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Общая характеристика работы
Актуальность исследования

Равновесные состояния играют важную роль при исследовании сложных ди-
намических систем. Равновесным состоянием, или равновесием, называют такое
состояние системы, при котором она способна самостоятельно поддерживать
свое существование сколь угодно долго при отсутствии внешних воздействий.
Если система способна вернуться в равновесное состояние после того, как она
была выведена из него внешними воздействиями или динамикой самой систе-
мы, то такое равновесное состояние называется устойчивым. Устойчивые рав-
новесные состояния являются основой для эффективного функционирования
системы и ее долговечности.

Помимо положений равновесия во всем переменным фазового вектора так-
же исследуют устойчивость положений частичного равновесия, т.е. равновес-
ных состояний по части переменных. Такая задача естественным образом воз-
никает в различных приложениях, например, в области теории управления и
стабилизации.

Исследование вопросов, связанных с равновесием в сложных системах, мо-
жет быть целесообразно в различных областях науки. Так, например, в биоло-
гии активно исследуются модели распространения инфекционных заболеваний
и эпидемий, в которых положение равновесия позволяет определить критиче-
ский уровень переносчиков заболевания; в экологии широко исследуются моде-
ли загрязнения окружающей среды, очистки сточных вод и прогнозирования
аварийных ситуаций нефтеперерабатывающих предприятий, в которых равно-
весные состояния служат индикатором для принятия экстренных мер; подоб-
ные вопросы могут возникать при моделировании транспортных макросистем,
в которых равновесное состояние позволяет определить места высокой концен-
трации транспортных потоков, а также целесообразность инвестиций, и другие.

Задача о нахождении положения равновесия сводится к решению системы
алгебраических уравнений, вообще говоря, нелинейных. Часто в анализе возни-
кает задача определения равновесных состояний, удовлетворяющих определен-
ным ограничениям. В силу ограничений к системе добавляются неравенства,
что значительно усложняет ее решение. Задача такого рода очень важна при
анализе экономических систем, в частности, при производственном планирова-
нии, определении конкурентного равновесия и государственном регулировании
цен. Система, сформированная внутри отдельно взятого государства, непосред-
ственно влияет на уровень доходов, прибыль компаний, инвестиционную актив-
ность, трудоустройство и другие аспекты жизни общества.

Настоящее исследование посвящено развитию методов анализа положений
равновесия и частичного равновесия в системах, динамика которых определя-
ется разностью отображений метрических пространств, с помощью теории на-
крывающих отображений и точек совпадения, а также приложения полученных
результатов при исследовании моделей типа Аллена.
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Степень разработанности темы исследования
Математические методы исследования сложных систем, в частности, мето-

ды теории накрывающих отображений и точек совпадения развивались Авако-
вым Е.Р., Арутюновым А.В., Гельманом Б.Д., Дмитруком А.В., Дыхтой В.А.,
Жуковским Е.С., Жуковским С.Е., Милютиным А.А., Обуховским В.В., Шо-
ке Г. и другими. Среди современных приложений математических методов к
исследованию сложных экономических систем можно выделить работы Бекла-
ряна Л.А., Измаилова А.Ф., Новикова Д.А., Павловой Н.Г., Чхартишвили А.Г.,
Шананина А.А. и других. Аналогичный подход используется при исследовании
и иных систем. Здесь можно отметить работы Галяева А.А., Новикова Д.А.,
Орлова Ю.Н., Самуйлова К.Е., Самсонюк О.Н., Хлебникова М.В. и других.

Непосредственные вычисления проводились для различных линейных мо-
делей, в том числе, для моделей Эрроу–Дебре, Курно, Бертрана и некоторых
других. Работы по анализу положения равновесия в нелинейных моделях в то
же время немногочисленны.

Таким образом, существует потребность в разработке математических мето-
дов для исследования систем, динамика которых определяется совокупностью
нелинейных уравнений, в частности, разностью отображений метрических про-
странств.

Цель исследования
Целью диссертационной работы является развитие методов исследования

равновесных состояний, удовлетворяющих заданным ограничениям, в систе-
мах, динамика которых определяется разностью отображений метрических про-
странств, с применением полученных результатов для анализа моделей типа
Аллена.

Для достижения поставленной цели были определены следующие задачи.
1) Развить методы исследования равновесных состояний в системах, дина-

мика которых определяется разностью отображений метрических про-
странств, с помощью результатов теории точек совпадения и накрыва-
ющих отображений.

2) Исследовать различные модели из класса моделей типа Аллена с внешним
воздействием (открытые модели типа Аллена с постоянными и непосто-
янными эластичностями) методами теории накрывающих отображений и
точек совпадения, а также функционального анализа, на предмет поло-
жения равновесия и его свойств.

3) Исследовать различные модели из класса моделей типа Аллена без внеш-
него воздействия (модель типа Аллена–Эрроу–Дебре, закрытая модель
типа Аллена) методами линейной алгебры, функционального анализа, а
также теории накрывающих отображений и точек совпадения, на предмет
положения равновесия и его свойств.

