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a b s t r a c t

The scheduling problem of minimizing total tardiness on a single machine is known to be
NP-hard in the ordinary sense. In this paper, we consider the special case of the problem
when the processing times pj and the due dates dj of the jobs j, j ∈ N = {1, 2, . . . , n},
are oppositely ordered: p1 ≥ p2 ≥ · · · ≥ pn and d1 ≤ d2 ≤ · · · ≤ dn. It is
shown that already this special case is NP-hard in the ordinary sense, too. The set of
jobs N is partitioned into k, 1 ≤ k ≤ n, subsets M1,M2, . . . ,Mk, Mν

⋂
Mµ = ∅ for

ν 6= µ,N = M1
⋃

M2
⋃
· · ·
⋃

Mk, such that maxi,j∈Mν |di − dj| ≤ minj∈Mν pj for each
ν = 1, 2, . . . , k. We propose algorithms which solve the problem: in O(kn

∑
pj) time if

1 ≤ k < n; in O(n2) time if k = n; and in O(n2) time if maxi,j∈N |di − dj| ≤ 1. The
polynomial algorithms do neither require the conditions p1 ≥ p2 ≥ · · · ≥ pn mentioned
above nor integer processing times to construct an optimal schedule. Finally, we apply the
idea of the presented algorithm for the case k = 1 to the even–odd partition problem.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In the paper, we consider the problem of minimizing total tardiness for a set N = {1, 2, . . . , n} of n independent jobs
on a single machine. Processing of the jobs may start no earlier than time t0 ∈ Rwhen all jobs are assumed to be available.
The machine can process at most one job at any time, and preemptions of the processing of a job are forbidden. For any
job j ∈ N , a processing time pj ∈ Z+ and a due date dj ∈ R are given. A schedule π is defined as a permutation of the
set of jobs N . Let Cj(π) be the completion time of job j in schedule π . This means that, for example, if π = (j1, j2, . . . , jn),
then Cjk(π) = t0 +

∑k
i=1 pji , k = 1, 2, . . . , n. The total tardiness problem requires the construction of a schedule π

∗ that
minimizes

F(π) =
n∑
j=1

Tj(π) =
n∑
j=1

max{0, Cj(π)− dj},

where Tj(π) denotes the tardiness of job j in schedule π .
It has been proved that this singlemachine problem isNP-hard in the ordinary sense bymeans of a polynomial reduction

from the NP-complete even–odd partition problem to special cases of the total tardiness problem (see [1–3]). The total
tardiness problem has been studied by Emmons [4] who proposed the following rule: if for two jobs i, j ∈ N , we have pi ≤ pj
and di ≤ dj, then there exists an optimal schedule, where job i is processed before job j. Lawler [5] proved a decomposition
theorem and proposed a pseudo-polynomial time algorithm that constructs an optimal schedule in O(n4

∑
pj) time. This
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algorithm was also used as a base for developing a fully polynomial approximation scheme with complexity O(n7/ε) [6].
The decomposition property of the total tardiness problem gives an idea to generate rules which reduce the complexity of
the decomposition algorithm. Some decomposition rules have been introduced in [7–10]. Szwarc et al. [10–13] have given
algorithms based on the known decomposition rules and bounds for the optimal tardiness value. This algorithm has solved
test instances with up to n = 500 jobs. As far as heuristic algorithms are concerned, Brucker et al. [14] presented an iterated
local search algorithm for the total tardiness problem which they tested on problems with up to 1000 jobs. Several other
heuristic algorithms have been given even formore general problems including e.g. jobweights [15] or sequence-dependent
setup times [16]. For a more extensive literature survey, we refer the reader to [3,17,18].
After introducing some basic concepts in Section 2, we discuss decomposition properties of the problem in Section 3.

Section 4 is the main section and devoted to algorithms for all subcases of oppositely ordered processing times and due
dates, i.e. p1 ≥ p2 ≥ · · · ≥ pn and d1 ≤ d2 ≤ · · · ≤ dn. In Section 5, we present a new polynomially solvable case of the
problem when maxi,j∈N |di − dj| ≤ 1. Finally, in Section 6 we use the idea of algorithm B-1 presented in Section 4 for the
solution of the NP-complete even–odd partition problem.
The even–odd partition (EOP) problem is as follows: Given a set of 2n positive integers B = {b1, b2, . . . , b2n}, bi ≥ bi+1,

i = 1, 2, . . . , 2n − 1. Is there a partition of B into two subsets B1 and B2 such that
∑
bi∈B1

bi =
∑
bi∈B2

bi and such that for
each i, i = 1, 2, . . . , n, subset B1 (and hence, B2 too) contains exactly one number of {b2i−1, b2i}?
The time complexity of the canonical algorithmpresented in this paper for the solution of the classical even–odd partition

problem is O(nδ), where δ = 1
2

∑n
i=1(b2i−1 − b2i). This complexity does not exceed the complexity of known algorithms

particularly developed for the solution of the even–odd partition problem. Moreover, the property underlying the canonical
algorithm and developed for a schedule of the total tardiness problem has a general character and can be applied to many
other combinatorial problems, too.

