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Abstract: Railway capacity is the important characteristic that shows traffic potentialities of railways. 

Analytical methods of the calculation of the capacity of a single track are well known. Methods to 

estimate the capacity of a railway network and the railway direction are proposed in this paper. The 

railway network is represented in the form of a graph. Mathematical methods of the graph theory are 

applied in order to find the maximum flow. Parameters of tracks and stations are used in order to 

calculate the network capacity. 
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1. INTRODUCTION 

The availability capacity assessment is the technical 

certification of railway directions and it characterizes the 

railway freight traffic. The calculation results are used in the 

planning of the infrastructure development and traffic 

control. There are different methods to calculate the railway 

capacity. These methods can be divided into four categories: 

analytical methods, parametric models, optimization 

methods and methods based on simulation (Krueger, 2000; 

Abril et al., 2008). 

The available capacity of a railway section is the maximum 

number of freight trains (couples trains) with the defined 

weight and length, which can be moved on this section per 

day depending on the technical equipment and the accepted 

method of the train traffic. The capacity of a railway station 

is the most probable number of freight trains (separately 

without processing and reprocessing) and a predetermined 

number of passenger trains that can be moved through a 

station per day in all directions under conditions of the work, 

ensuring the full use of the available infrastructure. The 

capacity calculation of each element does not estimate the 

overall network. It should be taken into account the mutual 

influence of elements. 

This work answers the question of how to calculate the 

capacity of the railway network and directions based on the 

knowledge about the capacity of separate sections and 

stations. This will help one to utilise the infrastructure for 

the traffic control in the more efficient way, to "avoid" 

network bottlenecks and to develop methods for the 

increasing of the capability of the transportation 

infrastructure.  

2. THE PROBLEM OF THE MAXIMUM FLOW 

The capacity of some railway networks (subnet and 

direction) determines the maximum size of the railway 

traffic. It is sufficient to solve the problem of the finding the 

maximum flow in the graph in order to determinate the 

capacity. Then the value of the maximum flow capacity will 

comply with the capacity. For this purpose the railway 

  

network is represented as a graph whose vertices are the 

stations, and the edges represent tracks between stations. The 

capacity value of tracks must comply with parameters of 

edges. Then, solving the problem of finding the maximum 

flow in the graph, the total amount of the capacity between 

two given subnet vertices can be obtained. 

There are various methods and algorithms to achieve this 

goal. For example, the following algorithms can be used: the 

Ford-Fulkerson algorithm, the Edmonds-Karp algorithm, the 

general push-relabel maximum flow algorithm, the push-

relabel algorithm with dynamic trees and others (Cormen et 

al, 2009). The algorithm proposed by Ford and Fulkerson 

(Ford and Fulkerson, 2010) is based on the following 

theorem: 

Theorem 1. Theorem of the maximum flow and minimum 

cut (Dantzig and Fulkerson, 1956; Lawler, 2001; 

Papadimitriou and Steiglitz, 1998) The value of the 

maximum flow from  s to t equal to the minimal cut     
  ̃ , separating s from t. Cut       ̃ separates s from t, 

if              . Value of this cut (or capacity) is the 

sum of capacities of all the edges from  , whose initial 

vertices lie in   , and end in   ̃, i.e. 

 (     ̃)  ∑    

(     )       ̃ 

  

Minimal cut      ̃  – is the cut with lowest value. 

Consider an example. Figure 1 shows a graph corresponding 

to the scheme of the subnet. 
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Fig. 1. A railway subnet with the section capacity 
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Vertices of this graph represent the railway station, and the 

edges represent tracks. "The number" on the edge of the 

graph represents the capacity of the corresponding track. The 

task is to find the subnet capacity. It is proposed in this paper 

to use the Ford-Fulkerson algorithm and to find the 

maximum flow between vertices x1 and x6 in order to solve 

the above task. The solution can be found in the form of the 

distribution of flows over edges of the graph (Figure 2). 
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Fig. 2. The flow distribution. 

Values on the edges of the graph correspond to the passing 

the flow/edge capacity. The maximum flow between vertices 

   and    is      
   . 