Объект исследования – системы, динамика которых определяется разно-
стью отображений метрических пространств.
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Предмет исследования – равновесные состояния динамических систем, а
также их свойства, такие как единственность и устойчивость к малым возму-
щениям параметров системы.

Методы исследования
В работе используются методы линейной алгебры, математического анали-

за, функционального анализа, численных методов, а также теории накрываю-
щих отображений и точек совпадения.

Научная новизна исследования
Научная новизна исследования состоит в разработке метода нахождения по-

ложений равновесия в динамических системах, динамика которых определяется
разностью отображений метрических пространств. С помощью теоремы о точ-
ках совпадения была доказана сходимость алгоритма поиска положения равно-
весия. Полученные результаты успешно применены в исследовании различных
динамических моделей типа Аллена, в рамках которого получены условия су-
ществования положения равновесия, исследованы его свойства.

Теоретическая значимость
Методы, разработанные в настоящей диссертации, не требуют невырожден-

ности матрицы Якоби и гладкость отображений, определяющих динамику рас-
сматриваемой системы, что является основой для использования многих обще-
известных методов. Сходимость предложенного алгоритма поиска точки сов-
падения доказана без априорных предположений гладкости рассматриваемых
отображений.

Практическая значимость
Результаты настоящей диссертационной работы могут быть использованы

для исследования различных динамических моделей, в том числе построен-
ных по реальным статистическим данным. Разработанные методы могут быть
использованы для формализации и решения задач управления, а также под-
держки и принятия решений в биологии, физике, экологии, экономике и других
научных областях.

Апробация результатов
Достоверность полученных утверждений подтверждена строгими матема-

тическими рассуждениями и проведением численных экспериментов.
Результаты работы были доложены на различных российских и междуна-

родных конференциях: Воронежской зимней математической школе «Совре-
менные методы теории функций и смежные проблемы», Международной кон-
ференции «Управление развитием крупномасштабных систем», Международ-
ной конференции «Устойчивость и колебания нелинейных систем управления»,
Международной конференции по дифференциальным уравнениям и динамиче-
ским системам, Всероссийской школе-конференции молодых ученых «Управле-
ние большими системами», Международной молодежной научной школы «Ак-
туальные направления математического анализа и смежные вопросы». Резуль-
таты диссертации обсуждались на семинаре «Оптимизация и нелинейный ана-
лиз» под руководством Арутюнова А.В., Жуковского С.Е и Павловой Н.Г. в
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ИПУ РАН, семинаре «Теория автоматического управления» под руководством
Хлебникова М.В. и Резкова И.Г., а также семинара кафедры высшей матема-
тики под руководством Иванова Г.Е. в МФТИ.

Личный вклад. Все основные результаты и расчеты получены лично ав-
тором.

Публикации. Основные положения и выводы диссертационного исследо-
вания опубликованы в 8 научных работах. По результатам опубликована одна
статья в рецензируемом научном издании по специальности 2.3.1 (физ.-мат.),
относящемся к категории К1 Перечня ВАК, две работы в журналах, индексиро-
ванных в международных базах данных и приравненных к журналам Перечня
ВАК категории К1, 4 работы в материалах международных и всероссийских
конференция и одна публикация в прочих изданиях.

Положения, выносимые на защиту и соответствие пунктам паспорта
специальности 2.3.1:
1) Метод нахождения положения равновесия сложных динамических систем,

динамика которых определяется разностью отображений метрических про-
странств (пункт 1: Теоретические основы и методы системного анализа, оп-
тимизации, управления, принятия решений, обработки информации и ис-
кусственного интеллекта).

2) Условия существования положения равновесия для двух моделей типа Ал-
лена с внешним воздействием (открытых моделей типа Аллена с постоян-
ными и непостоянными эластичностями) (пункт 4: Разработка методов и
алгоритмов решения задач системного анализа, оптимизации, управления,
принятия решений, обработки информации и искусственного интеллекта).

3) Условия существования положения равновесия и его свойства для двух мо-
делей типа Аллена без внешнего воздействия (модели Аллена–Эрроу–Дебре
и закрытой модели типа Аллена) (пункт 4: Разработка методов и алгорит-
мов решения задач системного анализа, оптимизации, управления, принятия
решений, обработки информации и искусственного интеллекта).
Связь с планами научных исследований
Работа выполнялась при поддержке гранта Российского фонда фундамен-

тальных исследований (проект №20-01-00610) и грантов Российского научного
фонда (проекты №20-11-20131, №22-11-00042).

Основное содержание диссертации
В первой главе описан исследуемый класс моделей и формализована решае-
мая задача.

В первом разделе формализуются рассматриваемые модели. Рассмотрен класс
систем, динамика которых определяется нормальной автономной системой диф-
ференциальных уравнений:

ẋi = Fi(x)−Gi(x) + qi, i = 1,m. (1)
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ẋi = Fi(x)−Gi(x), i = 1,m. (2)

Здесь m ⩽ n, x = (x1, ..., xn) ∈ Rn, ẋ = (ẋ1, ..., ẋn) ∈ Rn, q = (q1, ..., qm) ∈
Rm; F,G : Rn → Rm, F (x) = (F1(x), ..., Fm(x)), G(x) = (G1(x), ..., Gm(x)).

