=1,n

|Si(c̃) + ai −Di(c̃)|. (3.25)

Теорема 3.5 ([48]). Пусть параметры модели σf удовлетворяют условиям:

1) det
(
∂S
∂p (p)

)(
∂S
∂p (p)

)∗
̸= 0;

2) γ(σf) < α(σf)− β(σf).

Тогда в модели σf существует положение равновесия p0 ∈ intP .

Доказательство. Рассмотрим метрические пространства (X, ρX), (Y, ρY ), где
X = Y = Rn

+, а метрики ρX и ρY порождены нормами ∥ ·∥1 и ∥ ·∥2 по формулам
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(3.18) и (3.19) соответственно. Наша цель – воспользоваться теоремой 2.2. Для
этого нам необходимо оценить cov(S|P ). В [44] было показано, что

cov(S|P ) = min
p∈P

cov

(
∂S

∂p
(p)

)
,

а также
cov(S|p) = cov

(
∂S

∂p
(p)

)
.

В свою очередь, по Лемме 2.1 имеем

cov

(
∂S

∂p
(p)

)
⩾

(∥∥∥∥∥
(
∂S

∂p
(p)

)∗((
∂S

∂p
(p)

)(
∂S

∂p
(p)

)∗)−1

(p)

∥∥∥∥∥
)−1

= α̃(p).

Таким образом,

cov(S|P ) = min
p∈P

cov(S|p) ⩾ min
p∈P

α̃(p) = α(σf).

Теперь оценим lip(D|P ). Сначала вычислим∥∥∥∥∂D∂p (p)
∥∥∥∥ = max

∥x∥1=1

∥∥∥∥∂D∂p (p)x
∥∥∥∥
2

=

= max
∥x∥1=1

max
i=1,n

∣∣∣∣∣
n∑

j=1

∂Di

∂pj
(p)xj

∣∣∣∣∣ = max
∥x∥=1

max
i=1,n

∣∣∣∣∣
n∑

j=1

λijp
χij

j

Di

pj
xj

∣∣∣∣∣ =
= max

∥x∥=1
max
i=1,n

∣∣∣∣∣
n∑

j=1

λijp
χij−1
j xjD

∗
i

n∏
k=1

exp

(
λik

χik
(pχik

k − (p∗k)
χik)

)∣∣∣∣∣ ⩽
⩽ max

i=1,n

n∑
j=1

|λij|max
{
c
χij−1
1j , c

χij−1
2j

}
D∗

i

n∏
k=1

max
m=1,2

exp

(
λik

χik
(cχik

mk − (p∗k)
χik)

)
=

= β(σf).

Таким образом,

lip(D|P ) = max
p∈P

∂D

∂p
(p) ⩽ β(σf).

Из условия 2) и неравенств

cov(D) ⩾ α(σf), lip(S) ⩽ β(σf)
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следует, что существуют положительные числа α и β такие, что β(σf) < β <

α < α(σf), отображение S является α-накрывающим на P , а отображение β

удовлетворяет условию Липшица на P с константой β. Так как P – полное
метрическое пространство, то по теореме 2.2 существует вектор p0 ∈ intP такой,
что

S(p0) + a = D(p0),

а в силу условия 2)

ρX(p
0, c̃) ⩽

ρY (D(c̃), S(c̃))

α− β
< 1.

Следовательно, в модели σf существует положение равновесия p0 ∈ intP .

В случае, если χij = χ̃ij = 1 для всех i, j = 1, n, мы можем гарантировать
единственность положения равновесия. В этом случае

Eij(p) = λijpj, Ẽij(p) = λ̃ijpj, i, j = 1, n. (3.26)

Введем обозначения:

Λ = {λ̃ij}i,j=1,n, (3.27)

α(σl) =

(
max
i=1,n

2

c2i − c1i

n∑
k=1

|µ̃ik|
S∗
k

n∏
j=1

max
m=1,2

{
exp

(
λ̃kj(p

∗
j − cmj)

)})−1

, (3.28)

β(σl) = max
i=1,n

D∗
i

n∏
j=1

max
m=1,2

{
exp

(
λij(cmj − p∗j)

)} n∑
k=1

2|λik|
c2k − c1k

, (3.29)

γ(σl) = max
i=1,n

|Si(c̃) + ai −Di(c̃)|. (3.30)

Теорема 3.6 ([48]). Пусть параметры модели σf удовлетворяют следующим
условиям:

1) detΛ ̸= 0;

2) γ(σl) < α(σl)− β(σl).

Тогда в модели σf существует единственное положение равновесия p0 ∈ P .

Доказательство. Покажем, что существует S−1. Для этого нужно показать,
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что отображение S биективно. Для этого рассмотрим систему уравнений:

S∗
i

n∏
j=1

exp
(
λ̃ij(pj − p∗j)

)
= si, i = 1, n. (3.31)

Взяв логарифм от левой и правой частей каждого уравнения этой системы,
получим

lnS∗
i +

n∑
j=1

λ̃ij(pj − p∗j) = ln si, i = 1, n. (3.32)

Отсюда мы получаем систему линейных уравнений:

n∑
j=1

λ̃ijpj = ln
si
S∗
i

+
n∑

j=1

λ̃ijp
∗
j , i = 1, n. (3.33)

Так как detΛ ̸= 0, система (3.33) по теореме 2.6 совместна, а по теореме 2.7
имеет единственное решение

pi =
n∑

j=1

µ̃ij ln
sj
S∗
j

+ p∗i , j = 1, n, (3.34)

где µij – элемент матрицы, обратной к Λ. Следовательно, отображение S явля-
ется биекцией и отображение S−1 существует.

Рассмотрим оператор

B : Rn
+ → Rn

+, B(p) = S−1(D(p)− a).

Повторяя рассуждения, полученные в доказательстве теоремы 2.2, мы по-
лучим, что

lip(B|P ) ⩽ lip(S−1|S(P )) · lip(D|P ).

и B(P ) ⊆ P .
Теперь нам необходимо оценить величины lip(S−1|S(P )) и lip(D|P ). Сперва

оценим величину lip(S−1|S(P )). Из (3.34) мы получаем, что:

S−1
i (s) = p∗i +

n∑
j=1

µ̃ij ln
sj
S∗
j

.
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Тогда для любого s ∈ S(P )
∂S−1

i

∂sk
(s) =

µ̃ik

sk
.

Следовательно,∥∥∥∥∂S−1

∂s
(s)

∥∥∥∥ = max
∥x∥2=1

∥∥∥∥∂S−1

∂s
(s)

∥∥∥∥
1

= max
∥x∥2=1

max
i=1,n

2

c2i − c1i

∣∣∣∣∣
n∑

k=1

∂S−1
i

∂sk
(s)xk

∣∣∣∣∣ ⩽
⩽ max

∥x∥2=1
max
i=1,n

2

c2i − c1i

n∑
k=1

|µik|
|xk|
sk

⩽ max
i=1,n

2

c2i − c1i

n∑
k=1

|µik|
c1k

= β(σl).

Отсюда мы получаем, что

lip(S−1|S(P )) = max
s∈S(P )

∥∥∥∥∂S−1

∂s
(s)

∥∥∥∥ ⩽
1

α(σl)
.