This method uses the capacity of direct tracks only, without 

branches and ignores stations properties. The method finds 

the subnet capacity for exactly defined entry and exit points 

of trains. This method is applicable for graphs with directed 

edges only. 

3. GRAPHS WITH CAPACITIES OF EDGES AND 

VERTICES 

Railway stations use their own measure of the capacity. The 

application of methods to find the maximum flow for the 

capacity subnet estimation will give doubtful results in the 

case if this measure has not been considered. In other words, 

a station can limit the subnet capacity. Therefore, in order to 

obtain the more accurate assess of the subnet capacity, 

sections capacities and stations capacities must be taken into 

the account. 

The station capacity is determined by the following technical 

resources: 

 receiving parks and dispatch parks; 

 connecting tracks (between parks); 

 passenger platform lines; 

 technical tracks of passenger stations; 

 leads of all types of stations. 

Mathematical methods are employed in this paper in order to 

take into the account the station capacity and to solve the 

problem of the finding the maximum flow in the graph of the 

railway network. 

Let the edges have capacities    , and let the vertices of the 

graph have capacities               such that the total 

flow entering the vertex   , must have a value less than   , 

i.e. 

∑    

      (  )

                

It is required to find the maximum flow between vertices s 

and t on the graph. 

The graph    defines the graph in such way that for each 

vertex    of the graph   two vertices   
  and   

  in graph    

are corresponded.

 Also, each edge         in   (which incidence   ) 

corresponds to edge    
    

   from    (incidences   
 ) and 

each edge         from  , coming from   , corresponds to 

   
    

   from    (coming from   
 ). Additionally, the edge 

between   
  and    

  with capacity    is introduced, i.e. equal 

vertex capacity   . 

Figure 3 shows an example of a graph with the capacity of 

edges and vertices, and Figure 4 shows the graph   , which 

is built according to the above description. Since the total 

flow entering the vertex   
 ,  should proceed along the edge 

   
    

   with the capacity   , then the maximum flow in the 

graph   with the capacity of edges and vertices equal to the 

maximum flow in the graph    (which has edges capacities 

only). If the minimal cut in    does not contain edges of the 

form    
    

  , then the capacities of vertices in   

unnecessary and it should not be considered. If the minimal 

cut in    contains such the edge, then the corresponding 

vertices are located in  . If the minimal cut in    contains 

such an edge, then the corresponding vertices in   are 

saturated by the received maximum flow. 
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Fig. 3. Graph whose vertices and edges with attributed 

capacity. 
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Fig. 4. Equivalent graph in which capacities have an edge 

only. 

The example of how to change the maximum flow at the 

subnet with the given capacities of nodes is demonstrated 

below. To do this, we add to the railway subnet (Fig. 1) 

stations capacity. Figure 5 shows a subnet with tracks and 

stations capacities. 
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Fig. 5. Railway subnet with tracks and stations capacities. 

 We transform the graph into an equivalent so that 

an only edge has the capacity (Fig. 6): 
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Fig. 6. Equivalent graph in which an edge has the capacity 

only. 

We calculate the maximum flow of the graph shown in 

Figure 6 by one of the methods. Flows on the last step of the 

algorithm as follows: 
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Fig. 7. Flows on the graph at the last step of the algorithm 

On Figure 7 "numbers" on the edges of the graph correspond 

to the passing flow / capacity. Maximum flow between 

vertices    and    is      
   . Flow of edges    

    
   and 

   
    

   reached maximum capacity. The edge    
    

   on 

the graph corresponds to the capacity of the station    . 

4. GRAPHS WITH MULTIPLE SOURCES AND SINKS 

The Ford-Fulkerson method allows one to find the maximum 

flow between two vertices of the graph. This parameter 

corresponds to the subnet capacity for a couple of specific 

vertices of the railway network, and does not represent the 

overall network capacity. Next, this parameter will be called 

direction capacity. 

When we calculate the bandwidth direction, we take into 

account several sources of flow of trains and several sinks 

(destination stations). Problem of several sources can be 

solved by introducing an artificial source vertex, which is 

common to all vertices sources. You can also make the 

sinks. 