Определение 1. Будем говорить, что модель σo принадлежит классу моде-
лей с внешним воздействием Mo (модель σc принадлежит классу моделей без
внешнего воздействия Mc), если ее динамика определяется системой вида (1)
((2)).

Диссертационное исследование посвящено исследованию систем (1), (2) на
предмет положения равновесия, удовлетворяющего определенным ограничени-
ям, т.е. решения систем следующего вида:

Fi(x)−Gi(x) + qi = 0, x ∈ M, i = 1,m; (3)

Fi(x)−Gi(x) = 0, x ∈ M, i = 1,m; (4)

где M ⊂ Rn – заданное множество.

Определение 2. Если m = n, то решения систем (3), (4) называются поло-
жением равновесия в моделях σo ∈ Mo, σc ∈ Mc, соответственно. Если m < n,
то решения систем (3),(4) называются положениями частичного равновесия в
моделях σo, σc, соответственно.

Интерес для исследования представляют как модели из класса Mo, так и
модели из класса Mc. Отсутствие вектора постоянных возмущений позволяет
использовать общеизвестные результаты для получения условий существова-
ния положений равновесия и частичного равновесия, а также исследования их
свойств, таких как, например, единственность и устойчивость по отношению к
малому изменению входных параметров.

Модели классов Mc и Mo часто встречаются в прикладных задачах. Напри-
мер, в биологии широко известна модель Лотки–Вольтерры, описывающая по-
ведение двух групп биологических особей, модели распространения инфекцион-
ных заболеваний и эпидемий. В экологии исследуются модели очистки сточных
вод и прогнозирования аварийных ситуаций на нефтеперерабатывающих пред-
приятиях. Подобные модели могут возникать при моделировании транспортных
макросистем, а также различного рода маятников и иных механических систем.
Подобные модели можно встретить и в экономике, и на примере нескольких эко-
номических моделей будут продемонстрированы результаты диссертационного
исследования.

Вектор q выполняет роль внешних постоянных воздействий. В модели Лотки–
Вольтерры в качестве такого воздействия может выступать регулирование охот-
ничьего или рыболовного промысла или естественное вымирание видов. В мо-
дели очистки сточных вод в качестве постоянного воздействия можно взять
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допустимое увеличение отходов либо темп природной очистки водоема. В зада-
чах физики вектор q может выступать постоянно действующей внешней силой,
такой как сила притяжения или постоянный воздушный поток.

В диссертации показано, что наличие дополнительного слагаемого q может
сильно повлиять на структуру модели и, как следствие, сделать применение тех
или иных общеизвестных методов невозможным.

Теперь перейдем к описанию экономических моделей, на которых будет рас-
смотрено приложение разработанных методов.

Введем обозначение Rn
+ = {x = (x1, ..., xn) ∈ Rn : xi > 0, i = 1, n}.

Модель типа Аллена–Эрроу–Дебре
Данная модель является обобщением известной модели Эрроу–Дебре. Пусть

заданы числа m ∈ N,m ⩽ n; I ∈ R+, векторы a = (a1, ..., an) ∈ Rn, aj ⩾ 0, j =
1, n; α = (α1, ..., αn) ∈ (0; 1)n, C = (C1, ..., Cm) ∈ Rm

+ и такая матрица B
размерности m× n c компонентами βij > 0, i = 1,m, j = 1, n, что:

n∑
j=1

βij < 1, i = 1,m. (5)

Пусть заданы векторы c1 = (c11, ..., c1n), c2 = (c21, ..., c2n) ∈ Rn
+ такие, что

c1i < c2i, i = 1, n.
Предположим, что

⟨c2, a⟩ < I. (6)
Функция Si : Rn

+ → R в данной модели определяется формулой:

Si(p) = Ki

n∏
j=1

p
−βij

j − Lip
−1
i , i = 1,m, (7)

где

Ki =

Cib

n∑
j=1

βij

i

n∏
j=1

β
βij

ij(
n∑

k=1

βki

)−
n∑

l=1

βkl

, Li =
m∑
s=1

bsβsi
n∑

j=1

βsj

, i = 1,m. (8)

Функция Di : Rn
+ → R определяется формулой:

Di(p1, ..., pn) = ai +
αi (I − ⟨p, a⟩)

pi
n∑

k=1

αk

, p = (p1, ..., pn) ∈ Rn
+, i = 1,m. (9)

Рассмотрим систему:

ṗi = Di(p)− Si(p), i = 1,m; (10)

где D определено формулой (9), а S – формулой (7).
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Определение 3. Моделью типа Аллена–Эрроу–Дебре назовем следующий на-
бор параметров σad = (c1, c2, I, a, α, C,B), удовлетворяющий (5), (6) и опреде-
ляющий систему (10). Множество всех таких моделей обозначим через Σad.