2. Preliminaries and notations

We denote by I =
〈
{pj, dj}j∈N , t0

〉
an instance with the set of jobs N , the processing times pj, the due dates dj, and a given

starting time t0 of the machine. We denote the initial instance I by the pair {N, t0}.
Furthermore, we introduce a parametric instance as follows. Let dj(t) = dj − dn + t − t0 be the parameterized due date

for job j ∈ N . Without loss of generality, we assume d1 ≤ d2 ≤ · · · ≤ dn, so that d1(t) ≤ · · · ≤ dn(t) holds for any real t .
For the set Nk = {k, k+ 1, . . . , n} of jobs which is given for each k = n, n− 1, . . . , 1, the parametric instance is denoted by
Ik(t) =

〈
{pj, dj(t)}j∈Nk , 0

〉
. Let π∗k (t) and F

∗

k (t) be an optimal schedule and the optimal value of the total tardiness function
for the instance Ik(t). Let {π} denote the set of jobs processed in the schedule π . In the following, we use the notation
π = (π1, j, π2), where π1 and π2 are subschedules of π such that π1 and π2 contain the preceding and succeeding jobs of j
and the sequence of jobs in both subschedules is the same as in π . As a generalization, we may also use two particular jobs
to describe a sequence in the form π = (π1, i, π2, j, π3). If the processing of a job i precedes the processing of a job j in a
schedule π , which implies Ci(π) < Cj(π), the notation (i→ j)π is used. In a more general form, the notation (i→ j→ k)π
is used to describe precedence relations between three jobs in the schedule π .
An instance can be modified by changing the due dates. Let us consider the two instances I =

〈
{pj, dj}j∈N , t0

〉
and

I ′ =
〈
{p′j, d

′

j}j∈N , t
′

0

〉
. These instances are called equivalent if any optimal schedule for I is also optimal for I ′ and vice versa.

Hence, the sets of optimal schedules for both instances are equal. One can show that, if p′j = pj, d
′

j = dj+τ , j ∈ N , t
′

0 = t0+τ ,
where τ is an arbitrary real constant, then I and I ′ are equivalent. This follows from

Tj(π) = max

{
0, t0 +

∑
i:(i→j)π

pi + pj − dj

}

= max

{
0, t0 + τ +

∑
i:(i→j)π

pi + pj − (dj + τ)

}
for each schedule π and each job j ∈ N . This means that the starting time of each instance can be assumed to be t0 = 0.
Moreover, if p′j = αpj, d

′

j = αdj, and t
′

0 = αt0 for an arbitrary constant α > 0, the instances I and I
′ are also equivalent.

Without loss of generality, we assume that the due dates belong to the interval [t0, t0 +
∑n
j=1 pj] due to the following

reasons. For any given instance I , let us construct an instance I ′, where p′j = pj, d
′

j = min{max{t0, dj}, t0 +
∑n
i=1 pi} and

t ′0 = t0. If we have dj > t0 +
∑n
i=1 pi for job j, then d

′

j = t0 +
∑n
i=1 pi, and job j is early in each schedule. Hence, j can

be processed on the last position in all optimal schedules for both instances I and I ′. If dj < t0, then job j is tardy in each
schedule π , which implies dj < Cj(π) so that d′j = max{t0, dj} = t0. In this case, according to [5], any optimal schedule for
I ′ is also an optimal one for I .

3. Decomposition property

A decomposition property of the problem has been studied by Lawler [5]. Assume that the set N of jobs is ordered such
that d1 ≤ d2 ≤ · · · ≤ dn, if dj = dj+1, then pj ≤ pj+1. Let j∗ denote the job with the largest processing time in N ,
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i.e. j∗ = argmaxj∈N{dj : pj = maxi∈N pi}, and let Sk = t0 +
∑k
j=1 pj, k = 1, 2, . . . , n. Lawler has proved that there exists

an optimal schedule π∗, where for some position k ≥ j∗ in the schedule, we have: (j → j∗)π∗ holds for all j ≤ k, j 6= j∗,
and (j∗ → j)π∗ holds for all j > k. Lawler has also proposed a decomposition-based algorithm. We illustrate the idea of this
algorithm in terms of the initial instance I = {N, t0}. For each k ≥ j∗, the algorithm constructs an optimal schedule in which
set N ′ = {1, . . . , k} \ {j∗} of jobs is scheduled before j∗, and set N ′′ = {k + 1, . . . , n} is scheduled after j∗. Jobs of N ′ are to
be scheduled optimally with the starting time t ′ = t0, and the jobs of N ′′ with the starting time t ′′ = Sk. This means that
instance I is decomposed into two subinstances I ′ = {N ′, t ′} and I ′′ = {N ′′, t ′′}. The best of the constructed schedules for
each k ≥ j∗ is an optimal schedule for the initial instance.
This approach determines an optimal schedule in O(n4

∑
pj) time. Later, some decomposition rules have been proposed

which allow one to reduce the number of positions k on which j∗ is sequenced. These rules have been introduced by Potts
and van Wassenhove [7], Lazarev [8], Chang et al. [9], and Szwarc [10].
For an instance {N, t}, let us define the set L(N, t) of all positions k ≥ j∗ such that:

– dj + pj ≤ Sk holds for all j∗ + 1 ≤ j ≤ k;
– Sk < dk+1,

where additionally dn+1 := +∞ is defined. Then the following theorem holds.

