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Abstract—We introduce a novel concept of network formation
with rational players. The concept is called double best response
by analogy with conventional best response dynamics used in
network formation games. We applied double best response to
the game called minimal-cost connectivity game where every
player wants to be connected to as many players as possible with
minimal individual cost. We introduce a concept of equilibrium
in double best responses (EDBR) and show that the set of
EDBR profiles is a subset of Nash equilibria profiles and EDBR
networks demonstrate some nice properties in comparison with
conventional NE.

I. INTRODUCTION

A. Motivation

Network formation by rational self-interested players is
widely studied in economy and social science [9]. Recently
similar problems was investigated in the context of wireless
networking.

Wireless sensor and mobile ad hoc networks consist of
battery-powered devices. Efficient topology formation is a pos-
sible technique to reduce power cost and interference. Game-
theoretic approach studies situations when network nodes
cannot coordinate their actions and selfishly optimize their
individual utilities. This can occur if nodes are controled by
different selfish owners. Another case is when network nodes
are produced by different vendors and there is no common
protocol for efficient topology formation.

Authors in [6], [8] studied the problem of wireless network
formation by rational self-interested nodes. Their approach
was based on well-known iterated best response dynamics.
The game have multiple equilibria and myopic best response
dynamics often leads to a rather inefficient network.

B. Problem

We propose a novel game-theoretic dynamics called double
best response. The main idea is that a player optimizes the
utility taking into account possible future actions of other
players.

Here we study double best response applied to another
problem called minimal-cost connectivity game where a player
wants to be connected (via paths of arbitrary length) to as many
players as possible with minimal individual cost. It is supposed
that a link (i, j) appears only if both players announce their

willingness to be linked. A nodes choice is not their power but
a set of nodes x ∈ X ⊆ N . Every action profile x induces a
graph g(x). We investigate properties of networks formed by
players using double best response.

We consider the case when players represent wireless nodes
located on a two-dimensional plane. The cost of a link between
players i and j is w(i, j) = (dij)

α where dij is the Euclidean
distance and α ≥ 2 defines the strength of wireless signal
attenuation.

C. Contribution

We show that there is an instance which has a Nash equi-
librium with total cost Θ(nα) times the cost of the minimum
spanning tree (the optimal solution). There also exist Nash
equilibria where the network is disconnected (for example an
empty network is NE). Next we introduce the concept of an
equilibrium in double best responses (EDBR) profile and show
that all EDBR networks have the following properties:

1) Connectivity. For example an empty network is not
EDBR;

2) Every EDBR network is a Nash equilibrium;
3) If a network g(x) is EDBR then g(x) is a tree and

every player i is linked to every connected component
gk of the graph g(∅, x−i) by the link (i, jk) such
that wijk = minj∈gk wij . A tree that satisfies this
property was called a rational spanning tree (RST).

4) If players are located on a plane then every EDBR
network is a subgraph of the Relative Neighbourhood
Graph (RNG) which is a well-known structure in
topology control literature [10].

5) Previous statement implies that an arbitrary EDBR
network has upper bound of O(nα) times the optimal.
But this bound isn’t proved to be tight for EDBR.
Since that one can hope that EDBR actually has total
cost with constant factor of an optimum.

Future research will focus on few directions. The efficiency
of EDBR networks is still an open problem (are they Pareto-
efficient and what is the strict bound of the total cost?).
Second direction is to study computational and communication
complexity of double best response compared for example with
distributed algorithms for minimum spanning trees [7], [5]. It
is also of our interest to investigate other network formation
problems with objectives taking into account path length etc.
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The paper has the following structure. Section II contain
a brief survey of related results. Section III provides the
framework description and properties of the game studied.
Double best response concept and the main contribution are
provided in the section IV. Section V concludes the paper and
depicts direction of future research.

II. RELATED WORK

Wireless networks topology control is a widely studied
subject [1], [16]. Game theoretic approach to ad hoc network
formation was studied in [6], [8]. The authors analyzed a game
where wireless nodes change their transmission range and form
a link to every node inside the range. The authors proposed
algorithms based on conventional best response where a player
supposes the action profile is static.

In [2], [3] algorithms based on double best response were
proposed for the problem studied in [8]. Node’s action is the
transmission power pi and a wireless link (i, j) is formed when
pi ≥ hij and pj ≥ hji where hij is a power threshold.
Here we study a modified game where a node’s action is
not a transmission power but a subset of its neighbours. This
slight modification allows us to analytically prove attractive
properties of EDBR. Specifically in this game every EDBR
network is a connected graph and every EDBR network is a
subset of the relative neighbourhood graph.