Легко видеть, что эта модель принадлежит подклассу Mc.
Параметры модели имеют следующий экономический смысл: векторы c1, c2

задают естественные ограничения на цены товаров, I – бюджетные ограничения
производителей товаров, вектор a описывает минимальные количества това-
ров, которые не являются предметом выбора и приобретаются в любом случае,
вектор α описывает относительную «ценность» каждого товара, на которую
ориентируется потребитель после того, как приобрел товары в соответствии
с вектором a, вектор C описывает коэффициенты нейтрального технического
прогресса, а матрица B определяет эластичности предложения по ресурсам.

Модели типа Аллена с постоянными эластичностями
Рассмотрим отображения спроса

D : Rn
+ → Rn

+, D(p) = (D1(p), ..., Dn(p)),

и предложения
S : Rn

+ → Rn
+, S(p) = (S1(p), ..., Sn(p)).

Эти отображения в будущем будут иметь специальный вид.
Предположим, что нам известны векторы p∗ ∈ P,D∗ ∈ Rn

+, D
∗ = (D∗

1, ..., D
∗
n)

и S∗ ∈ Rn
+, S∗ = (S∗

1 , ..., S
∗
n), которые связаны соотношением:

D∗ = D(p∗), (11)

S∗ = S(p∗). (12)

Пусть также известна матрица E = (Eij)i,j=1,n, где элементы Eij ∈ R удовле-
творяют равенству

Eij =
∂Di

∂pj
(p)

pj
Di(p)

, i, j = 1, n. (13)

Аналогично определим матрицу Ẽ = (Ẽij)i,j=1,n с элементами Ẽij ∈ R, кото-
рые удовлетворяют равенству

Ẽij =
∂Si

∂pj
(p)

pj
Si(p)

, i, j = 1, n. (14)

Из (13), (14) мы получаем системы уравнений в частных производных от-
носительно неизвестных функций Di и Si

∂Di

∂pj
(p) =

EijDi(p)

pj
, i, j = 1, n; (15)

∂Si

∂pj
(p) =

ẼijSi(p)

pj
, i, j = 1, n. (16)
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Решая задачи (11), (15) и (12), (16), мы получаем явный вид отображений
спроса D и предложения S.

Теорема 1. Набор параметров (p∗, D∗, S∗, E , Ẽ) однозначно определяют отоб-
ражения

D : Rn
+ → Rn

+, S : Rn
+ → Rn

+. (17)

по формулам:

Di(p1, ..., pn) = D∗
i

n∏
j=1

(p∗j)
−Eijp

Eij

j , i = 1, n; (18)

Si(p1, ..., pn) = S∗
i

n∏
j=1

(p∗j)
−Ẽijp

Ẽij

j , i = 1, n. (19)

Пусть наконец известен вектор a ∈ Rn, a = (a1, ..., an) такой, что ai ⩾ 0 для
любого i = 1, n.

Рассмотрим систему:
ṗ = D(p)− S(p) + a, (20)

где D определено формулой (18), а S – формулой (19).

Определение 4. Открытой моделью типа Аллена с постоянными эластично-
стями назовем набор параметров

σo = (c1, c2, a, p
∗, D∗, S∗, E , Ẽ),

определяющий систему (20). Множество таких моделей обозначим через Σo.

Заметим, что данная модель принадлежит классу Mo.
Параметры моделей из класса Σo имеют экономический смысл. Под откры-

тостью здесь подразумевается наличие вектор импорта a, векторы c1, c2 задают
ограничения на цены, векторы S∗, D∗ – это известные значения спроса и пред-
ложения при известных ценах p∗, а матрицы E , Ẽ – матрицы эластичностей
спроса и предложения по цене соответственно.

В диссертации также рассматривается модель Аллена с постоянными эла-
стичностями, в которой отсутствует вектор a. В ней рассматривается система

ṗ = D(p)− S(p), (21)

где D определено формулой (18), а S – формулой (19).

Определение 5. Закрытой моделью типа Аллена с постоянными эластично-
стями называется набор параметров

σc = (c1, c2, p
∗, D∗, S∗, E , Ẽ),

определяющий систему (21). Множество таких моделей обозначим через Σc.
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Легко видеть, что данная модель принадлежит классу Mc.
Модель типа Аллена с непостоянными эластичностями
В предыдущих моделях матрицы E и Ẽ состояли из действительных чисел.

Теперь опишем модели, в которых эти матрицы в качестве элементов содержат
функции от p.

Пусть λij, λ̃ij, χij, χ̃ij ∈ R и

Eij(p) = λijp
χij

j , Ẽij(p) = λ̃ijp
χ̃ij

j , i, j = 1, n. (22)

Обозначим E(p) = (Eij(p))i,j=1,n и Ẽ = (Ẽij(p))i,j=1,n. Для функций Eij(p) и
Ẽij(p) предполагаются выполненными следующие соотношения:

∂Di

∂pj
=

Eij(p)Di(p)

pj
, i, j = 1, n; (23)

∂Si

∂pj
=

Ẽij(p)Si(p)

pj
, i, j = 1, n. (24)

Доказана следующая теорема об однозначной определимости отображений
S и D.