We consider a graph with    sources and    sinks and 

assume that the flow can come from any source to any sink. 

The problem to estimate the maximum flow from all sources 

to all sinks can be converted into a simple problem of 

maximum flow (from   to  ) by adding a new artificial 

source   and a new artificial sink   by adding edges leading 

from s to each original source and from each original sink to 

 . 

Figure 8 shows how a set of sources and sinks can be 

reduced to a single source and a single sink. Edges capacities 

leading from    sources can be chosen equal to infinity. 

Similarly, the capacities of edges leading from sinks to   are 

assumed equal to infinity. 
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Fig. 8. Graf with artificial source and sink 

5. MAXIMUM FLOW BETWEEN EACH PAIR OF 

VERTICES 

How to estimate the maximum capacity of subnet between 

any two stations s and t? If you calculate the maximum flow 

for each pair of vertices in a large graph it is very time-

consuming work. Or you can use the Gomory and Hu 

algorithm (Gomory  and Hu, 1964) that is presented below. 

The algorithm is more efficient in the case of undirected 

graphs. This algorithm uses two important concepts – 

equivalence flow and packing vertices. 

5.1 Flow equivalence 

Theorem 2. Let     is the maximum flow from the vertex    to 

vertex     of graph  . (Since   is undirected graph, then 

       ). These flows satisfy        [       ] for each 

     . 



 

 

 

If any graphs have equal maximum flows between a certain 

set of vertices then these graphs are called “flow-equivalent” 

or simply “equivalent” with respect to this set of vertices. 

There is a flow-equivalent graph for any other graph 

anytime. 

5.2. Compressing the vertices 

The main idea is that several vertices in the graph will be 

presented by one vertex. The edges between the compressed 

vertices will have the infinite capacity. The edges from 

compressed vertices will transformed to single edge with 

common flow. Let assume the maximum flow problem for a 

graph G is solved for two randomly selected vertices s and t. 

Let (     ̃) is minimal cut corresponding to the maximum 

flow, then consider the two vertices          , both are lying 

in   . If we want to estimate the maximum flow     from    

in   , then all the vertices of   ̃ can be "compressed" in one 

vertex   ̃. This compression is such that the edges        , 

             are replaced by edges       ̃    and any 

parallel edges between the same pair of vertices are replaced 

by a single edge, whose capacity equal to the sum of 

capacities of parallel edges. Figures 9, 10 illustrate the 

compression process. Gomory and Hu (Gomory and Hu, 

1964; Hu, 1970) have approved this compression set   ̃ is 

possible.  

 

Fig. 9. Minimum cut from   to   

 

Fig. 10. Graph after compression 

6. AN ALGORITHM FOR CONSTRUCTING THE 

MAXIMUM FLOW BETWEEN ALL PAIRS OF 

VERTICES 

The Gomory and Hu algorithm generates a tree   , which 

flow-equivalent for undirected graph  . The maximum flow 

    between two vertices           for graph   can be found 

as follows in this tree: 

       [    

       

       

        
 ]      

where    
     

     

      
   — the single chain that coming on 

the edges of the tree    and leading from   
  to   

 . Each 

vertex   
  from    corresponds to the vertex    from   and 

   

  is the capacity of edge    
    

   from   . 

The idea of the algorithm is as follows: there exists a tree   , 

which flow-equivalent for graph  , and    contains only 

    edges, so it is sufficient to calculate the capacities of 

    edges of   . You compress a vertices on each step, get 

new graph and calculate the flow. 

Description of the algorithm. Let the vertices from   are 

called   - vertices, and the vertices from    are   -vertices. 

(Kristofides, 1978) 

Step 1. Let     ,      . 

   is a graph at any stage that has   vertices           , 

and each of them corresponds to a certain set from  -

vertices. Initially, the graph    consists of a single vertex. 

Step 2. Find the set                , that is containing 

more than one vertex. If such does not exist, then go to step 

6, otherwise go to step 3. 

Step 3. If    was removed from   , then the tree would 

disintegrate into several subtrees (connected components). 