Decomposition Theorem ([5,7,10]). There exists an optimal schedule π∗, where for some k ∈ L(N, t), (j→ j∗)π∗ holds for all
jobs j ∈ {1, 2, . . . , k} \ {j∗} and (j∗ → j)π∗ holds for all jobs j ∈ {k+ 1, . . . , n}.

The decomposition property of the problem suggests the following recursive procedure Sequence(N ′, t ′) which
constructs an optimal schedule for the set N ′ ⊆ N of jobs starting at time t ′ ≥ t0. To simplify notation, we present the
formal description of the procedure in terms of the initial instance {N, t0}.
Sequence (N, t)
1: Let N = {j1, j2, . . . , jn};
2: if N = ∅ then
3: π∗:=empty schedule;
4: else
5: Find job j∗ in N and the set L = L(N, t);
6: for all k ∈ L do
7: N ′ := {j1, . . . , jk} \ {j∗}, t ′ := t; N ′′ := {jk+1, . . . , jn}, t ′′ := Sk;
8: πk := (Sequence (N ′, t ′), j∗, Sequence (N ′′, t ′′));
9: end for
10: π∗:=argmink∈L{F(πk)};
11: end if
12: return π∗.
Decomposition Algorithm: π∗ := Sequence (N, t0).
This decomposition algorithm can be improved bymore recent decomposition rules (see Chang et al. [9]) and bounds for

the optimal value (see Szwarc et al. [12,13]). However, the decomposition algorithm in the above formulation is sufficient for
the following investigations. We note that algorithms (analogue to the above decomposition algorithm) with a complexity
of O(n2

(n−1)
3 −1) operations using additional rules by Chang et al. for canonical instances have been given (see e.g. Gafarov

and Lazarev [2,3]). Among the canonical instances, there is a class of subinstances, denoted by B-F (when in all n! schedules
exactly k jobs are tardy) for which an algorithm with the complexity O(n3) has been constructed [3,19].

4. Algorithms for oppositely ordered processing times and due dates

Let us assume that the processing times and due dates are oppositely ordered:{
p1 ≥ p2 ≥ · · · ≥ pn,
d1 ≤ d2 ≤ · · · ≤ dn.

(1)

In Section 6 (where we deal with the even–odd partition problem), we will show that the above special case of the total
tardiness problem is NP-hard in the ordinary sense. Given an arbitrary instance I , let us consider a partition of the set N of
jobs into k subsetsM1,M2, . . . ,Mk such that maxi,j∈Mν |di − dj| ≤ minj∈Mν pj for each ν = 1, 2, . . . , k. Obviously, this
partition can be done in polynomial time, namely with O(n) operations. We introduce three algorithms, namely B-1, B-k
and B-n, to solve all subcases of (1) differing in the number k of subsetsMν given by the partition. Algorithm B-1 finds an
optimal schedule for the case k = 1 in O(n

∑
pj) time, algorithm B-k for 1 < k < n in O(kn

∑
pj) time, algorithm B-n

for k = n in O(n2), and algorithm C-1 (presented in Section 5) for the case when dmax − dmin ≤ 1 in O(n2) time, too (dmin
denotes theminimal and dmax themaximal due date).We note that algorithms B-n and C-1 do neither require the conditions
p1 ≥ p2 ≥ · · · ≥ pn nor integer processing times to construct an optimal schedule.
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For a partition of set N , we use the following notations. The symbol ν is used for indexing the subsetsM ⊆ N , and γ (j)
denotes the index of the subset that contains job j ∈ N , i.e. j ∈Mγ (j) holds by definition. Inwhat follows,we use the notations
αν , βν to denote the jobs with the smallest and largest numbers of the subsetMν , ν = 1, 2, . . . , k, i.e.Mν = {αν, . . . , βν}
with αν < · · · < βν or αν = βν (i.e. the setMν consists only of one element).
Let us consider the following procedurewhich partitions the set of jobsN into k subsetsM1,M2, . . . ,Mk,Mν

⋂
Mµ = ∅

for ν 6= µ, and N = M1
⋃

M2
⋃
· · ·
⋃

Mk, such that maxi,j∈Mν |di − dj| ≤ minj∈Mν pj for each ν = 1, 2, . . . , k. Such a
partition can be done in several ways, we present the following one:
Partitioning Procedure
1: k := 1, α1 := 1;
2: for j = 2, 3, . . . , n do
3: if dj − dαk > pj then
4: βk := j− 1; k := k+ 1; αk := j;
5: end if
6: end for
7: βk := n;Mν = {αν, αν + 1, . . . , βν}, ν = 1, 2, . . . , k.
The procedure runs in O(n) time. As an example, if N = {1, 2, 3}, p1 = 10, p2 = 10, p3 = 2, d1 = 7, d2 = 9, d3 = 10,

then the procedure constructs the two subsetsM1 = {1, 2} andM2 = {3}.

4.1. Properties of an optimal schedule

First, we prove two lemmaswhich establish properties of an optimal schedule provided that conditions (1) hold. The first
lemma determines triples (i, j, k) of jobs such that there exists an optimal schedule π∗ in which job k is processed either
before or after jobs i and j. Then a schedule π , which does not have this property, can be eliminated from the search for an
optimal schedule, i.e. F(π) ≥ F(π∗).

Lemma 1. Assume that conditions (1) hold. Then there exists an optimal schedule π∗ such that for all triples {i, j, k} with
k < min{i, j} and {i, j} ∈Mν , we have (k→ i→ j)π∗ or (i→ j→ k)π∗ .