Теорема 2. Набор (p∗, S∗, D∗, E(p), Ẽ(p)) однозначно определяет отображения

D : Rn
+ → Rn

+, S : Rn
+ → Rn

+. (25)

по формулам

Di(p) = D∗
i

n∏
j=1

exp

(
λij

χij
(p

χij

j − (p∗j)
χij)

)
, i = 1, n; (26)

Si(p) = S∗
i

n∏
j=1

exp

(
λ̃ij

χ̃ij
(p

χ̃ij

j − (p∗j)
χ̃ij)

)
, i = 1, n. (27)

Отображения D и S, определенные формулами (26) и (27) являются решени-
ями задач (11), (23) и (12), (24) соответственно.

Пусть наконец известен вектор a ∈ Rn, a = (a1, ..., an) такой, что ai ⩾ 0 для
любого i = 1, n.

Рассмотрим систему:
ṗ = D(p)− S(p) + a, (28)

где D определено формулой (26), а S – формулой (27).

Определение 6. Открытой моделью типа Аллена с непостоянными эластич-
ностями назовем набор σf = (a, c1, c2, p

∗, S∗, D∗, E(p), Ẽ(p)), где элементы Eij(p)

и Ẽij(p) матриц E(p) и Ẽ(p) соответственно определены формулами (22), а сам
набор определяет систему (28) Множество всех таких моделей обозначим через
Σf .
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Легко видеть, что данная модель принадлежит классу Mo.

Замечание 1. Заметим, что Σo ̸⊂ Σf . Действительно, если в модели σf ∈ Σf

элементы матриц E и Ẽ являются постоянными величинами, то χij = 0 ∀i, j =
1, n. Однако в таком случае формулы (26), (27) не имеют смысла.

Задача исследования описанных моделей состоит в следующем: 1) получить
условия существования положения равновесия или частичного равновесия; 2)
изучить свойства положений равновесия или частичного равновесия в этих мо-
делях; 3) установить зависимость положения равновесия от входных парамет-
ров.

Во второй главе приводятся методы исследования систем из классов Mo и
Mc. Метод решения поставленных задач основан на результатах теории накры-
вающих отображений и точек совпадения. В первом разделе дано определение
точки совпадения и накрывающего отображения. Приведены достаточные усло-
вия существования точки совпадения для двух отображений, одно из которых
является накрывающим, а другое удовлетворяет условию Липшица.

Пусть (X, ρX), (Y, ρY ) – метрические пространства с метриками ρX и ρY со-
ответственно. Пусть задано отображение Ψ : X → Y . Через BX(x, r) обозначим
шар с центром в точке x ∈ X радиуса r > 0, аналогично обозначим BY (y, r).
Пусть M ⊆ X – множество с непустой внутренностью.

Определение 7. Пусть α > 0. Отображение Ψ называется α-накрывающим
на множестве M ⊆ X, если для любых x ∈ M , r > 0 таких, что BX(x, r) ⊆ M ,
выполнено включение Ψ(BX(x, r)) ⊇ BY (Ψ(x), αr).

Определение 8. Точка ξ ∈ X называется точкой совпадения отображений
Ψ,Φ : X → Y , если Ψ(ξ) = Φ(ξ).

Во втором разделе изложен основной результат главы, а именно: предло-
жен метод нахождения положения равновесия в системах, динамика которых
определяется разностью отображений метрических пространств, одно из кото-
рых является накрывающим, а другое удовлетворяет условию Липшица. Также
доказана его сходимость.

Известно, что если пространство X полное и заданы α > 0, x0 ∈ X, R >
0, а также Ψ : X → Y является α-накрывающим на BX(x,R) и замкну-
тым, то тогда для любого неотрицательного β < α и любого отображения
Φ : BX(x0, R) → Y , удовлетворяющего условию Липшица с константой β тако-
го, что ρY (Ψ(x0),Φ(x0)) ⩽ (α− β)R, для отображений Ψ и Φ существует точка
совпадения ξ ∈ X, т.е. Ψ(ξ) = Φ(ξ), такая, что

ρX(x0, ξ) ⩽
ρY (Ψ(x0),Φ(x0))

α− β
.

Доказательство этого утверждения основано на построении следующей по-
следовательности. Зафиксируем x0 ∈ X и построим по индукции xi, i = 1, 2, 3, ...
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такие, что

ρX(xi+1, xi) ⩽ α−1ρY (Ψ(xi),Φ(xi)), (29)
ρY (Ψ(xi+1),Φ(xi)) ⩽ δρY (Ψ(xi),Φ(xi)), (30)

где δ > 0 : β +αδ < α. Существование данной последовательности вытекает из
того, что отображение Ψ является α-накрывающим.

На основании условий (29), (30) предлагается построить следующий алго-
ритм нахождения точки совпадения в предположении, что множество M явля-
ется вполне ограниченным.