In [15] a myopic game-theoretic algorithm was applied
to formation of retranslation tree of next-generation (LTE or
WiMAX) wireless networks. Authors of [12] studied a network
formation game between primary and secondary users in a
cognitive radio network. All these works studied algorithms
with myopic players and we try to introduce a kind of
“predictive” rationality.

Our double best response concept is based on the notions
of reflexive games [13], [14]. They study players with dif-
ferent “rank of reflexion”. A player with zero rank uses the
conventional best response. Players with first rank is able to
predict actions of zero-ranked players. Second-ranked players
are able to predict actions of zero- and first-ranked players
and so on. Similar model was called k-level and used in [4]
as an explanation of experimental data on beauty-contest and
stag-hunt games. In the double best response model all players
can be considered as first-ranked but they are “misinformed”
about the ranks of other players.

There is a lot of work on social and economic network
formation [9]. Double best response doesn’t directly coincide
with pairwise-stability and different cooperative stability con-
cepts. Note that players in our model still don’t cooperate and
payoffs are non-transferable. We believe our concept can be
applied to social and economic networks. This is a direction
of future research.

III. PRELIMINARIES

A. Network formation problem

There exists a set of wireless nodes N = {1, . . . , n}. A
node i can establish a link with any other node from some
subset Nmax

i ⊆ N . Denote action sets as Xi = 2N
max
i . Node

i announces its action as a subset of nodes xi ∈ Xi. Denote
X =

∏
i∈N Xi and X−i =

∏
j 6=iXj . An action profile x =

(x1, . . . , xn) will also be referred to as a situation. Denote
x = (xi, x−i) where x−i = (x1, . . . , xi−1, xi+1, . . . , xn).

An action profile x ∈ X induces an unoriented graph
g(x) = (N,E(x)) where every node i ∈ N is associated
with a player and (i, j) ∈ E(x) iff i ∈ xj and j ∈ xi. So an
edge (i, j) is formed if and only if both nodes have announced
their willingness to be linked, loops (i, i) are not considered.
Denote as xmax a profile where xmaxi = Nmax

i and denote
gmax = g(xmax).

Nodes i and j are called connected in the graph g(x) if
g(x) contains a path from i to j. Denote the set of all possible
edges as E = {(i, j) | i, j ∈ N, i 6= j}. Denote the weight of
an edge e ∈ E as w(e) ∈ (0,+∞) or alternatively as w(i, j)
the weight of edge (i, j) ∈ E.

Denote as Ci(x) the individual cost of node i. Consider
cost Ci(x) as the total power required to maintain the out-
links of node i:

Ci(xi) =
∑
j∈xi

w(i, j). (1)

Note that if j ∈ xi then node i bears the cost w(i, j) even if
i /∈ xj .

The network formation problem is to choose a profile x
providing a connected graph and minimizing the total cost.∑

i∈N
Ci(xi)→ min (2)

g(x) is connected (3)

Weights w(i, j) depend on the environment where the
network is deployed. We consider networks located on a plane
and weights are defined as follows:

w(i, j) = (dij)
α, (4)

where dij – Euclidean distance, α ≥ 2 – path loss exponent
depends on the physical conditions. In the open air α = 2, in an
environment with obstacles α ∈ [2, 6]. This model of a wireless
network is common for topology control problems [16].

The problem (2) can be solved by a centralized or dis-
tributed optimization algorithm. But next we study a game-
theoretic formulation where every node tries to maximize its
local utility function.

B. Minimal cost connectivity game

Define a minimal cost connectivity game Γ =
〈N, {Xi}i∈N , {ui}i∈N 〉:

1) A set of nodes N is a set of players;
2) Xi = 2N

max
i is an action set;

3) ui : X → R are utility functions.

Utility functions are defined as follows

ui(x) = Mfi(g(x))− Ci(xi), (5)

where fi(g(x)) – a number of nodes reachable (via at least
one path) from node i in the graph g(x), Ci(xi) is cost (1)
and M > maxi,j∈N w(i, j) – a constant which ensures the
priority of connectivity over costs.
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In the game-theoretic formulation we are looking not for
a globally-optimal solution but for a locally-stable profile.