Proof. Suppose that schedule π = (π1, i, π2, k, π3, j, π4) is optimal. Without lost of generality, we assume that (i → j)π .
Consider the two schedules π ′ = (π1, π2, k, i, π3, j, π4) and π ′′ = (π1, i, π2, j, π3, k, π4). In the following, we show that
either F(π ′) ≤ F(π) or F(π ′′) ≤ F(π) holds.
Since k < min{i, j}, it follows that pk ≥ pi, pk ≥ pj, dk ≤ di, and dk ≤ dj. Let us consider the following three cases (see

Fig. 1).
Case 1: Ck(π) ≤ dk (see Fig. 1a). For schedule π ′, we have Ci(π ′) = Ck(π) ≤ dk ≤ di and both jobs i and k are early in both
schedules π and π ′. Notice that for each q ∈ {π2}, we have Cq(π ′) ≤ Cq(π). This implies F(π ′) ≤ F(π).
Case 2: Ck(π) > dk and Ck(π) ≤ dj (see Fig. 1b). Hence, job k is tardy in π , i.e. we have Tk(π) > 0. Since |di − dj| ≤
min{pi, pj} ≤ pk and Ck(π) ≤ dj, it follows that Ci(π) ≤ Ck(π)− pk ≤ dj− pk ≤ di. This means that job i is early in π , i.e. we
have Ti(π) = 0. Due to Ci(π ′) = Ck(π) and Ck(π ′) = Ck(π)− pi, we have

F(π ′)− F(π) ≤ max{0, Ck(π)− di} +max{0, Ck(π)− pi − dk} − (Ck(π)− dk) ≤ 0.

If we have in the above maximum terms Ck(π) − di ≥ 0 and Ck(π) − pi − dk ≥ 0, then Ck(π) − pi − di ≤ 0 such that
inequalities Ck(π) ≤ dj and |di − dj| ≤ pi hold.
Case 3: Ck(π) > dk and Ck(π) > dj (see Fig. 1c). Hence, jobs k and j are tardy in schedule π and job k is tardy in schedule
π ′′. Additionally, we have Tj(π ′′) = max{0, Ck(π) − pk + pj − dj}. Therefore, F(π ′′) − F(π) ≤ max{0, Ck(π) − pk + pj −
dj} + Cj(π)− dk − Ck(π)+ dk − Cj(π)+ dj ≤ max{0, Ck(π)− pk + pj − dj} − Ck(π)+ dj ≤ 0.
Finally, if F(π ′) = F(π) or F(π ′′) = F(π), then either π ′ or π ′′ is an optimal schedule, too. If F(π ′) < F(π) or

F(π ′′) < F(π), then we have a contradiction to the optimality of π . This means that there is no optimal schedule π∗ such
that (i→ k→ j)π , and each optimal schedule has the property stated in the lemma. This completes the proof. �

From this lemma, the following observation is obtained. Consider a setQ = {q, q+1, . . . , r} of jobs such that dr−dq ≤ pr
and k < q. Then there exists an optimal schedule in which job k is processed either before or after all jobs in Q .

Lemma 2. Assume that conditions (1) hold. Then there exists an optimal schedule π∗ such that for each pair {k, j} with k < j,
we have (k→ j)π∗ or ((k+ 1)→ k)π∗ .

Proof. This proof is similar to that of the previous lemma. Suppose that schedule π = (π1, j, π2, k, π3, k+1, π4) is optimal.
Consider the two schedulesπ ′ = (π1, π2, k, j, π3, k+1, π4) andπ ′′ = (π1, j, π2, k+1, π3, k, π4). In what follows, we show
that either F(π ′) ≤ F(π) or F(π ′′) ≤ F(π) holds.
According to (1), we have pk ≥ pk+1 ≥ pj and dk ≤ dk+1 ≤ dj. We consider the following three cases.

Case 1: Ck(π) ≤ dk. Hence, both jobs j and k are early in both schedules π and π ′. Therefore, we have F(π ′) ≤ F(π).
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Fig. 1. The three cases in the proof of Lemma 1. The symbols d′ and d′′ denote the values of the due dates such that the corresponding jobs {i, j, k} are early
or tardy in the schedules π ′ (subfigure b) and π ′′ (subfigure c).

Case 2: Ck(π) > dk and Ck(π) ≤ dk+1. Due to dk+1 ≤ dj, we have Cj(π ′) = Ck(π) ≤ dk+1 ≤ dj. Therefore,

F(π ′)− F(π) ≤ max{0, Ck(π)− pj − dk} − (Ck(π)− dk) ≤ 0.

Case 3: Ck(π) > dk and Ck(π) > dk+1. Due to pk ≥ pk+1, we have Ck(π ′′) = Ck+1(π) and Ck+1(π ′′) ≤ Ck(π). Therefore,

F(π ′′)− F(π) ≤ max{0, Ck+1(π ′′)− dk+1} + dk+1 − Ck(π) ≤ 0.