Теперь оценим величину lip(D|P ). Для этого сначала оценим
∥∥∥∂D

∂p

∥∥∥:
∥∥∥∥∂D∂p (p)

∥∥∥∥ = max
∥x∥1=1

∥∥∥∥∂D∂p (p)x
∥∥∥∥
2

= max
∥x∥1=1

max
i=1,n

∣∣∣∣∣
n∑

k=1

∂Di(p)

∂pk
xk

∣∣∣∣∣ =
= max

∥x∥1=1
max
i=1,n

∣∣∣∣∣
n∑

k=1

λikDi(p)xk

∣∣∣∣∣ ⩽ max
i=1,n

∣∣∣∣∣
n∑

k=1

λikxkD
∗
i

n∏
j=1

exp
(
λij(pj − p∗j)

)∣∣∣∣∣ ⩽
⩽ max

i=1,n
D∗

i

n∏
j=1

max
m=1,2

{
exp

(
λij(cmj − p∗j)

)} n∑
k=1

c2k − c1k
2

|λik| = β(σl).

Таким образом,

lip(D|P ) = max
p∈P

∥∥∥∥∂D∂p (p)
∥∥∥∥ ⩽ β(σl).

Из условия 2) и неравенств

lip(S−1|S(P )) ⩽
1

α(σl)
, lip(D|P ) ⩽ β(σl)

мы получаем, что существуют такие числа α > 0, β > 0, что γ(σl) < α − β,
отображение S−1 удовлетворяет на S(P ) условию Липшица с константой 1/α,
а отображение D удовлетворяет условию Липшица на P с константой β(σl).
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Поскольку

lip(B|P ) ⩽
1

α
β < 1

в силу условия 2), мы получаем, что отображение B является сжимающим. Так
как P – полное метрическое пространство, то по теореме 2.5 существует един-
ственное решение p0 уравнения B(p) = p, откуда непосредственно вытекает, что
в модели σf существует единственное положение равновесия p0.

3.2.2.Метод нахождения положения равновесия

Ниже приведен используемый в численных экспериментах алгоритм поиска
положения равновесия в модели открытого рынка с непостоянными эластично-
стями.

Алгоритм 4
Шаг 0. Вычислить константы α(σo) и β(σo) по формулам (3.23), (3.24). За-

фиксировать метрики ρX и ρY по формулам (3.6), (3.7).
Шаг 1. Зафиксировать ε > 0 – погрешность приближения, p0 ∈ P – на-

чальное приближение, δ ∈ (0; 1 − β/α) – параметр итерационного процесса,
положить номер итерации k = 0.

Шаг 2. Проверить выполнение неравенства

max
i=1,n

|S(pk) + a−D(pk)| < ε,

где D(p) определено формулой (1.27), а S(p) – формулой (1.28). Если неравен-
ство выполнено, то закончить алгоритм. Если нет, то перейти к шагу 3.

Шаг 3. Используя приближение pk, вычислить hk = (hk1, ..., hkn) по формуле

|hki| ⩽
c2i − c1i

2α
max
j=1,n

|Sj(pk) + a−Dj(pk)|
c2j − c1j

, i = 1, n. (3.35)

Шаг 4. На BRn(pk, hk) построить σk-сеть Z при

σk =
δ

2
max
i=1,n

|S(pk) + a−D(pk)| .

Шаг 5. Поочередно брать точки x̃ ∈ Z∩BRn(pk, hk) и проверять выполнение
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неравенства:

max
i=1,n

|S(p) + a−D(pk)| ⩽ σk max
i=1,n

|S(pk) + a−D(pk)| . (3.36)

Если подходящая под условие точка найдена, то перейти к шагу 6. Если нет, то
уменьшить σi в два раза, построить новую сеть и повторить перебор.

Шаг 6. Положить pk+1 = p̃, увеличить k на единицу и перейти к шагу 2.

3.2.3.Модельный пример

Случай n = 1. Рассмотрим следующую модель из Σf :

a = 20.72665405, c1 = 65.13793945, c2 = 123.5268173,

p∗ = 112.6758499, S∗ = 24.2594986, D∗ = 81.36868286,

λ = −0.2404059, λ̃ = −0.9190364, χ = −0.4210924, χ̃ = 0.3925322,

Требуется найти положение равновесия в этой модели, т.е. решение уравнения:

S∗ exp

(
λ̃

χ̃

(
pχ̃ − (p∗)χ̃

))
+ a = D∗ exp

(
λ

χ
(pχ − (p∗)χ)

)
. (3.37)

С помощью алгоритма 4 было получено, что:

p0 = 95.78887984, ρY (S(p
0) + a,D(p0)) = 0.00000591.

Заметим, что p0 < p∗. Поскольку эластичности в данной модели отрицатель-
ны, мы получаем, что цены для обеспечения эффективного функционирования
системы цена на товар должна быть снижена.

Выясним, как параметры модели влияют на положение равновесия в ней.
Параметр a прямо пропорционален положению равновесия (рис. 3.40).
Параметры модели p∗, S∗, D∗ ведут себя так же, как и в предыдущем при-

мере (рис. 3.41, 3.42, 3.43).
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Рис. 3.40. Зависимость
p0 от a (n = 1).

Рис. 3.41. Зависимость
p0 от p∗ (n = 1).

Рис. 3.42. Зависимость
p0 от S∗ (n = 1).

Рис. 3.43. Зависимость
p0 от D∗ (n = 1).

Так же, как и в предыдущих моделях, изменение параметров c1, c2 не влияет
на положение равновесия.

Рис. 3.44. Зависимость
p0 от c1 (n = 1).

Рис. 3.45. Зависимость
p0 от c2 (n = 1).

Параметр λ прямо пропорционален положению равновесия в модели (рис.
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3.46). Это связано с тем, что при увеличении λ возрастает правая часть уравне-
ния (3.37), поскольку λ

χ (p
χ − (p∗)χ) > 0. Так как λ̃

χ̃

(
pχ̃ − (p∗)χ̃

)
> 0, положение

равновесия будет возрастать. По аналогичным соображениям параметр λ̃ об-
ратно пропорционален положению равновесия (рис. 3.47).

Рис. 3.46. Зависимость
p0 от λ (n = 1).

Рис. 3.47. Зависимость
p0 от λ̃ (n = 1).

Параметр χ при больших отрицательных значениях практически не оказы-
вает влияния на положение равновесия (рис. 3.48). Это связано с тем, что при
убывании параметра χ правая часть уравнения (3.37) практические не меня-
ется. Однако как только параметр χ становится положительным, положение
равновесия достаточно быстро убывает. Это связано с тем, что показатель сте-
пени экспоненты в правой части уравнения (3.37) становится положительным.

По той же причине при возрастании параметра χ̃ положение равновесия
возрастает (рис. 3.49).

Рис. 3.48. Зависимость
p0 от χ (n = 1).