Definition 1: A profile x∗ ∈ X is a Nash equilibrium if
∀i ∈ N and ∀xi ∈ Xi

ui(xi, x
∗
−i) ≤ ui(x∗) (6)

The goal of a player is to be connected to as many players
as possible with minimal personal costs. The game is called
minimal cost connectivity game and it has multiple Nash
equilibria. For example an empty graph xi = ∅ ∀i ∈ N is
an equilibrium. This fact is obvious and we don’t introduce
it as a proposition. We are interested only in those equilibria
that provide a connected graph.

Definition 2: A profile x ∈ X is feasible if g(x) is
connected.

Definition 3: A profile x ∈ X is infeasible if g(x) is
disconnected and there exists a profile x′ ∈ X such that g(x′)
is connected.

Next we consider only the symmetric case where w(i, j) =
w(j, i) ∀i, j ∈ N . Introduce a characterization for all feasible
equilibria in the minimal-cost connectivity game.

Definition 4: Call a set of nodes j such that i ∈ xj an
in-neighbourhood Ai(x) of a node i ∈ N

Definition 5: Call a profile x ∈ X a mutual situation if
∀i ∈ N xi = Ai(x) that is i ∈ xj ⇔ j ∈ xi ∀i, j ∈ N .

Proposition 1: A profile x ∈ X is a feasible equilibrium
if and only if

1) x is a mutual situation
2) g(x) is a tree

Proof: The proof follows from the facts:

1) In a mutual situation a player i can not establish a
new bidirectional link by adding some player j to the
action xi.

2) If g(x) is a tree then deletion a link by any player i
decrease fi(g(x)) and therefore decrease ui(x).

An equilibrium is a local optimum of the problem (2) in
the sense that an agent can not improve neither local utility
nor total cost. Note that if x is a feasible equilibrium then
g(x) is a pairwise stable network [9]. In the next subsections
we describe a basic algorithm of network formation called
iterated best response (IBR) that obtains a feasible locally-
optimal equilibrium.

C. Best response

Definition 6: Best response of a player i to a situation x
is an action

BRi(x) = arg max
a∈Xi

ui(a, x−i). (7)

Usually best response is considered as a function of x−i
but notation BRi(x) will be more convenient in the next. Best
response of a player in a minimal-cost connectivity game is not

g3(x)

g2(x)

i
g1(x)

g3(x)

g2(x)

i
g1(x)

BRi(x)

Fig. 1. Best response in a minimal-cost connectivity game.

necessary unique. Describe a simple algorithm that computes
one of the possible best responses of a player i to a situation
x. Figure 1 illustrates the algorithm.

Proposition 2: The following algorithm computes one of
the possible best responses of a player i to a situation x.

1) Suppose xi = ∅. Denote x′ = (∅, x−i).
2) Suppose graph g(x′) contains n(x′) connected com-

ponents: g(x′) = g1, . . . , gn(x
′).

3) For every component gk select a node jk such that

jk = arg min
j∈gk∩Ai(x)

w(i, j) (8)

If there are more than one such node then choose a
node with minimal identifier.

4)
BRi(x) = {j1, . . . , jn(x′)} (9)

This algorithm provides a node with a set of links that
maximizes its utility (5) given a profile x−i. Note that we
define an algorithm that provide a unique best response (7) of
an player i to any situation x. Next we denote as BRi(x) the
action computed by the described algorithm. Denote the vector
of simultaneous best responses of all agents to a situation x
as BR(x) = (BR1(x), . . . , BRn(x)).

Introduce an alternative definition of a Nash equilibrium.

Definition 7: A profile x ∈ X is a Nash equilibrium if
∀i ∈ N

xi = BRi(x) (10)

or equivalently
x = BR(x) (11)

Consider the iterated best response algorithm.

D. Network formation process

Set a turn order for the players. Denote as it a player who
adjust the action on step t. The iterated best responses (IBR)
algorithm is defined as follows.

1) Fix initial profile x0i and g0 = g(x0).
2) On a step t choose a player i who updates the action:

xt+1
i = BRi(x

t), xt+1
j = xtj , j 6= i (12)
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3) Update network

gt+1 = g(xt) (13)

Then go to step 2.
4) The process stops when no player changes the action.

Formally, ∀i ∈ N xti = BRi(x
t)

This procedure is well known. It’s easy to show that iterated
best response converges to a Nash equilibrium and the process
lasts exactly one round e.g. n action updates. This procedure
was studied in [6], [8] as an algorithm of wireless ad hoc
network formation.