Finally, if F(π ′) = F(π) or F(π ′′) = F(π), then π ′ or π ′′ is an optimal schedule, too. If F(π ′) < F(π) or F(π ′′) < F(π), then
we have a contradiction to the optimality ofπ . Thismeans that there is no optimal scheduleπ such that (j→ k→ (k+1))π ,
and each optimal schedule has the property stated in the lemma. This completes the proof. �

If (j→ k→ (k+ 1))π for some schedule π and jobs k, jwith k > j, then schedule π can be eliminated from the search
for an optimal schedule.
According to (1), we have d1(t) ≤ d2(t) ≤ · · · ≤ dn(t) for the parameterized due dates, where t ∈ R is arbitrary. The

instances Ik(t) and
〈
{pj, dj}j∈Nk , t

′

0

〉
are equivalent if t ′0 = dn − t + t0 (see Section 2). In particular, I1(t) is equivalent to the

initial instance I if t = dn. We use these parametric instances in the process of constructing an optimal schedule for the
initial instance.
Let π∗k (t) be an optimal schedule for the instance Ik(t). Suppose that optimal schedules π

∗

k+1(t) have been constructed
for the parametric instance Ik+1(t) at each point t , and suppose that dn − dk+1 ≤ pn, i.e. k = 1. Due to Lemma 1, job k need
to be considered only on two possible positions in an optimal schedule for the instance Ik(t): before and after all jobs from
Nk+1. Therefore, π∗k (t) is the best of the two schedules (k, π

∗

k+1(t − pk)) and (π
∗

k+1(t), k). To construct the first schedule, we
need to use the schedule π∗k+1(t − pk) since, when job k is sequenced on the first position, we increase the starting time of
the jobs of set Nk+1 by the value pk. For the parametric instance, such an increase in the starting times can be described by
a decrease in the parameterized due dates dj(t) for all j ∈ Nk+1. Moreover, the calculation of the values F∗k (t) by comparing
the schedules (k, π∗k+1(t − pk)) and (π

∗

k+1(t), k) does not require O(n) time, but only O(1) time. Clearly, the total tardiness
values of these schedules are max{0, pk − dk(t)} + F∗k+1(t − pk) and F

∗

k+1(t) + max{0,
∑n
j=k pj − dk(t)}, respectively. This

discussion illustrates the basic idea of our approach: concerning the partition of N into the subsetsMν , the schedules π∗k (t)
are constructed in the order k = n, n− 1, . . . , 1 at each integer point t based on the schedules π∗j (t) for j > k. Notice that
π∗n (t) = (n) and F∗n (t) = max{0, pn − t + t0}. Since the initial instance I is equivalent to the instance I1(t) if t = dn, an
optimal schedule for I is given by π∗1 (dn). This allows us to consider only those instances, where dn is an integer value. If
dn 6∈ Z, then we construct and solve the instance I ′ =

〈
{pj, d′j}j∈N , t

′

0

〉
, where d′j = dj − ∆, t

′

0 = t0 − ∆ and∆ = dn − bdnc.
In this case, I ′ is equivalent to I and d′n ∈ Z.
If t ≤ t0+minj∈N pj, then for the parametric instance

〈
{pj, dj(t)}j∈N , 0

〉
we have dj(t) ≤ dn(t) = t − t0 ≤ pn ≤ pj, j ∈ N.

This means that all jobs are tardy in each schedule and the SPT schedule is optimal for this instance. If t ≥ t0 + 2
∑n
j=1 pj,

then we have t +
∑n
j=1 pj ≥ t0 + 2

∑n
j=1 pj + dn − d1 due to dn − d1 ≤

∑n
j=1 pj. This implies

n∑
j=1

pj ≤ d1 − dn + t − t0 = d1(t) ≤ dj(t), j ∈ N.

Therefore, in each schedule all jobs are early, i.e. all schedules are optimal, and the optimal total tardiness value is equal to
0. The above reasons imply that, without loss of optimality, we can eliminate the following points t from the consideration:
t > dn since an optimal schedule for the initial instance is obtained by means of point t = dn; t < t0 since at these points
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optimal schedules are known (namely the SPT schedules) for all Ik(t) and they can be constructed before the algorithm
starts.
Since t0 < dn ≤ t0 +

∑n
j=1 pj, it follows that we need to look among all integer points in the interval [t0; dn] of a length

not more than
∑n
j=1 pj.

4.2. Algorithm B-1

In this subsection, we consider a subcase of case (1) with{p1 ≥ p2 ≥ · · · ≥ pn,
d1 ≤ d2 ≤ · · · ≤ dn,
dn − d1 ≤ pn.

(2)

Hence, d1 ≤ d2 ≤ · · · ≤ dn ≤ d1 + pn and k = 1, i.e.M1 = N .
In this case, we can eliminate schedule π from the consideration, if there exists a job k ∈ N such that (i→ k→ j)π for

all i, j ∈ {k+ 1, k+ 2, . . . , n} due to Lemma 1. Based on this property, we propose the following algorithm B-1.
Algorithm B-1
1: πn(t) := (n), F∗n (t) := max{0, pn − t + t0};
2: for k = n− 1, n− 2, . . . , 1 do
3: π1 := (k, π∗k+1(t − pk)); π

2
:= (π∗k+1(t), k);

4: F(π1) := max{0, pk − dk(t)} + F∗k+1(t − pk);
5: F(π2) := F∗k+1(t)+max{0,

∑n
j=k pj − dk(t)};

6: F∗k (t) := min{F(π
1), F(π2)}; π∗k (t) := argmin{F(π

1), F(π2)};
7: end for
8: return the schedule π∗1 (dn) and its total tardiness value F

∗

1 (dn).
Notice that lines 1 and 3–6 of the algorithm have to be performed for each integer t from the interval [t0, t0 +

∑n
j=1 pj].