Алгоритм 1.

Шаг 0. Зафиксировать ε > 0 – погрешность приближения, x0 ∈ M – началь-
ное приближение, δ ∈ (0; 1− β/α) – параметр итерационного процесса,
положить номер итерации i = 0.

Шаг 1. Проверить выполнение неравенства ρY (Ψ(xi),Φ(xi)) < ε. Если неравен-
ство выполнено, то закончить алгоритм. Если нет, то перейти к шагу 2.

Шаг 2. Положить σi = δ/2 ρY (Ψ(xi),Φ(xi)) и построить σi-сеть Z на множестве
BX(xi, α

−1ρY (Ψ(xi),Φ(xi))).

Шаг 3. Поочередно брать точки x̃ ∈ Z и проверять выполнение неравенства:

ρY (Ψ(x̃),Φ(xi)) ⩽ δρY (Ψ(xi),Φ(xi)).

Если подходящая под условие точка найдена, то перейти к шагу 4. Если
нет, то уменьшить σi в два раза, построить новую сеть Z и повторить
перебор.

Шаг 4. Положить xi+1 = x̃, увеличить i на единицу и перейти к шагу 2.

Основным результатом главы 2 является следующая теорема.

Теорема 3 (О сходимости Алгоритма 1). Пусть пространство X полно, M ⊂
X – вполне ограниченное множество и заданы x0 ∈ X, R > 0 такие, что
BX(x0, R) вполне ограничено в X. Далее, пусть отображение Ψ является α-
накрывающим и непрерывным на BX(x0, R), а отображение Φ удовлетворяет
условию Липшица на BX(x0, R) с константой β < α.

Тогда для любого δ > 0 такого, что β + αδ < α,

ρY (Ψ(x0),Φ(x0)) < (α− (β + αδ))R,

Алгоритм 1 сходится за конечное число шагов, причем

ρX(x0, ξ) ⩽ (α− (β + αδ))−1 ρY (Ψ(x0),Φ(x0)).
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Таким образом, метод нахождения положения равновесия в системах (1) и
(2) состоит в том, чтобы рассмотреть положения равновесия в этих системах
как точку совпадения отображений из правых частей этих систем, применить
теорему о существовании точки совпадения, а затем применить Алгоритм 1.

В третьем разделе изложены результаты теории функционального анализа,
в частности, теорема Банаха о неподвижной точке. С помощью этой теоремы
можно исследовать некоторые модели из класса Mo и Mc, например, открытые
модели типа Аллена с постоянными и непостоянными эластичностями.

В четвертом разделе приведена теорема о совместности систем линейных
алгебраических уравнений и неравенств, к которым сводится вопрос о положе-
нии равновесия в некоторых моделях из класса Mo и Mc, например, закрытой
модели типа Аллена с постоянными эластичностями.

В третьей главе продемонстрировано применение полученных методов на
моделях из класса Mo. В первом разделе исследована открытая модель типа
Аллена с постоянными эластичностями σo ∈ Σo. Для нее получены достаточные
условия существования положения равновесия, а также положения частичного
равновесия.

Замечание 2. При исследовании вопроса о существовании положения частич-
ного равновесия мы рассматриваем новые отображения S̃, D̃ : Rn

+ → Rm
+ , S̃ =

Pr ◦S, D̃ = PrP ◦ D, где Pr : Rn
+ → Rm

+ – оператор проектирования из Rn
+ в

Rm
+ , определяемый формулой Pr =

(
Im×m 0m×n−m

)
, где I – единичная мат-

рица. Легко видеть, что отображение S̃ (как и D̃) не является биективным. В
дальнейшем для удобства мы будем использовать старые обозначения через S
и D соответственно.

Здесь и далее норма произвольного линейного оператора Q, действующе-
го из нормированного пространства (X , ∥ · ∥X ) с нормой ∥ · ∥X в нормиро-
ванное пространство (Y , ∥ · ∥Y) с нормой ∥ · ∥Y определена формулой: ∥Q∥ =
sup∥x∥X=1 ∥Qx∥Y .

Введем обозначения:

α̂(σo) = min
p∈P

∥∥∥∥∥
(
∂S

∂p
(p)

)∗((
∂S

∂p
(p)

)(
∂S

∂p
(p)

)∗)−1
∥∥∥∥∥
−1

, (31)

β̂(σo) = max
i=1,m

D∗
i

(
n∏

j=1

(p∗j)
−Eij

)
n∑

k=1

|Eik|
c2k − c1k

2
max
l=1,2

{
cEik−1
lk

} n∏
j=1
j ̸=k

max
l=1,2

c
Eij

lj , (32)

γ̂(σo) = max
i=1,m

|Si(c̃) + ai −Di(c̃)|. (33)

Теорема 4. Пусть параметры модели σo удовлетворяют условиям:

1. det
(
∂S
∂p (p)

)(
∂S
∂p (p)

)∗
̸= 0;
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2. γ̂(σo) < α̂(σo)− β̂(σo).