Рис. 3.49. Зависимость
p0 от χ̃ (n = 1).
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Случай n = 2. Рассмотрим следующую модель из Σf :

a = (98.70, 14.43)T , c1 = (6.50, 8.41)T , c2 = (6.70, 8.72)T ,

p∗ = (6.54, 8.71)T , S∗ = (712.62, 820.49)T , D∗ = (756.51, 742.27)T ,

Λ =

(
0.1048635 0.1265929

−0.036955 −0.1332431

)
, Λ̃ =

(
0.4845996 0.9848483

−0.9983824 0.2584866

)
,

χ11 = −0.0358759, χ12 = 0.0732839, χ21 = 0.0701037, χ22 = 0.0597848,

χ̃11 = −0.5309825, χ̃12 = 0.2899285, χ̃21 = 0.2106486, χ̃22 = −0.0253643.

С помощью метода нахождения было получено следующее положение рав-
новесия:

p0 = (6.60737586, 8.56597393), ρY (S(p
0) + a,D(p0)) = 0.00000728.

Ниже представлены графики зависимости положения равновесия от вход-
ных параметров.

p01 p02

Рис. 3.50. Зависимость положения равновесия от параметра a1 (n = 2)

p01 p02

Рис. 3.51. Зависимость положения равновесия от параметра a2 (n = 2)
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p01 p02

Рис. 3.52. Зависимость положения равновесия от параметра p∗1 (n = 2)

p01 p02

Рис. 3.53. Зависимость положения равновесия от p∗2 (n = 2).

p01 p02

Рис. 3.54. Зависимость положения равновесия от параметра c11 (n = 2)

p01 p02

Рис. 3.55. Зависимость положения равновесия от параметра c12 (n = 2)
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p01 p02

Рис. 3.56. Зависимость положения равновесия от параметра c21 (n = 2)

p01 p02

Рис. 3.57. Зависимость положения равновесия от параметра c22 (n = 2)

p01 p02

Рис. 3.58. Зависимость положения равновесия от S∗
1 (n = 2).

p01 p02

Рис. 3.59. Зависимость положения равновесия от S∗
2 (n = 2).
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p01 p02

Рис. 3.60. Зависимость положения равновесия от D∗
1 (n = 2).

p01 p02

Рис. 3.61. Зависимость положения равновесия от D∗
2 (n = 2).

p01 p02

Рис. 3.62. Зависимость положения равновесия от λ11(n = 2).

p01 p02

Рис. 3.63. Зависимость положения равновесия от λ12(n = 2).
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p01 p02

Рис. 3.64. Зависимость положения равновесия от λ21(n = 2).

p01 p02

Рис. 3.65. Зависимость положения равновесия от λ22(n = 2).

p01 p02

Рис. 3.66. Зависимость положения равновесия от λ̃11(n = 2).

p01 p02

Рис. 3.67. Зависимость положения равновесия от λ̃12(n = 2).
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p01 p02

Рис. 3.68. Зависимость положения равновесия от λ̃21(n = 2).

p01 p02

Рис. 3.69. Зависимость положения равновесия от λ̃22(n = 2).

p01 p02

Рис. 3.70. Зависимость положения равновесия от χ11(n = 2).

p01 p02

Рис. 3.71. Зависимость положения равновесия от χ12(n = 2).
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p01 p02

Рис. 3.72. Зависимость положения равновесия от χ21(n = 2).

p01 p02

Рис. 3.73. Зависимость положения равновесия от χ22(n = 2).

p01 p02

Рис. 3.74. Зависимость положения равновесия от χ̃11(n = 2).

p01 p02

Рис. 3.75. Зависимость положения равновесия от χ̃12(n = 2).
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p01 p02

Рис. 3.76. Зависимость положения равновесия от χ̃21(n = 2).

p01 p02

Рис. 3.77. Зависимость положения равновесия от χ̃22(n = 2).

3.3.Выводы главы 3

В данной главе изложены результаты исследования моделей класса Mo. К
этим моделям относятся модели из подклассов Σo, Σf и Σl. Для них получены
необходимые и достаточные условия существования положения равновесия, а
также исследованы его свойства. Помимо этого, на модельных примерах про-
иллюстрирована зависимость положения равновесия от входных параметров
модели, а также верифицированы методы нахождения положения равновесия.

Результаты данной главы опубликованы в работах [19, 45, 47, 48].
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4.Положение равновесия в моделях
без внешнего воздействия из класса Mc

4.1.Положение равновесия в модели типа Аллена–Эрроу–Дебре

В данной модели отображения спроса и предложения описываются как ре-
шение соответствующих задач максимизации функции полезности потребите-
лей и функции прибыли производителей. Получены достаточные условия су-
ществования положения равновесия. Проведен численный эксперимент, выяв-
ляющий зависимость положения равновесия от входных параметров модели.

4.1.1.Достаточные условия существования положения равновесия

Достаточные условия существования положения равновесия были получены
в [2]. Доказательство основано на применении теоремы о точках совпадения для
накрывающего и липшицевого отображений.

Обозначим

α(σad) = min
i=1,m

∣∣∣∣Li(c2i − c1i)

2c22i

∣∣∣∣− max
i=1,m

(
Ki

(
n∏

j=1

c
−βij

1j

)(
n∑

j=1

βij
c2j − c1j
2c1j

))
,

(4.1)

β(σad) =
maxi=1,m

αi

c1i

[
(I−⟨c1,α⟩+c1iai)(c2i−c1i)

c21i
+ (⟨a, c2 − c1⟩ − ai(c2i − c1i))

]
2
∑n

k=1 αk
(4.2)

γ(σad) = max
i=1,m

∥∥∥∥∥ai + αi(2I − ⟨a, c2 + c1⟩)
(c2i + c1i)

∑n
j=1 αj

+
2Li

c2i + c1i
−Ki

n∏
j=1

(
c2j + c1j

2

)−βij

∥∥∥∥∥ .
(4.3)

Теорема 4.1 (Теорема 1, [2]). Пусть параметры модели σad ∈ Σad удовле-
творяют условию γ(σad) < α(σad) − β(σad). Тогда в модели σad существует
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положение равновесия p0 ∈ intP .

4.1.2.Метод нахождения положения равновесия

Метод нахождения положения равновесия является модификацией Алгорит-
ма 1 с поправкой на специфику моделей типа Аллена–Эрроу–Дебре. Перейдем
к описанию этого метода.

Алгоритм 5
Шаг 0. Вычислить константы α(σad) и β(σad) по формулам (4.1), (4.2). За-

фиксировать метрики ρX и ρY по формулам (3.6), (3.7).
Шаг 1. Зафиксировать ε > 0 – погрешность приближения, p0 ∈ P – на-

чальное приближение, δ ∈ (0; 1 − β/α) – параметр итерационного процесса,
положить номер итерации k = 0.

Шаг 2. Проверить выполнение неравенства

max
i=1,n

|S(pk) + a−D(pk)| < ε,

где D(p) определено формулой (1.18), а S(p) – формулой (1.19). Если неравен-
ство выполнено, то закончить алгоритм. Если нет, то перейти к шагу 3.

Шаг 3. Используя приближение pk, вычислить hk = (hk1, ..., hkn) по формуле

|hkj| ⩽
c2j − c1j

2α
max
j=1,n

|Sj(pk) + a−Dj(pk)|
c2j − c1j

, j = 1, n. (4.4)

Шаг 4. На BRn(pk, hk) построить σk-сеть Z при

σk =
δ

2
max
i=1,n

|S(pk) + a−D(pk)| .