From the above discussion, we obtain the following theorem.

Theorem 1. Algorithm B-1 constructs an optimal schedule for case (2) in O(n
∑
pj) time.

We consider function F∗k (t)which has the following properties:

• it is continuous and monotonously non-increasing;
• it is a piecewise linear function;
• inequality

F∗k (t − ε)− F
∗

k (t) ≤ nε

holds for any t ∈ R and ε > 0;
• there are no more than 2n−k break points.

From lines 4−6of algorithmB-1we can see that F∗k (t) results from the two functions F(π
1) and F(π2).We can analytically

find (and store) the break points of function F∗k (t). Thus, we do not need the integer conditions for the processing times. The
main idea of algorithm B-1-modified is to find and store the break points of function F∗k (t) in each of the n iterations.

4.3. Algorithm B-k

Assume that the following conditions hold:
d1 ≤ d2 ≤ · · · ≤ dn,
p1 ≥ p2 ≥ · · · ≥ pn,
dβ1 − dα1 ≤ pβ1 , α1 = 1,
dβ2 − dα2 ≤ pβ2 , α2 = β1 + 1,
· · ·

dβk − dαk ≤ pβk , βk = n.

(3)

In these inequalities, αν and βν (which are given by the partitioning procedure) are assigned to subsetMν = {αν, αν +
1, . . . , βν}, ν = 1, 2, . . . k. Due to Lemmas 1 and 2, for case (3), we can eliminate each schedule π from the consideration,
for which the following condition holds: either there exists a job k such that (i → k → j)π for some i, j ∈ Mν , where
γ (k) ≤ ν and k < min{i, j}, or there exists a job k such that (j→ k→ (k+ 1))π for some j > k.
Algorithm B-k is an extended version of algorithm B-1 for the case k > 1. In contrast to algorithm B-1, in each step we

need to check more than two positions for the current job k in an optimal schedule for Ik(t). Notice that the number of
examined positions is less than or equal to k+1. To describe the structure of schedule π∗k (t), we use the following notation.
Let Gk(t) be an ordered set of the quadruples 〈πi, νi, Pi, fi〉, i = 1, . . . , g , g = |Gk(t)| ≤ k, where:
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(1) πi is a subschedule of π∗k (t) such that
(a) π∗k (t) = (π1, π2, . . . , πg);
(b) k ∈ {π1};
(c) each subsetMν ⊆ Nk is contained only in one subschedule;
(d) πi cannot be partitioned into two subschedules such that items (a), (b), (c) hold for the new subschedules;

(2) νi = minj∈{πi}{γ (j)};
(3) Pi is the total processing time of πi, i.e. Pi =

∑
j∈{πi}

pj;
(4) fi is the total tardiness value of πi.

To construct an optimal schedule, we need to know the positions for job k in scheduleπ∗k+1(t) such that k is not processed
between two jobs from the same subsetMν and k is not processed between some job j > k and job k+ 1. This property of
an optimal schedule can be maintained by analyzing schedule π∗k (t) in O(n) time in each step of the algorithm. However,
this can be done in O(k) time by collecting the information about π∗k (t) from the previous steps of the algorithm.
Let

∑
q(X) denote the sum

∑q
i=1 Xi for some indexed values X (we will also use the symbols P and f instead X). Let us

now describe the construction of an optimal schedule π∗k (t) for Ik(t). We use the sets Gk+1(t) which contain information
about the structure of schedule π∗k+1(t) at each point t . By Lemmas 1 and 2, the positions for k between the two jobs r, q can
be eliminated if r, q ∈ {πi} for some 1 ≤ i ≤ g , and πi ∈ π∗k+1. Therefore, we have only g + 1 positions for job k: before all
jobs from Nk+1, between each pair of subschedules πi−1 and πi, and after all jobs from Nk+1. If the optimal position of job k
is between πi−1 and πi, then π∗k (t) := (π1, . . . , πi−1, k, π

∗
ανi
(t −

∑
i−1(P) − pk)). The schedule π

∗
ανi
(t −

∑
i−1(P) − pk) is

an optimal schedule for the set of jobs {πi}
⋃
{πi+1}

⋃
· · ·
⋃
{πg}, since this set is equal to the setMανi

⋃
· · ·
⋃

Mαk , and
an optimal schedule for this set has already been constructed. Then the set Gk(t) is constructed in the following way. If k
is inserted between πi−1 and πi, then all jobs with smaller indices can be processed before job k only if they are processed
before all jobs from Nk+1. This follows from Lemma 2. Therefore, we can join the jobs of the subschedules π1, . . . , πi−1 into
a single subschedule of the set Gk(t):

Gk(t) :=

{〈
(π1, . . . , πi−1, k), γ (k),

∑
i−1

(P)+ pk,
∑
i−1

(f )+max

{
0,
∑
i−1

(P)+ pk − dk(t)

}〉}
⋃
Gανi

(
t −

∑
i−1

(P)− pk

)
.