Тогда в модели σo существует положение частичного равновесия p0 ∈ intP .

Положим

α(σo) = max
i=1,n

2

c2i − c1i

n∑
k=1

|F̃ki|max{c1−Ẽki

1i , c1−Ẽki

2i }

S∗
k

n∏
j=1

(p∗j)
−Ẽkj

n∏
j=1
j ̸=i

min{cẼkj

1i , c
Ẽkj

2i }
,

β(σo) = max
i=1,m

D∗
i

(
n∏

j=1

(p∗j)
−Eij

)
n∑

k=1

|Eik|
c2k − c1k

2
max
l=1,2

{
cEik−1
lk

} n∏
j=1
j ̸=k

max
l=1,2

c
Eij

lj ,

γ(σo) = max
i=1,n

|Si(c̃) + ai −Di(c̃)| ,

где F̃ij – элемент матрицы F̃ , обратной к матрице Ẽ , а c̃ = c1+c2
2 .

Доказана следующая теорема.

Теорема 5. Пусть параметры модели σo ∈ Σo удовлетворяют следующим
условиям:

1. det Ẽ ̸= 0;

2. γ(σo) < α(σo)− β(σo).

Тогда в модели σo существует единственное положение равновесия p0 ∈ intP .

Исследован вопрос об устойчивости положения равновесия относительно ма-
лого изменения входных параметров.

Теорема 6. Пусть модель σo удовлетворяет всем условиям теоремы 5 и по-
следовательность моделей {σN

o } ⊂ Σo сходится к σo. Тогда для любого поло-
жения равновесия p ∈ P в модели σo существует натуральное число N > 0
и последовательность {pN} ⊂ Rn

+ такие, что:

1. при любом N > N вектор pN является положением равновесия в модели
σN
o ;

2. pN → p при N → ∞.

Проиллюстрирована зависимость положения равновесия и положения ча-
стичного равновесия от изменения входных параметров модели.

Во втором разделе изучена открытая модель типа Аллена с непостоянными
эластичностями σf ∈ Σf . Показано, что отображения в этой модели могут не
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быть биективными. Получены достаточные условия существования положения
равновесия в этой модели. Введем обозначения

α(σf) = min
p∈P

(∥∥∥∥∥
(
∂S

∂p
(p)

)∗((
∂S

∂p
(p)

)(
∂S

∂p
(p)

)∗)−1
∥∥∥∥∥
)−1

, (34)

β(σf) = max
i=1,n

D∗
i

n∏
j=1

max
m=1,2

(
exp

(
λij

χij
(c

χij

mj − p
∗χij

j )

)) n∑
k=1

c2k − c1k
2

|λik|
c1k

, (35)

γ(σf) = max
i=1,n

|Si(c̃) + ai −Di(c̃)|. (36)

Теорема 7. Пусть параметры модели σf ∈ Σf удовлетворяют условиям:

1. det
(
∂S
∂p (p)

)(
∂S
∂p (p)

)∗
̸= 0;

2. γ(σf) < α(σf)− β(σf).

Тогда в модели σf существует положение равновесия p0 ∈ intP .

Проиллюстрирована зависимость положения равновесия от изменения вход-
ных параметров модели.

В четвертой главе исследованы различные модели из класса Mc.
В первом разделе изучена модель типа Аллена–Эрроу–Дебре, для которой

проиллюстрирован характер зависимости положения равновесия от изменения
входных параметров.

Во втором разделе исследована закрытая модель типа Аллена с постоянны-
ми эластичностями. Для нее с помощью результатов теории систем линейных
уравнений и неравенств получены необходимые условия и достаточные условия
существования положения равновесия.

Введем обозначения

aij =

Eij − Ẽij, i, j = 1, n;

ln S∗
i

D∗
i
+

n∑
k=1

(Eik − Ẽik) ln p
∗
k, i = 1, n, j = n+ 1.

Теорема 8. Пусть в модели σc ∈ Σc существует положение равновесия. То-
гда параметры этой модели удовлетворяют условию rang(E − Ẽ) = rangA,
где A = (aij)i,j=1,n.

Теорема 9. Пусть параметры модели закрытого рынка σc ∈ Σc удовлетво-
ряют условию: ∀m = 1, n detFm = 0, detGm ⩾ 0, где

Fm = (fmij)i,j=1,n+1, Gm = (Gmij)i,j=1,n+1,
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fmij =



δij, i, j = 1, n;

C1i, i = 1, n, j = n+ 1;

Emj − Ẽmj, i = n+ 1, j = 1, n;

ln S∗
m

D∗
m
+

n∑
k=1

(Emk − Ẽmk) ln p
∗
k, i, j = n+ 1;

gmij =


δij, i, j = 1, n;

C1i, i = 1, n, j = n+ 1;

−δmj, i = n+ 1, j = 1, n;

C1m, i, j = n+ 1;

а δij – символ Кронекера. Тогда в модели σc существует положение равнове-
сия.

Замечание 3. Аналогичным образом можно получить альтернативные доста-
точные условия существования положения равновесия.