Шаг 5. Поочередно брать точки x̃ ∈ Z∩BRn(pk, hk) и проверять выполнение
неравенства:

max
i=1,n

|S(p) + a−D(pk)| ⩽ σk max
i=1,n

|S(pk) + a−D(pk)| . (4.5)

Если подходящая под условие точка найдена, то перейти к шагу 6. Если нет, то
уменьшить σi в два раза, построить новую сеть и повторить перебор.

Шаг 6. Положить pk+1 = p̃, увеличить k на единицу и перейти к шагу 2.
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4.1.3.Модельный пример

Случай n = 1. Рассмотрим следующую модель из Σad:

I = 64.3796, a = 1.6159, α = 0.62, C = 28.22,

β = 0.18, c1 = 28.88, c2 = 36.75.

Найдем положение равновесия в этой модели, т.е. решение уравнения:

Cbββ2β

pβ
− I − b

p
− 2a = 0. (4.6)

Заметим, что в уравнении (4.6) отсутствует параметр α. Используя метод
нахождения положения равновесия, мы получаем, что:

p0 = 33.51, ρY (S(p
0), D(p0)) ≈ 0.0000018.

Выясним, как параметры модели влияют на положение равновесия в ней.
Положение равновесия находится в прямой зависимости от параметра I

(рис. 4.1).
Параметр a мало влияет на положение равновесия (рис. 4.2).

Рис. 4.1. Зависимость
p0 от I (n = 1).

Рис. 4.2. Зависимость
p0 от a (n = 1).

Положение равновесия находится в обратной зависимости от параметра C

(рис. 4.3).
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Рис. 4.3. Зависимость p0 от C
(n = 1).

Рис. 4.4. Зависимость p0 от β
(n = 1).

Из графика зависимости положения равновесия от параметра β (рис. 4.4)
видно, что явная зависимость отсутствует.

Изменение параметров c1, c2, очевидно, не влияет на положение равновесия
(рис. 4.5, рис. 4.6). Различия в полученных значениях обусловливаются погреш-
ностью вычислений.

Рис. 4.5. Зависимость p0 от c1
(n = 1).

Рис. 4.6. Зависимость p0 от c2
(n = 1).

Случай n = 2. Рассмотрим следующую модель из Σad:

I = 0.32, a = (0.17, 0.25), α = (0.47, 0.34), C = (8.52, 7.31)

c1 = (0.61, 0.51), c2 = (0.87, 0.66), B =

(
0.19 0.04

0.07 0.42

)
.

С помощью метода нахождения было найдено следующее положение равно-
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весия:
p0 =, ρX(D(p0), S(p0)) = .

Ниже представлены графики зависимости положения равновесия от вход-
ных параметров.

p01 p02

Рис. 4.7. Зависимость положения равновесия от I (n = 2).

p01 p02

Рис. 4.8. Зависимость положения равновесия от a1 (n = 2).

p01 p02

Рис. 4.9. Зависимость положения равновесия от a2 (n = 2).
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p01 p02

Рис. 4.10. Зависимость положения равновесия от α1 (n = 2).

p01 p02

Рис. 4.11. Зависимость положения равновесия от α2 (n = 2).

p01 p02

Рис. 4.12. Зависимость положения равновесия от C1 (n = 2).
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p01 p02

Рис. 4.13. Зависимость положения равновесия от C2 (n = 2).
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p01 p02

Рис. 4.14. Зависимость положения равновесия от c11 (n = 2).

p01 p02

Рис. 4.15. Зависимость положения равновесия от c12 (n = 2).

p01 p02

Рис. 4.16. Зависимость положения равновесия от c21 (n = 2).

p01 p02

Рис. 4.17. Зависимость положения равновесия от c22 (n = 2).
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Случай n = 2,m = 1. Рассмотрим следующую модель из Σad:

I = 2958.93, a = (3.68, 30.01), α = (0.83, 0.62),

C = 478.22, B = (0.16, 0.01), c1 = (8.52, 86.08), c2 = (14.57, 96.79).

С помощью метода нахождения положения равновесия было получено, что:

p0 = (11.45, 91.11), ρY (S(p
0), D(p0)) = 0.00000125.

Ниже представлено, как параметры модели влияют на положение равнове-
сия в ней. Заметим, что в этой модели рассматривается положение равновесия
только по первому аргументу, а второй аргумент остается фиксированным.

Рис. 4.18. Зависимость
p01 от I (n = 2, m = 1).

Рис. 4.19. Зависимость
p01 от C (n = 2, m = 1).

Рис. 4.20. Зависимость
p01 от a1 (n = 2, m = 1).

Рис. 4.21. Зависимость
p01 от a2 (n = 2, m = 1).
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Рис. 4.22. Зависимость
p01 от α1 (n = 2, m = 1).

Рис. 4.23. Зависимость
p01 от α2 (n = 2, m = 1).

Рис. 4.24. Зависимость
p01 от β11 (n = 2, m = 1).

Рис. 4.25. Зависимость
p01 от β12 (n = 2, m = 1).

c11 c12

Рис. 4.26. Зависимость p01 от c1(n = 2,m = 1).
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c21 c22

Рис. 4.27. Зависимость p01 от c2(n = 2,m = 1).

4.2.Положение равновесия в закрытой модели типа Аллена
с постоянными эластичностями

В данной модели отображения спроса и предложения восстанавливаются
через соответствующие эластичности. С помощью теоремы 2.6 и следствия 2.7
получены необходимые условия существования положения равновесия. С по-
мощью теоремы 2.8 получены достаточные условия существования положения
равновесия. Исследованы случаи единственности и неединственности положе-
ния равновесия.

4.2.1.Необходимые условия и достаточные условия
существования положения равновесия

Рассмотрим модель σc ∈ Σc. Получим условия, при которых в модели σc

существует положение равновесия. Подставим формулы (1.18) и (1.19) в (1.4) и
получим систему уравнений

D∗
i

n∏
j=1

(p∗j)
−Eijp

Eij

j = S∗
i

n∏
j=1

(p∗j)
−Ẽijp

Ẽij

j , i = 1, n.

Возьмем логарифм от левой и правой части

lnD∗
i +

n∑
j=1

(
Eij ln pj − Eij ln p

∗
j

)
= lnS∗

i +
n∑

j=1

(
Ẽij ln pj − Ẽij ln p

∗
j

)
, i = 1, n.
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Отсюда получаем систему, линейную по ln pj, j = 1, n

n∑
j=1

(
Eij − Ẽij

)
ln pj = ln

S∗
i

D∗
i

+
n∑

j=1

(Eij − Ẽij) ln p
∗
j , i = 1, n. (4.7)

Введем обозначения

aij =


Eij − Ẽij, i, j = 1, n;

ln S∗
i

D∗
i
+

n∑
k=1

(Eik − Ẽik) ln p
∗
k, i = 1, n, j = n+ 1.

Теорема 4.2 (Необходимые условия существования положения равновесия в
закрытой модели типа Аллена, [46]). Пусть в модели σc ∈ Σc существует по-
ложение равновесия. Тогда параметры этой модели удовлетворяют условию
rank(E − Ẽ) = rankA, где A = (aij)i,j=1,n.