The properties of iterated best response dynamics can be
summarized as follows:

1) Iterated best response converges to a Nash equilib-
rium. It takes exactly n steps of equation (12).

2) If g(x0) is connected then g(xt) is connected for
t = 1, 2, . . .. For example if x0 = xmax and gmax is
connected.

Next we show that the resulting equilibria can be signifi-
cantly inefficient. In the section IV we propose a more sophis-
ticated concept to improve the performance of the network
formation algorithm.

E. Efficiency of Nash equilibria

Here we analyze equilibria that can be obtained by IBR
algorithm. So we consider only feasible equilibria. We also
focus our study on the case of symmetric link weights
w(i, j) = w(j, i). Note that in this case a minimum spanning
tree (MST) is the globally optimal solution of the problem (2).

Definition 8: The price of anarchy (PoA) of a minimal-
cost connectivity game Γ is the relation

PoA(Γ) =
C(xworst)

C(MST )
, (14)

where C(xworst) – the total cost (2) of the worst feasible
equilibrium and C(MST ) – the total cost of the minimum
spanning tree that is the optimal solution.

Lemma 1: If link weights are symmetric i.e. w(i, j) =
w(j, i) ∀i, j ∈ N then the optimal solution of the problem (2)
is a minimum spanning tree (MST) of the graph gmax.

Proof: This lemma follows from the definition of MST
and the fact that if w(i, j) = w(j, i) then

∑
i∈N wi(xi) =

2
∑
e∈E w(e)

Since any tree is a NE we see that the worst NE is a
maximum spanning tree of the graph gmax. If weights w(i, j)
are arbitrary then the price of anarchy can be arbitrary large.
Consider the price of anarchy for a network located on the
Euclidean plane.

Proposition 3: If link weights are wij = (dij)
α where dij

is a Euclidean distance between nodes i and j then there exists
a minimal-cost connectivity game Γ such that

PoA(Γ) = Θ(nα) (15)

1 n

2n

n+1

2n-1

2

…

…
1 n

2n

n+1

2n-1

2

…

…

Fig. 2. Minimal-cost connectivity game with PoA = Θ(nα). Left – MST.
Right – an equilibrium with C(x) = Θ(nα)C(MST ).

Proof: Figure 2 shows such a game (call it Γtr – triangle).
A distance between any two adjacent nodes i, i + 1 equals
dii+1 = 1.

1) Figure 2a shows the MST. The cost of MST is linear
C(MST ) = 2n− 1.

2) Total cost of any Nash equilibrium is bounded as
O(nα)C(MST ). Prove it. Any possible link has the
cost no more than wmax ≈ (

√
2(n − 1))α. Any

tree with 2n nodes contains 2n − 1 edges there-
fore ∀x ∈ X such that x is a Nash equilibrium
C(x) ≤ (2n− 1)wmax = (2n− 1)(

√
2)α(n− 1)α =

O(nα)C(MST ).
3) Figure 2b shows the equilibrium with C(x) =

Θ(nα)C(MST ). The minimal link cost is wmin ≈
(
√
2
2
n
2 )α. The maximal link cost is wmax ≈ nα.

Therefore (2n − 1)(
√
2
2
n
2 )α ≤ C(x) ≤ (2n − 1)nα

and (
√
2
4 )αnαC(MST ) ≤ C(x) ≤ nαC(MST ).

That is C(x) = Θ(nα)C(MST ) and PoA(Γ) =
Θ(nα)C(MST ).

We found that conventional best response can obtain an
equilibrium that is polynomially worse than the global opti-
mum. In the next section we consider a novel game dynamics
called double best response which seems to form more efficient
networks.

IV. DOUBLE BEST RESPONSE

A. General description

If a player use best response (7) the profile x−i is supposed
to be static in the future. We propose a decision model where
a player consider possible reactions of the opponents to her
choice. Denote as BRS(x) a vector of simultaneous best
responses of agents j ∈ S ⊆ N to a profile x.

Definition 9: Double best response of a player i to a profile
x is the action

DBRi(x) = arg max
a∈Xi

ui(a,BR−i(a, x−i)) (16)

where
BR−i(a, x−i) = (BR1(a, x−i), . . . , BRi−1(a, x−i),

BRi+1(a, x−i), . . . , BRn(a, x−i))

Here BR−i(a, x−i) are simultaneous best responses of players
j 6= i to the new profile where xi = a.
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Double best response can be viewed as the following
procedure. A player i chooses an action a ∈ Xi. Then she
computes best responses of other players BR−i(a, x−i) and
the payoff ui(a,BR−i(a, x−i)). If the action space Xi is finite
then double best response can be found by brute-force search
through action space. Further we show that in the minimal-
cost connectivity game double best response is transformed to
a natural local decision rule.