Compress   -vertices in each subtree in one vertex and form 

a graph with S vertices. Take any two vertices              

and find a minimal cut (     ̃) in  , separating    from   , , 

by calculating the maximum flow (from    to   ). 

Step 4. Remove from    vertex    together with the 

connected edges, and replace it with two   -vertices, 

composed of sets of  -vertices       and      ̃, and an 

edge between them with the capacity of  (     ̃). So, let 

consider each   -vertices   , which were incident    (with a 

capacity of the edge equal   
 ), then add to    the edge 

     
     , if      , or for    add edge      

    ̃ , if 

     ̃. Capacities of edges in this and in another case are 

  
 . 

Remark. As previously noted, Gomori and Hu (Gomory and 

Hu,1964) showed that    lies in    or   ̃ entirely. 

Step 5. Let          . Vertices of    are now sets of 

vertices                
    ̃      , where    is 

replaced by two   -vertices       and      ̃, as explained 

above. Go to step 2. 
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Step 6. Stop.    is flow-equivalent graph to   now. Its   -

vertices are the only  -vertices. Capacities of edges in    

correspond to       independent cuts in  . Equation (3) 

can be used to calculate     (for each        ) now directly 

from   . 

The algorithm gives the best result that follows directly from 

the properties of minimal cuts and properties of flow-

equivalent graph   tree above. A formal proof can be found 

in Hu (Hu, 1970). 

Example. Let’s consider an undirected graph   (see fig. 11), 

representing the railway subnet. Capacities are shown as 

numbers on the edges. We need to find the maximum flow 

between each pair of vertices of  . The above algorithm will 

applied.  
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Fig. 11. Undirected graph 

Step 1.                       ;    . 

Step 2.      . 

Step 3. Graph cannot be compressed. Let’s take       and 

      randomly, then calculate the maximum flow (from 

   to   ), thus we find that the minimum cut is (     ̃), 

where                  and   ̃         , and the value 

of cut equal 48. 

Step 4. Tree    and capacities of its edges are shown in 

Figure 12. 
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Fig. 12.    after first stage 

Step 5.     (i.e.    is now have two vertices as shown in 

Figure 12:    and   ). 

Step 2. We take      . 

Step 3. We choose       and      . Result compressed 

graph is shown in Figure 13. When we are calculating the 

maximum flow of the graph, the minimal cut (     ̃) will be 

found, where         and   ̃              ⏟        
  

    . The 

value of this cut equals 30. 
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Fig. 13. Compressed graph after 2nd step 

Step 4.   -vertex            is replaced by two new   - 

vertex      and      now. The new tree is shown in Figure 

14. 
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Fig. 14.    after 2nd step 

Step 5.     (i.e.    has three vertices as shown in Figure 

14). 

Step 2. Let’s take       . 

Step 3. Take        and      . Compressed graph shown 

in Figure 15. Minimal cut with a value 37 is equal to 

(     ̃), where         and   ̃                     
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Fig. 15. Compressed graph after the third stage 

Step 4.   -vertex                  is now replaced by 

two new   -vertex      and      and a new tree is shown in 

Figure 16. 
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Fig. 16.    after 3-rd stage 

Continuing in this way and taking      , consistently get 

flow-equivalent trees. The resulting flow-equivalent tree 

shown in Figure 17. 
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Fig. 17. The final flow-equivalent tree 

Now we can calculate the matrix of maximum flows of 

original graph directly from (3) using the Figure 17. Matrix 

is presented in Table 1.  

Table 1.Matrix of maximum flows 

                   

   – 37 37 37 37 30 

   37 – 48 58 40 30 

   37 48 – 48 40 30 

   37 58 48 – 40 30 

   37 40 40 40 – 30 

   30 30 30 30 30 – 

7. CONCLUSION 

The article shows a simple way to solve the problems of 

estimating the capacity of railway subnets and directions. 

For this purpose railway subnets are represented as a graph 

whose vertices are the station, and the edges are tracks 

connecting them. The Ford-Fulkerson method and the 

Gomory-Hu method are applied in order to finding the 

maximum flow in the graph. The example shows how to 

take into account the capacity of a station in the evaluation 

of the capacity of a subnet. 
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