Algorithm B-k
1: πn(t) := (n), Fn(t) := max{0, pn + t0 − t}, Gn(t) = {〈πn(t), k, Fn(t), pn〉};
2: for ν = k, k− 1, . . . , 1 do
3: for k = βν, βν − 1, . . . , αν , k < n, do
4: for i = 1, 2, . . . , g + 1 do
5: π i := (π1 . . . , πi−1, k, π∗ανi (t −

∑
i−1(P)− pk));

6: F(π i) :=
∑
i−1(f )+max{0,

∑
i−1(P)+ pk − dk(t)}+

+Fανi (t −
∑
i−1(P)− pk);

7: end for
8: i∗ := argmini=1,...,g+1{F(π i)}; π∗k (t) := π

i∗ ; Fk(t) := F(π i
∗

);

9: Gk(t) :=
{〈
(π1, . . . , πi∗−1, k), ν,

∑
i∗−1(P)+ pk,

∑
i∗−1(f )+

max{0,
∑
i∗−1(P)+ pk − dk(t)}

〉}⋃
Gανi∗ (t −

∑
i∗−1(P)− pk).

10: end for
11: end for
12: return schedule π∗1 (dn) and its total tardiness value F1(dn).
Notice that lines 1 and 4–9 of the algorithm have to be performed for each integer t from the interval [t0, t0 +

∑n
j=1 pj].

From the previous discussion, the following theorem is obtained.

Theorem 2. Algorithm B-k constructs an optimal schedule for case (3) in O(kn
∑
pj) time.

4.4. Algorithm B-n

Let us now suppose that the following conditions are satisfied:

dj − dj−1 > pj, j = 2, 3, . . . , n. (4)

In this subsection, the processing times need not to be integer. An instance of case (1) belongs to this subcase if k =
n. The algorithm for this subcase is a modification of the decomposition algorithm introduced in Section 3 when job
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j∗ = argmaxj∈N{dj : pj = maxi∈N pi} need to be sequenced only on one position in an optimal schedule. Let Π∗(N, t) =
Π∗(I) be the set of optimal schedules for the instance I with the set N of jobs processed from time t on andΠ(N, t) = Π(I)
be a set of all n! possible schedules.
Next, we prove the major property of case (4). The notation of the lemma follows the notation for the decomposition

theorem given in Section 3.

Lemma 3. There exists an optimal schedule for case (4), where job j∗ is processed on the first position of set L(N, t0).

Proof. Let L(N, t0) = {k1, k2, . . . , km}, where k1 < k2 < · · · < km. Consider two adjacent positions ki and ki+1 of set L(N, t0).
In what follows, we use the notations α = ki and β = ki+1, Sα = t0 +

∑α
j=1 pj and Sβ = t0 +

∑β

j=1 pj. Let πα = (π1, j
∗, π2)

and πβ = (π ′1, j
∗, π ′2) be schedules, in which job j

∗ is processed on the positions α and β , respectively, and

• π1 ∈ Π
∗({1, . . . , α} \ {j∗}, t0), π2 ∈ Π∗({α + 1, . . . , n}, Sα),

• π ′1 ∈ Π
∗({1, . . . , β} \ {j∗}, t0), π ′2 ∈ Π

∗({β + 1, . . . , n}, Sβ).

Let us consider the case dj∗ ≥ Sα . On the one hand, we have Sα ≤ dj∗ < dα+1 and dβ + pβ ≤ Sβ . Consequently,
dβ − dj∗ < Sβ − Sα . On the other hand, due to conditions (4), we have dβ − dj∗ ≥ pα+1 + pα+2 + · · · + pβ = Sβ − Sα . This
contradiction implies |L(N, t0)| = 1 (the set L(N, t0) contains only one element k1 and the lemma has been proved).
Next, let us consider the case dj∗ < Sα . Now, we show that π ′1 = (π1, π̄) where π̄ = (α + 1, α + 2, . . . , β). We have

Sα − pj∗ + pα+1 < Sα < dα+1. Consequently, Tα+1(π̄, Sα − pj∗) = 0. Conditions (4) imply that Tj(π̄, Sα − pj∗) = 0 for all
j ∈ {π̄}. Therefore, the jobs of set {α+1, α+2, . . . , β} can be processed on the last positions inπ ′1, i.e. we haveπ

′

1 = (π1, π̄).
Let us now consider schedule π ′ = (π1, j∗, π̄ ′, π ′2), where π̄

′
= (α+2, α+3, . . . , β, α+1). Since πα is a schedule with

a minimum value of total tardiness among the schedules where job j∗ is processed on position α, we have F(πα) ≤ F(π ′).
The following arguments prove that F(π ′) < F(πβ). Since for all j ∈ {π̄}, we have Tj(π̄, Sα − pj∗) = 0 and thus

F(π ′)− F(π ′β) = ∆+ F(π̄
′, Sα),

where ∆ = Tj∗(π ′) − Tj∗(πβ). Since dj∗ < Sα , it follows that job j∗ is tardy in both schedules π ′ and πβ . Therefore,
∆ = −

∑β

j=α+1 pj = Sα − Sβ .
Let us calculate the value F(π̄ ′, Sα). Due to (4) and Sα < dα+1, we have Tj(π̄ ′, Sα) = 0 for all j ∈ {α + 2, . . . , β}. Due to

dα+1 + pα+1 ≤ Sβ , we have Tα+1(π̄ ′, Sα) = Sβ − dα+1. Consequently, F(π ′)− F(πβ) = Sα − Sβ + Sβ − dα+1 < 0.
We have shown that F(πα) ≤ F(π ′) < F(πβ). Since α and β are arbitrary adjacent positions for job j∗, we have

F(πk1) < F(πk2) < · · · < F(πkm).