The equation (16) defines a “global” double best response
rule where a player is able to compute best responses of any
other player in the network. That seems too strong for large
networks and we propose also a “local” modification.

Definition 10: Reflexive set Ri ⊆ N \ {i} of a player i ∈
N is the set of players j 6= i such that i is able to compute
(or get in another way) best response BRj(x).

Definition 11: Local double best response of a player i
with reflexive set Ri to a profile x is the action

DBRi,Ri
(x) = arg max

a∈Xi

ui(a, xN\Ri
, BRRi

(a, x−i)). (17)

Here xN\Ri
denotes actions xj of all players j /∈ Ri and

BRRi
(a, x−i) – best responses of all players j ∈ Ri to the

profile (a, x−i)

In the limit case Ri = ∅ local double best response
transforms to the myopic best response 7. A natural choice
is Ri = Xi where Xi contains all nodes to those i is able
to connect. In the case of wireless network this means that a
node can compute best responses of other nodes located in its
maximal transmitting range.

B. Equilibrium in double best responses

Double best response can be viewed as a dynamic decision
rule. Here we study situations that remain stable when players
use double best response.

Definition 12: Call a profile x an Equilibrium in Double
Best responses (EDBR) if ∀i ∈ N

xi = DBRi(x). (18)

Characterize some properties of EDBR profiles for a
minimal-cost connectivity game. Here we focus on global
modification of double best response and suppose that gmax is
connected to clarify the main results. In fact here we consider
the case when Xi = 2N . All of the results remain true when
local double best response is used with Ri = Xi and Xi ⊂ 2N

(and gmax is connected). Note that symmetry w(i, j) = w(j, i)
is essential.

Denote xdbri = DBRi(x) and Ki(x) – connected compo-
nent of a node i in the graph g(x). Denote i ∼ j if i and j
are connected in the graph g(x) and i � j if i and j are not
connected.

First introduce few lemmas. Their proofs are omitted
because of their simplicity.

Lemma 2: ∀x ∈ X g(BR(x)) ⊆ g(x) i.e. simultaneous
best response doesn’t form new links.

Lemma 3: ∀i, j, k ∈ N if ∃y ∈ Xi and (j, k) ∈
g(y,BR−i(y, x−i)) then ∀xi ∈ Xi(j, k) ∈ g(xi, x−i).

Lemma 4: Graph g(BR(x)) doesn’t contain cycles. And
∀j, k ∈ N such that j ∼ k in g(BR(x)) if (j, k) /∈ g(BR(x))
then j /∈ BRk(x) and k /∈ BRj(x).

Lemma 5: If j ∈ DBRi(x) then
i ∈ BRj(DBRi(x), x−i)

Proposition 4: If x is EDBR then x is feasible i.e. g(x) is
connected.

Proof: By contradiction suppose ∀i ∈ N xi = DBRi(x)
and g(x) is disconnected. Choose two components g1, g2.
Then choose a pair of nodes i ∈ g1 and j ∈ g2 such
that wij = mini∈g1,j∈g2 wij . As i and j belong to different
connected components i /∈ xj or j /∈ xi. Suppose j /∈ xi.
Suppose x′i = xi∪{j} and prove that ui(x′i, BR−i(x

′
i, x−i) >

ui(xi, BR−i(xi, x−i)). Best responses of nodes k 6= i 6=
j will not change and best response of j now contains
i. Then fi(x

′
i, BR−i(x

′
i, x−i) > fi(xi, BR−i(xi, x−i)) and

ui(x
′
i, BR−i(x

′
i, x−i) > ui(xi, BR−i(xi, x−i)) that is impos-

sible if xi = DBRi(x).

Proposition 4 means that double best response eliminates
all infeasible equilibria. Note that if conventional best response
starts from infeasible solution it may not restore the connec-
tivity.

Proposition 5: If x is EDBR then g(x) doesn’t contain
cycles.