Доказательство. Доказательство теоремы непосредственно вытекает из тео-
рем 2.6 и 2.7. Если в модели существует положение равновесия p0, то система
(4.7) совместна, поскольку она имеет решение p0. Отсюда по теореме 2.6 следует,
что rank(E − Ẽ) = rankA.

Теперь перейдем к достаточным условиям существования положения равно-
весия в закрытой модели типа Аллена. Заметим, что из предыдущей теоремы
достаточные условия не следуют, поскольку положение равновесия p0 должно
удовлетворять не только системе (4.7), но и условию p0 ∈ P .

Теорема 4.3 (Достаточные условия существования положения равновесия в
закрытой модели типа Аллена, [46]). Пусть параметры модели σc ∈ Σc удо-
влетворяют условию:

∀m = 1, n detFm = 0, detGm ⩾ 0,

где
Fm = (fmij)i,j=1,n+1, Gm = (Gmij)i,j=1,n+1,
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fmij =



δij, i, j = 1, n;

C1i, i = 1, n, j = n+ 1;

Emj − Ẽmj, i = n+ 1, j = 1, n;

ln S∗
m

D∗
m
+

n∑
k=1

(Emk − Ẽmk) ln p
∗
k, i, j = n+ 1;

gmij =



δij, i, j = 1, n;

C1i, i = 1, n, j = n+ 1;

−δmj, i = n+ 1, j = 1, n;

C1m, i, j = n+ 1;

а δij – символ Кронекера. Тогда в модели σc существует положение равнове-
сия.

Доказательство. Пусть вектор p0 ∈ P является положением равновесия в мо-
дели σc. Тогда p0 является решением следующей системы:

n∑
j=1

(Eij − Ẽij) ln pj = ln S∗
i

D∗
i
+

n∑
j=1

(Eij − Ẽij) ln p
∗
j ,

pi ⩾ c1i,

pi ⩽ c2i, i = 1, n.

(4.8)

Система (4.8) совместна тогда и только тогда, когда совместна следующая си-
стема: 

n∑
j=1

bijxi = Bi,

xi ⩾ C1i,

xi ⩽ C2i,

i = 1, n. (4.9)

Здесь
xi = ln pi, bij = Eij − Ẽij, i, j = 1, n;

Bi = ln
S∗
i

D∗
i

+
n∑

j=1

(Eij − Ẽij) ln p
∗
j , i = 1, n;

C1i = ln c1i, i = 1, n; C2i = ln c2i, i = 1, n.
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Применяя Теорему 2.8, мы получаем, что система (4.9) совместна, если

∀m = 1, n detFm = 0, detGm ⩾ 0,

где
Fm = (fmij)i,j=1,n+1, Gm = (Gmij)i,j=1,n+1,

fmij =



δij, i, j = 1, n;

C1i, i = 1, n, j = n+ 1;

bij, i = n+ 1, j = 1, n;

Bi, i, j = n+ 1;

gmij =



δij, i, j = 1, n;

C1i, i = 1, n, j = n+ 1;

−δmj, i = n+ 1, j = 1, n;

C1m, i, j = n+ 1.

Отсюда мы легко получаем утверждение теоремы.

Замечание 4.1. Достаточные условия существования положения равновесия
могут быть записаны в следующем альтернативном виде.

Теорема 4.4 ([46]). Пусть параметры модели σc удовлетворяют условию:

∀m = 1, n detFm = 0, (−1)n detGm ⩾ 0,

где

fmij =



δij, i, j = 1, n;

C2i, i = 1, n, j = n+ 1;

Eij − Ẽij, i = n+ 1, j = 1, n;

ln S∗
i

D∗
i
+

n∑
j=1

(Eij − Ẽij) ln p
∗
j , i, j = n+ 1;
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gmij =



δij, i, j = 1, n;

C2i, i = 1, n, j = n+ 1;

−δmj, i = n+ 1, j = 1, n;

C2m, i, j = n+ 1.

Тогда в модели σc существует положение равновесия.

Замечание 4.2. Теоремы 4.3 и 4.4 не эквивалентны.

Пример 4.1. Приведем пример модели, в которой выполняются условия теоре-
мы 4.3 и не выполняются условия теоремы 4.4. Рассмотрим следующую модель:

n = 1, c1 = 326.84, c2 = 841.41, p∗ = 450, S∗ = 141.00,

D∗ = 137.00, E = −0.33, Ẽ = −0.24.

Проверим выполнение условий теоремы 4.3.

detF1 = 0,

detG1 ≈ 11.57.

Легко, заметить, что detF1 = 0, detG1 ⩾ 0. Теперь проверим выполнение
условий теоремы 4.4.

detF1 ≈ −0.05,

detG1 ≈ 12.53.

Мы видим, что detF1 < 0, из-за чего условия теоремы 4.4 не выполнены. Поло-
жение равновесия в данной модели находится непосредственным вычислением:

p0 = 326.84.

Пример 4.2. Теперь приведем пример обратной ситуации, когда условия тео-
ремы 4.3 не выполнены, а условия теоремы 4.4 выполнены. Рассмотрим следу-
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ющую модель:

n = 1, c1 = 11.80, c2 = 24.19, p∗ = 16, S∗ = 287.00,

D∗ = 272.00, E = 0.280701754, Ẽ = 0.150659134.

Проверим выполнение условий теоремы 4.4.

detF1 = 0,

detG1 ≈ 6.37075393.

Легко, заметить, что detF1 = 0, detG1 ⩾ 0. Теперь проверим выполнение
условий теоремы 4.3.

detF1 ≈ −0.10457053,

detG1 ≈ 4.76250510.

Мы видим, что detF1 < 0, из-за чего условия теоремы 4.3 не выполнены. Поло-
жение равновесия в данной модели находится непосредственным вычислением:

p0 = 24.17.

4.2.2.Единственность положения равновесия

Теперь перейдем к исследованию вопроса о единственности и неединственно-
сти положения равновесия в закрытой модели типа Аллена. Для этого возьмем
произвольную модель σc ∈ Σc и рассмотрим систему (4.7).

Теорема 4.5 ([46]). Пусть параметры модели σc удовлетворяют условию

Eij = Ẽij ∀i, j = 1, n. (4.10)

Тогда любой вектор p ∈ P является положением равновесия в модели σc тогда
и только тогда, когда S∗

i = D∗
i ∀i = 1, n.

Доказательство. В самом деле, пусть в модели σc выполнено условие (4.10).
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Тогда система (4.7) эквивалентна следующей системе:

lnS∗
i − lnD∗

i = 0, i = 1, n. (4.11)

Очевидно, что для того, чтобы любой вектор p ∈ P был положением равно-
весия в модели σc, необходимо и достаточно, чтобы S∗

i = D∗
i ∀i = 1, n.

Следствие 4.1 ([46]). Пусть параметры модели σc удовлетворяют условию
(4.10). Тогда условие

∃i = 1, n : S∗
i ̸= D∗

i

является критерием отсутствия положения равновесия в модели σc.