Теорема 10. Пусть параметры модели закрытого рынка σc удовлетворяют
условию: ∀m = 1, n detFm = 0, (−1)n detGm ⩾ 0, где

fmij =



δij, i, j = 1, n;

C2i, i = 1, n, j = n+ 1;

Eij − Ẽij, i = n+ 1, j = 1, n;

ln
S∗
i

D∗
i
+

n∑
j=1

(Eij − Ẽij) ln p
∗
j , i, j = n+ 1;

gmij =


δij, i, j = 1, n;

C2i, i = 1, n, j = n+ 1;

−δmj, i = n+ 1, j = 1, n;

C2m, i, j = n+ 1.

Тогда в модели σc существует положение равновесия.

Показано, что две последние теоремы не эквивалентны.
Исследован вопрос о единственности положения равновесия.
Введем обозначения: A = (aij)i,j=1,n, aij = Eij − Ẽij; ω = (ω1, ..., ωn)

T ,

ωi = ln
S∗
i

D∗
i

+
n∑

j=1

(Eij − Ẽij) ln p
∗
j .

Теорема 11. Пусть в модели σc выполнено условие detA ̸= 0. Тогда для того,
чтобы существовало единственное положение равновесия p0i = exp(A−1ω)i, i =
1, n необходимо и достаточно, чтобы параметры модели удовлетворяли сле-
дующему условию:

max
i=1,n

2

ln c2i − ln c1i

∣∣∣∣(A−1ω)i −
ln c1i + ln c2i

2

∣∣∣∣ ⩽ 1, (37)

где (A−1ω)i – i-я координата вектора A−1ω.

Теорема 12. В модели σc существует бесконечное количество положений
равновесия тогда и только тогда, когда параметры модели σc удовлетворяют
следующим условиям: 1) rangA = rang(A|ω) = k < n;

2)

max
i=1,n

2

ln c2i − ln c1i

∣∣∣∣∣
n−k∑
j=1

Cjwji −
ln c1i + ln c2i

2

∣∣∣∣∣ < 1, (38)
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где векторы W1, ...,Wn−k составляют ФСР системы

n∑
j=1

(
Eij − Ẽij

)
ln pj = ln

S∗
i

D∗
i

+
n∑

j=1

(Eij − Ẽij) ln p
∗
j , i = 1, n.

и Wj = (wj1, ..., wjn).

Также проиллюстрирован характер зависимости положения равновесия от
входных параметров.

Основные результаты и выводы
Получено, что в некоторых простых моделях из класса Mo при исследовании
вопроса о положении равновесия можно воспользоваться общеизвестными ре-
зультатами. Однако, даже в классе Mc существуют модели, для которых при-
менение этих результатов невозможно. Тем не менее, разработанные методы
поиска точек совпадения позволяют не только исследовать различные моде-
ли на предмет положения равновесия, но также и частичного равновесия, что
играет важную роль в различных приложениях.

Основные результаты, полученные в рамках диссертационного исследова-
ния:

1) На базе теории точек совпадения и накрывающих отображений разрабо-
тан метод нахождения положения равновесия систем, динамика которых
определена разностью отображений метрических пространств.

2) Полученные результаты успешно применены для исследования вопроса о
существовании положений равновесия и частичного равновесия в несколь-
ких моделях из класса моделей с внешним воздействием Mo.

3) Отдельно исследован класс моделей без внешнего воздействия Mc. Для
некоторых моделей из этого класса исследована мощность множества по-
ложений равновесия и исследованы его свойства.

4) Разработан метод нахождения положения равновесия для различных мо-
делей из класса моделей типа Аллена Mo и Mc.

Список публикаций по теме исследования
Публикации. Основные положения и выводы диссертационного исследования
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Личный вклад автора в совместные публикации:
В работе 1) – метод нахождения точек совпадения, и его сходимость (теоре-

ма 3), достаточные условия существования положения частичного равновесия
в открытой модели типа Аллена с постоянными эластичностями (теорема 4).

В работе 3), 2) – теоремы о существовании положения равновесия в закры-
той модели типа Аллена с постоянными эластичностями (теоремы 8, 9, 10),
мощность множества положений равновесия (теоремы 11, 12).

В работе 3) – метод нахождения положения равновесия в открытой модели
типа Аллена с постоянными эластичностями.
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В работе 6), 7) – теорема о существовании положения равновесия в открытой
модели типа Аллена с постоянными эластичностями (теорема 5).

В работе 4) – теорема об отображениях в открытой модели открытого типа
Аллена с постоянными эластичностями (теорема 1), теорема об устойчивости
положения равновесия в модели открытого рынка (теорема 6).

В работе 5) – теорема об отображениях спроса и предложения в модели
открытого рынка с непостоянными эластичностями (теорема 2), теорема о су-
ществовании положения равновесия в открытой модели типа Аллена с непосто-
янными эластичностями (теорема 7).

В работе 8) – метод нахождения положения равновесия в модели типа Аллена–
Эрроу–Дебре.
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