Proof:

Suppose g(x) contain a cycle c = (i1, . . . , ir, i1). Then
by lemma 5 and condition x = DBR(x) we have ik ∈
BRik+1

(x) and ik+1 ∈ BRik(x), k = 1, . . . , r,i1 ∈ xir , ir ∈
xi1 . It means that g(BR(x)) contain a cycle that is a contra-
diction to lemma 4.

Corollary 1: If x is EDBR then g(x) is a spanning tree of
gmax

Proof: By proposition 4 g(x) is connected and by propo-
sition 5 g(x) doesn’t contain cycles. Therefore g(x) is a span-
ning tree of gmax (note gmax is supposed to be connected).

Corollary 2: If x is EDBR then x is a mutual situation.

Proof:

Suppose there exist i, j ∈ N such that i ∈ xj , j /∈ xi.
Since g(x) is connected by proposition 4 there exists a path
p = (j = i1, i2, . . . , ir = i) therefore ∃i2 ∈ p such that j ∈
xi2 . By lemma 5 if j ∈ xi2 and j ∈ xi then i, i2 ∈ BRj(x).
But i2 and i should be a member of the same component of
the graph g(∅, x−i) that is a contradiction to the proposition 2.

Proposition 6: If x is EDBR then x is a Nash equilibrium.

Proof: This directly follows from proposition 1 and
corollaries 1,2.

We have just shown that the set of EDBR profiles is a
subset of feasible Nash equilibria. Next proposition gives a
more strict characterization of EDBR profiles.
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Fig. 3. Double best response in a minimal-cost connectivity game.

Proposition 7: If x is EDBR then ∀i ∈ N xi =
{j1, . . . , jn(x′)} where

jk ∈ arg min
j∈gk

w(i, j) (19)

where gk is a connected component of the graph g(x′), x′ =
(∅, x−i).

Proof: Consider graph g(∅, x−i) = g1 ∪ . . . ∪ gn(x′).
Choose a node i ∈ g1. As noted in the proof of proposition 4
there exists a node j ∈ g2 such that w(i, j) = mink∈g2w(i, k).
If there are more than one such node we resolve ties ordering
them by numbers. There exist a node k ∈ g2 such that
k ∈ xdbri . If j 6= k then w(i, j) = w(i, k). If not then node i
can improve its utility ui(xdbri , BR−i(x)) by connecting to j
and disconnecting from k. So the condition 19 holds if x is
EDBR.

The difference between arbitrary Nash equilibrium and
EDBR situation is as follows. When node i computes its
best response it searches over only those components where
at least one node gives it an “offer”. In a EDBR profile
a node can expect the positive reaction from a neighbour
even if there is no “offer” from this neighbour. Note that
condition (19) implies that for minimal-cost connectivity game
double best response does not require additional information
compared with conventional best response. Figure 3 illustrates
the concept.

The condition (19) introduce a special class of trees. Call
them rational spanning trees.

Definition 13: If a tree satisfies the condition( 19) then it
is a rational spanning tree – RST.

The notion of RST can be explained as follows. Consider
a tree T and a node i ∈ T . If node i remove all its incident
edges then T will split into several subtrees. Then suppose
node i can choose a set of edges to be connected with all the
subtrees with minimal total edge cost. It is rational for i to
choose the edges according to the condition (19).

The notion of RST does not require game-theoretic frame-
work. The characterization of EDBR profiles for minimal-cost
connectivity game as a rational spanning trees allows us to
establish the existence of EDBR.

The set of RST is not empty. For example a minimal
spanning tree is also a rational spanning tree.
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Fig. 4. Left – a Nash equilibrium network. Right – an EDBR network for
the same location.

Proposition 8: A MST is also a RST.

Proof: By contradiction. Let gmst = (N,Emst) is MST
and is not RST. Then there exists a node i ∈ N and a
component gk such that jk /∈ arg minj∈gk w(i, j). There
must exists a node j′k ∈ gk such that (i, j′k) /∈ Emst and
w(i, j′k) < w(i, jk). Then we can reduce the total cost by
replacing link (i, jk) by (i, j′k). The contradiction as gmst is a
minimal spanning tree.

Corollary 3: For a minimal-cost connectivity game there
exists at least one EDBR profile.

Proof: MST already exists and MST is a EDBR.

We can conclude that for a minimal-cost connectivity
game the set of EDBR profiles is a subset of feasible Nash
profiles and there exists at least one EDBR profile. Double
best response can be viewed as a distributed algorithm for
computing a rational spanning tree. Next subsection provides
some findings on the geometric properties and efficiency of
EDBR.