Теперь перейдем к более общему случаю. Введем обозначения:

A = (aij)i,j=1,n, aij = Eij − Ẽij;

ω = (ω1, ..., ωn)
T , ωi = ln

S∗
i

D∗
i

+
n∑

j=1

(Eij − Ẽij) ln p
∗
j .

Теорема 4.6 ([46]). Пусть в модели σc выполнено условие detA ̸= 0. Тогда
для того, чтобы существовало единственное положение равновесия

p0i = exp(A−1ω)i, i = 1, n (4.12)

необходимо и достаточно, чтобы параметры модели удовлетворяли следую-
щему условию:

max
i=1,n

2

ln c2i − ln c1i

∣∣∣∣(A−1ω)i −
ln c1i + ln c2i

2

∣∣∣∣ ⩽ 1, (4.13)

где (A−1ω)i – i-я координата вектора A−1ω.

Доказательство. В условиях леммы система (4.7) совместна по теореме 2.6,
поскольку detA ̸= 0. Более того, по теореме 2.7 ее решение единственно.

Сначала докажем необходимость. Пусть p0, определенное формулой (4.12) –
единственное положение равновесия. Тогда p0 удовлетворяет (4.7). Более того,
p0 ∈ P , т.е.:

ln c1i ⩽ (A−1ω)i ⩽ ln c2i, i = 1, n, (4.14)
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где (A−1ω)i – i-й элемент вектора A−1ω.
Вычтем из неравенства (4.14) величину (ln c1i + ln c2i)/2:

ln c1i −
ln c1i + ln c2i

2
⩽ (A−1ω)i −

ln c1i + ln c2i
2

,

(A−1ω)i −
ln c1i + ln c2i

2
⩽ ln c2i −

ln c1i + ln c2i
2

, i = 1, n.

Тогда

− ln c2i − ln c1i
2

⩽ (A−1ω)i −
ln c1i + ln c2i

2
⩽

ln c2i − ln c1i
2

, i = 1, n.

Отсюда имеем:∣∣∣∣(A−1ω)i −
ln c1i + ln c2i

2

∣∣∣∣ ⩽ ln c2i − ln c1i
2

, i = 1, n.

Поделив это неравенство на (ln c2i − ln c1i)/2 > 0, получим:

2

ln c2i − ln c1i

∣∣∣∣(A−1ω)i −
ln c1i + ln c2i

2

∣∣∣∣ ⩽ 1, i = 1, n.

Следовательно, если (4.12) является положением равновесия в модели σc, то
выполняется условие:

max
i=1,n

2

ln c2i − ln c1i

∣∣∣∣(A−1ω)i −
ln c1i + ln c2i

2

∣∣∣∣ ⩽ 1.

Теперь докажем достаточность. Пусть выполнено условие (4.13). Посколь-
ку detA ̸= 0, матрица A обратима и, следовательно, решение системы (4.7)
единственно и имеет вид:

p = exp (A−1ω).

Из условия (4.13) мы получаем, что p ∈ P . Таким образом, в модели существует
единственное положение равновесия p0.

Следствие 4.2. Пусть параметры модели σc удовлетворяют теореме 4.6 и усло-
вию S∗

i = D∗
i для любого i = 1, n. Тогда p0 = p∗.

Пример 4.3. Приведем пример модели, для которой выполняется следствие
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4.2. Рассмотрим следующую модель:

n = 1, c1 = 27.00, c2 = 69.24, p∗ = 16, S∗ = 89.70,

D∗ = 89.70, E = 1.684987068, Ẽ = 1.113064885.

Очевидно, что условия теоремы 4.6 выполнены, поскольку detA = det(E−Ẽ) ≈
0.57 ̸= 0. Так как D∗ = S∗ = 89.7, то по следствию 4.2 в этой модели существует
единственное положение равновесия p0 = p∗.

Теперь рассмотрим случай, когда rankA = rank(A|ω) = k < n.

Теорема 4.7 ([46]). В модели σc существует бесконечное количество поло-
жений равновесия тогда и только тогда, когда параметры модели σc удовле-
творяют следующим условиям:

1. rankA = rank(A|ω) = k < n;

2.

max
i=1,n

2

ln c2i − ln c1i

∣∣∣∣∣
n−k∑
j=1

Cjwji −
ln c1i + ln c2i

2

∣∣∣∣∣ < 1, (4.15)

где векторы W1, ...,Wn−k составляют ФСР системы (4.7) и

Wj = (wj1, ..., wjn).

Доказательство. Пусть rankA = rank(A|ω) = k < n. Тогда по теореме Кро-
некера–Капелли система совместна, но ее решение не единственно. Пусть

W1, ...,Wn−k ∈ Rn

– ФСР системы (4.7). Пусть p ∈ Rn – решение системы (4.7). Тогда:

ln pi =
n−k∑
j=1

Cjwij,

где Cj ∈ R, j = 1, n− k – некоторые константы. Для того, чтобы p было поло-
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жением равновесия в модели, необходимо и достаточно, чтобы:

ln c1i <
n−k∑
j=1

Cjwij < ln c2i, i = 1, n;

где wij – j-я координата вектора Wi, i = 1, n. Повторяя рассуждения, изложен-
ные при доказательстве Леммы 4.6 получим, что вектор p является положением
равновесия в модели σc тогда и только тогда, когда

max
i=1,n

2

ln c2i − ln c1i

∣∣∣∣∣
n−k∑
j=1

Cjwij −
ln c1i + ln c2i

2

∣∣∣∣∣ < 1.

Пример 4.4. Продемонстрируем полученные результаты на следующем при-
мере. Пусть n = 2, p∗ = (1, 1), c1 = (1; e), c2 = ( 1

4e , 1). В зависимости от того,
чему равны S∗, D∗ и ω∗, количество положений равновесия в такой модели мо-
жет быть разное. Примеры представлены в Таблице 4.1.

Таблица 4.1. Существование, единственность и неединственность положения
равновесия в примере 4.4.

S∗, D∗, ω∗

(1, 1)

(1, 1)

(0, 0)

(2, 2)

(1, 1)

(ln 2, ln 2)

(1, 1)

(2, 2)

(− ln 2,− ln 2)

(2, 2)

(1, 1/2)

(ln 2, 2 ln 2)

A

(
0 0

0 0

)
Теорема 4.5

∀p∈P
Следствие 4.1

∅
Следствие 4.1

∅
Следствие 4.1

∅(
1 0

0 1

)
Следствие 4.2

(1,1)
Теорема 4.6

(2,2)
Теорема 4.6
(1/2,1/2)

Теорема 4.6
(2,4)(

0 1

1 0

)
Следствие 4.2

(1,1)
Теорема 4.6

(2,2)
Теорема 4.6
(1/2,1/2)

Теорема 4.6
(4,2)(

1/2 1/2

1/2 1/2

)
Теорема 4.7

(p1,1/p1), p1∈[1;e]
Теорема 4.7

(p1;4/p1),p1∈[1;e]
Теорема 4.7

(p1;1/4p1),p1∈[1;e]
Следствие 4.1

∅(
1 0

1/2 1/2

)
Следствие 4.2

(1,1)
Теорема 4.6

(2,2)
Теорема 4.6
(1/2,1/2)