C. Efficiency of equilibria in double best responses

Next we analyze the efficiency of EDBR profiles. The
results above hold for any symmetric weights w(i, j). Here we
study properties of double best response if nodes are located
on a 2d Euclidean plane. We took the concept of Relative
Neighbourhood Graph (RNG) proposed in computational ge-
ometry [17].

Definition 14: Relative Neighbourhood Graph (RNG) over
nodes N is an unoriented graph RNG(N) = (N,ERNG)
such that (i, j) ∈ ERNG iff ∀k ∈ N, k 6= i, j the distance
dij ≤ max{dik, djk}.

Proposition 9: If x is EDBR then g(x) ⊆ RNG(N).

Proof: This follows by contradiction from proposition 7.
Suppose g(x) * RNG(N). Then ∃i, j ∈ N such that
(i, j) ∈ g(x) and ∃k ∈ N such that dij > max{dik, djk}.
Apply proposition 7 to node i. Suppose k ∼ j in the graph
g(∅, x−i). The condition dij > max{dik, djk} contradicts to
the proposition. If j � k in g(∅, x−i) then the same situation
holds when apply the proposition to node k and i ∼ j in the
graph g(∅, x−k).

This proposition gives a top bound on the total cost of
EDBR networks.

Proposition 10: If x is a EDBR then g(x) has total cost
C(x) ≤ O(nα)C(MST ).
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Proof: It is known that total cost of RNG has a strict top
bound of O(nα) times of the optimum [11].

Structures based on RNG are widely used in topology
control and RNG is considered as an efficient structure for
wireless network topology [10]. The fact that a game-theoretic
rule leads to a concept from computational geometry was not
evident. Figure 4 shows an arbitrary Nash equilibrium network
and an EDBR network.

V. CONCLUSION

We studied a novel network formation concept called dou-
ble best response. The concept was analyzed in the framework
of a so-called minimal-cost connectivity game. Every player
would like to be connected to as many players as possible
and minimize the individual cost. In the special case players
correspond to wireless nodes located on a plane. The game was
shown to have multiple Nash equilibria. There are so-called
infeasible Nash equilibria where the network is not connected
(like empty network). Even considering only feasible equilibria
the game still has polynomial price of anarchy.

Double best response of a player is an action that max-
imizes the utility under assumptions that the player is able
to predict the best responses of other players to that action.
Therefore dynamics based on double best responses can be
called “predictive”. By analogy with Nash equilibrium we
introduce a concept of Equilibrium in Double best responses
(EDBR). We established the existence of EDBR and showed
that in this game the set of EDBR profiles is a subset of feasible
Nash equilibria profiles.

We found that EDBR networks is trees characterized by
a local property that in some sense is more efficient than
conventional Nash equilibrium. We denote this class of trees
as rational spanning trees (RST). Also we showed that every
EDBR network (called now RST) is a subset of the Rela-
tive Neighbourhood Graph (RNG). Relative Neighbourhood
Graphs are widely used in computational geometry and wire-
less network topology control. The top bound (not tight) on
the total cost of EDBR profiles is O(nα) where α ≥ 2 is the
path-loss exponent.

Future research will focus on the efficiency of EDBR
networks. The open questions is are they Pareto-efficient and
does EDBR guarantee total cost better than the worst Nash
equilibrium. The total cost of a Nash equilibrium in the studied
game has tight top bound of O(nα) times the optimum. Since
this bound for EDBR is not tight one can hope it can be
improved to O(1) times the optimum.

Second direction of future investigation will be algorithmic
complexity of double best response in a more general frame-
work. For the game studied here double best response require
local link weights knowledge. It is an open question what
information is required for double best response in general
and what the computational complexity is.

We also believe that double best response concept can be
applied to other network formation problems.
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[15] Saad W., Han Z., Başar T., Debbah M., Hjørungnes A. Network
Formation Games Among Relay Stations in Next Generation Wireless
Networks // IEEE Trans. on Communications. – 2011. – Vol. 49, No. 9.
– P. 2528-2542

[16] Santi P. Topology Control in Wireless Ad Hoc and Sensor Networks
// Journal ACM Computing Surveys (CSUR). – 2005 – Vol. 37, Issue. 2.
– P. 164-194

[17] Toussaint G.T. The relative neighbourhood graph of a finite planar set
// Pattern Recognition. –1980. – Vol. 12, Issue 4. – P. 261-268

207