Теорема 4.6
(2,8)

Пример 4.5. В случае n = 2 легко получить явные условия существования,
единственности и неединственности положения равновесия. В таком случае си-
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стема (4.7) эквивалентна следующей системе:

a11 ln p1 + a12 ln p2 = ω1,

a21 ln p1 + a22 ln p2 = ω2,
(4.16)

с условиями
ln c11 ⩽ ln p1 ⩽ ln c21,

ln c12 ⩽ ln p2 ⩽ ln c22.
(4.17)

Теорема 4.8 ([46]). Пусть n = 2. Тогда:

1. если detA ̸= 0 и

ln c11 ⩽
a22ω1 − a12ω2

a11a22 − a12a21
⩽ ln c21,

ln c12 ⩽
a11ω2 − a21ω1

a11a22 − a12a21
⩽ ln c22,

то в модели существует единственное положение равновесия(
a22ω1 − a12ω2

a11a22 − a12a21
,
a11ω2 − a21ω1

a11a22 − a12a21

)
;

2. если rankA = rank(A|ω) = 1 и ai2 = 0 ∀i = {1, 2}, то в модели суще-
ствует бесконечное количество положений равновесия, сосредоточен-
ных на множестве:

ln p1 =
ω1

a11
=

ω2

a21
, c12 ⩽ p2 ⩽ c22.

3. если rankA = rank(A|ω) = 1 и ai1 = 0 ∀i = {1, 2}, то в модели суще-
ствует бесконечное количество положений равновесия, сосредоточен-
ных на множестве:

ln p2 =
ω1

a12
=

ω2

a22
, c11 ⩽ p1 ⩽ c21.

4. если rankA = rank(A|ω) = 1, a11a12 > 0 и

ω1 = a11 ln c11 + a12 ln c12,
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то в модели существует единственное положение равновесия (c11, c12);

5. если rankA = rank(A|ω) = 1, a11, a12 > 0 и

ω1 = a11 ln c21 + a12 ln c22,

то в модели существует единственное положение равновесия (c21, c22);

6. если rankA = rank(A|ω) = 1, a11a12 < 0 и

ω1 = a11 ln c21 + a12 ln c12,

то в модели существует единственное положение равновесия (c21, c12);

7. если rankA = rank(A|ω) = 1, a11a12 < 0 и

ω1 = a11 ln c11 + a12 ln c12,

то в модели существует единственное положение равновесия (c11, c12);

8. если rankA = rank(A|ω) = 1 и выполнено одно из двух условий:

• a11a12 > 0 и

a11 ln c11 + a12 ln c12 < ω1 < a11 ln c21 + a12 ln c22;

• a11a12 < 0 и

a11 ln c21 + a12 ln c12 < ω1 < a11 ln c11 + a12 ln c22;

то в модели существует бесконечное количество положений равнове-
сия, определяемых формулой:

ln p2 =
ω1 − a11 ln p1

a12
, ln c11 ⩽ p1 ⩽ ln c21.

Доказательство. Рассмотрим все случаи по порядку. 1. Пусть detA ̸= 0. Тогда
по теореме 2.6 система (4.16) совместна, а по теореме 2.7 ее решение единствен-
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но. Найдем это решение с помощью, например, метода Крамера:

A =

∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣ = a11a22 − a12a21,

A1 =

∣∣∣∣∣ω1 a12

ω2 a22

∣∣∣∣∣ = a22ω1 − a12ω2,

A2 =

∣∣∣∣∣a11 ω1

a21 ω2

∣∣∣∣∣ = a11ω2 − a21ω1.

Тогда решение данной системы определяется формулой:

ln p1 = A1/A =
a22ω1 − a12ω2

a11a22 − a12a21
,

ln p2 = A2/A =
a11ω2 − a21ω1

a11a22 − a12a21
.

Осталось лишь потребовать, чтобы выполнялись условия (4.17). Таким об-
разом, если

ln c11 ⩽
a22ω1 − a12ω2

a11a22 − a12a21
⩽ ln c21,

ln c12 ⩽
a11ω2 − a21ω1

a11a22 − a12a21
⩽ ln c22,

то в модели положение равновесия единственно. В противном случае положение
равновесия в модели не существует.

Пусть теперь rankA = rank(A|ω) = 1.
2. В случае, если ai2 = 0 ∀i ∈ {1, 2}, система (4.16) эквивалентна следую-

щему уравнению:
a11 ln p1 = ω1,

откуда следует, что все положения равновесия описываются выражениями:

ln p1 =
ω1

a11
=

ω2

a21
, c12 ⩽ p2 ⩽ c22.

3. В случае, когда ai1 = 0 для i = 1, 2, все положения равновесия, аналогично
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предыдущему случаю, описываются выражениями:

ln p2 =
ω1

a12
=

ω2

a22
, c11 ⩽ p1 ⩽ c21.

В дальнейшем будем полагать, что aij ̸= 0, i, j = 1, 2. Тогда все решения
системы (4.16) лежат на прямой:

ln p2 =
ω1 − a11 ln p1

a12
.

Найдем условия, при которых положение равновесия единственно даже в
случае, если система (4.16) имеет бесконечное количество решений. Заметим,
что наклон прямой, на которой лежат решения системы (4.16), равен −a11/a12.
Рассмотрим несколько случаев.

4. Пусть a11a12 > 0. Тогда положение равновесия единственно в двух следу-
ющих случаях:

1) если:

ln c12 = −a11 ln c11
a12

+
ω1

a12
; (4.18)

2) если:

ln c22 = −a11 ln c21
a12

+
ω1

a12
; (4.19)

В случае 1) из (4.18) мы получаем, что если

ω1 = a11 ln c11 + a12 ln c12,

то в модели σ существует единственное положение равновесия p0 = (c11, c12).
5. В случае 2) из (4.19) мы получаем, что если:

ω1 = a11 ln c21 + a12 ln c22,

то в модели σ существует единственное положение равновесия p0 = (c21, c22).
Если же будет выполнено:

a11 ln c11 + a12 ln c12 < ω1 < a11 ln c21 + a12 ln c22, (4.20)

то в модели существует бесконечное количество положений равновесия, сосре-
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доточенных на множестве:

ln p2 =
ω1 − a11 ln p1

a12
, ln c11 ⩽ p1 ⩽ ln c21.

6. Пусть a11a12 < 0. Этот случай рассматривается аналогично предыдущему
случаю. Здесь положение равновесия единственно только в случаях:

1) если:

ln c22 = −a11 ln c11
a12

+
ω1

a12
; (4.21)

2) если:

ln c21 = −a11 ln c12
a12

+
ω1

a12
; (4.22)

В случае 1) из (4.21) мы получаем, что если

ω1 = a11 ln c11 + a12 ln c22,

то в модели σ существует единственное положение равновесия p0 = (c11, c22).
7. В случае 2) из (4.22) мы получаем, что если

ω1 = a11 ln c12 + a12 ln c21,

то в модели σ существует единственное положение равновесия p0 = (c12, c21).
В случае, если:

a11 ln c12 + a12 ln c21 < ω1 < a11 ln c11 + a12 ln c22, (4.23)

то в модели существует бесконечное количество положений равновесия, сосре-
доточенных на множестве:

ln p2 =
ω1 − a11 ln p1

a12
, ln c11 ⩽ p1 ⩽ ln c21.

8. Последнее утверждение получается из неравенств (4.20) и (4.23) с соот-
ветствующими условиями на параметры a11, a12.
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4.2.3.Модельный пример

Условия теорем 4.3 и 4.4 могут быть не выполнены при малом изменении
параметров модели, поскольку в таком случае определители в условиях теоре-
мы могут оказаться не равными нулю. Для полноты описания рассмотрим эту
модель как частный случай открытой модели типа Аллена и используем метод
нахождения положения равновесия из Главы 3.

Случай n = 1. Рассмотрим следующую модель σc ∈ Σc:

c1 = 97.37, c2 = 187.03, p∗ = 155.79,

S∗ = 304.60, D∗ = 497.32, E = 0.39, Ẽ = −5.65.

С помощью метода нахождения мы получаем, что

p0 = 143.644902, ρY (S(p
0), D(p0)) = 0.00000975.

Заметим, что p0 < p∗. Поскольку S∗ < D∗, |Ẽ| > |E| и Ẽ < 0, мы получаем,
что для обеспечения эффективного функционирования рынка цена на товар
должна быть снижена.

Выясним, как малое изменение параметров модели влияет на положение
равновесия в ней. Ниже представлены результаты экспериментов (рис. 4.28–
4.34).

Рис. 4.28. Зависимость
p0 от c1 (n = 1).

Рис. 4.29. Зависимость
p0 от c2 (n = 1).
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Рис. 4.30. Зависимость
p0 от p∗ (n = 1).

Рис. 4.31. Зависимость
p0 от S∗ (n = 1).

Рис. 4.32. Зависимость
p0 от D∗ (n = 1).

Рис. 4.33. Зависимость
p0 от E (n = 1).

Рис. 4.34. Зависимость
p0 от Ẽ (n = 1).
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Случай n = 2. Рассмотрим следующую модель из Σc:

c1 = (50.32, 66.58)T , c2 = (110.31, 116.67)T ,

p∗ = (99.51, 79.61)T , S∗ = (742.26, 662.21)T , D∗ = (745.15, 681.12)T ,

E =

(
−0.003 0.005

−0.004 0.004

)
, Ẽ =

(
−0.070 −0.037

−0.074 0.088

)
.

С помощью алгоритма поиска мы получили, что

p0 = (83.35, 96.17)T , ρY (S(p
0), D(p0)) = 0.000022.

Выясним, как малое изменение параметров модели влияет на положение
равновесия в ней. Результаты экспериментов представлены ниже (рис. 4.35–
4.52).

p01 p02

Рис. 4.35. Зависимость положения равновесия от p∗1 (n = 2).

p01 p02

Рис. 4.36. Зависимость положения равновесия от p∗2 (n = 2).
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p01 p02

Рис. 4.37. Зависимость положения равновесия от c11(n = 2).

p01 p02

Рис. 4.38. Зависимость положения равновесия от c12(n = 2).

p01 p02

Рис. 4.39. Зависимость положения равновесия от c21(n = 2).

p01 p02

Рис. 4.40. Зависимость положения равновесия от c22(n = 2).
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p01 p02

Рис. 4.41. Зависимость положения равновесия от D∗
1 (n = 2).

p01 p02

Рис. 4.42. Зависимость положения равновесия от D∗
2 (n = 2).

p01 p02

Рис. 4.43. Зависимость положения равновесия от S∗
1 (n = 2).

p01 p02

Рис. 4.44. Зависимость положения равновесия от S∗
2 (n = 2).
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p01 p02

Рис. 4.45. Зависимость положения равновесия от E11 (n = 2).

p01 p02

Рис. 4.46. Зависимость положения равновесия от E12 (n = 2).

p01 p02

Рис. 4.47. Зависимость положения равновесия от E21 (n = 2).

p01 p02

Рис. 4.48. Зависимость положения равновесия от E22 (n = 2).
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p01 p02

Рис. 4.49. Зависимость положения равновесия от Ẽ11(n = 2).

p01 p02

Рис. 4.50. Зависимость положения равновесия от Ẽ12(n = 2).

p01 p02

Рис. 4.51. Зависимость положения равновесия от Ẽ21(n = 2).

p01 p02

Рис. 4.52. Зависимость положения равновесия от Ẽ22(n = 2).
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4.3.Выводы главы 4

Проведенный анализ моделей рыночной системы позволил получить усло-
вия существования положения равновесия. Помимо этого, были исследованы
свойства положения равновесия. Была продемонстрирована зависимость поло-
жения равновесия от входных параметров системы. Эта зависимость имеет чет-
кую экономическую интерпретацию и может быть использована в дальнейшем
при решении задач, связанных с положением равновесия. Так, на множестве
положений частичного равновесия вызывает интерес задача о максимизации
прибыли государства путем регулирования цен на товары, задача об определе-
нии налога на добавленную стоимость, задача о прогнозировании цен с учетом
экспертных оценок и прогнозов и другие.

Результаты главы опубликованы в работах [18, 46].
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Заключение

В работе был разработан алгоритм поиска точек совпадения для двух отоб-
ражений, одно из которых является накрывающим, а другое удовлетворяет
условию Липшица. С помощью теории накрывающих отображений и точек сов-
падения был разработан инструментарий анализа сложных систем, динамика
которых описана парой отображений метрических пространств. Полученные ре-
зультаты были применены к исследованию различных моделей рынка на пред-
мет положения равновесия.

С помощью разработанных теоретических методов были получены достаточ-
ные условия существования положения равновесия в модели открытого рынка.
Помимо этого, для поиска положения равновесия в системах рынка, описанных
в главе 1, был применен созданный алгоритм поиска и разработан соответству-
ющий комплекс программ. Алгоритм поиска построен на широко известном
методе случайного поиска, однако в данном алгоритме появляются две особен-
ности, которые значительно упрощают процесс нахождения решения – задание
конкретной области поиска и условие поиска в виде неравенства, которому в
общем случае удовлетворяет несчетное количество точек.

Работа алгоритма продемонстрирована численными экспериментами, в хо-
де которого были найдены параметры модели, удовлетворяющие соответству-
ющим достаточным условиям, и с помощью алгоритма поиска были получены
векторы равновесных цен. Из результатов численного эксперимента видно, что
алгоритм успешно выполняет поставленную задачу с заданной точностью.

Стоит отметить, что в области научного исследования, проведенного в рам-
ках подготовки данной работы, остаются открытые вопросы. Так, например,
встает вопрос выбора параметра δ в алгоритме поиска и поиск закономерности
между величиной этого параметра и сходимостью алгоритма. Помимо этого,
остается не до конца исследованный вопрос о множестве положений равнове-
сия в модели типа Аллена–Эрроу–Дебре, поскольку поиск ответа на этот вопрос
сводится к решению систем уравнений, вообще говоря, нелинейных. Помимо

113



этого, остается открытым вопрос о численном эксперименте с реальными дан-
ными, которые не удалось получить в процессе работы над диссертационной
работой.
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