This implies that for case (4), there exists an optimal scheduleπ∗where job j∗ is processed on the first position of set L(N, t0).
�

We now present algorithm B-nwhich constructs an optimal schedule for case (4). The algorithm is a modification of the
decomposition algorithm given in Section 3 for the case when job j∗ is sequenced only on one position of set L(N, t0).

Lemma 4. There exists an optimal schedule for case (4), where job j∗ is processed on the first position of set L(N, t0).

Sequence B-n (N, t)
1: Sk := t + p1 + p2 + · · · + pk, k = 1, 2, . . . , n;
2: Find j∗ and L(N, t); k∗ := argmin{k ∈ L(N, t)};
3: N ′ := {1, . . . , k∗} \ {j∗}; t ′ := t; N ′′ := {k∗ + 1, . . . , n}; t ′′ := Sk∗ ;
4: π∗ := (Sequence B-n (N ′, t ′), j∗, Sequence B-n (N ′′, t ′′));
5: return π∗.
Algorithm B-n: π∗ := Sequence B-n (N, t0).
Thus, we obtain the following theorem.

Theorem 3. Algorithm B-n constructs an optimal schedule for case (4) in O(n2) time.

5. Algorithm C-1

In this section, we present another polynomially solvable special case of the total tardiness problem. Let us suppose that
the following conditions are satisfied:{d1 ≤ d2 ≤ · · · ≤ dn,

dn − d1 ≤ 1,
t0 ∈ Z.

(5)

Again, the processing times need not to be integer. In the following algorithmic description, we denote by πedd the EDD
sequence composed of the jobs from the set N ′ in each step of the algorithm.
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Algorithm C-1
1: S := t0 +

∑n
j=1 pj, N

′
:= N , π∗ := ∅, πedd := (1, 2, . . . , n);

2: while N ′′ = {j ∈ N ′ : S − pj ≤ z} = ∅ and N ′ 6= ∅ do
3: π∗ := (k, π∗), where k := argmaxj∈N ′{dj : pj = maxi∈N ′ pi};
4: S := S − pk, N ′ := N ′ \ {k}, πedd := πedd \ {k}; end while
5: if N ′ contains only one job, i.e. N ′ = {j}, then π∗ := (j, π∗), stop;
6: for all j ∈ N ′ such that S − pj ≤ z + 1 do
7: for all i ∈ N ′ \ {j} do πij := (πedd \ {i, j}, i, j); end for; end for;
8: π∗ := (π, π∗), where π := argmini,j F(πij).
We obtain the following result.

Theorem 4. Algorithm C-1 constructs an optimal schedule for case (5) in O(n2) time.

6. Algorithm B-1 and the even–odd partition problem

In this section, we consider the even–odd partition problem. First, we introduce a modified even–odd partition problem
which is used to prove that the single machine total tardiness problem with oppositely ordered processing times and due
dates is NP-hard in the ordinary sense. Then we review some properties of an optimal schedule for the canonical scheduling
problem considered before. Moreover, Property B-1 is defined for a schedule π . It is proved that, if there exists an optimal
schedule for an instance I which has this property, then algorithm B-1 constructs an optimal schedule for this instance (even
if the conditions (2) do not hold). At the end of this section, we show that algorithm B-1 can be used to solve the even–odd
partition problem by introducing an adequate modification, called algorithm B-1-canonical.
We note that Du and Leung [1] defined first canonical instances for problem 1 ‖

∑
Tj, and in [2], [3] other class of

canonical instances have been defined. In these papers, two classes of canonical schedules have been introduced:
• a DL canonical schedule for 3n + 1 jobs: one job is in the ‘‘center’’ of the schedule and n groups of 3 jobs are sequenced
before or after this job;
• an LG canonical schedule for 2n + 1 jobs: one job is in the ‘‘center’’ and 2n jobs are sequenced before and after this
‘‘center’’ job (n jobs before and n jobs after this job).

6.1. The even–odd partition problem and canonical LG instances

The even–odd partition (EOP) problem is as follows: Given a set of 2n positive integers B = {b1, b2, . . . , b2n}, bi ≥ bi+1,
i = 1, 2, . . . , 2n − 1. Is there a partition of B into two subsets B1 and B2 such that

∑
bi∈B1

bi =
∑
bi∈B2

bi and such that
for each i, i = 1, . . . , n, subset B1 (and hence, B2 too) contains exactly one number of {b2i−1, b2i}? The EOP problem is a
well-known NP-complete problem.
Let δi = b2i−1−b2i, i = 1, . . . , n, δ =

∑n
i=1 δi. Nowwe construct a modified even–odd partition problem. There is given

a set of integers A = {a1, a2, . . . , a2n}with{a2n = M + b,
a2i = a2i+2 + b, i = n− 1, . . . , 1,
a2i−1 = a2i + δi, i = n, . . . , 1,

(6)

where b � nδ (for example, b = n2δ) and M ≥ n3b. Obviously, we have ai ≥ ai+1 for all i = 1, 2, . . . , 2n − 1. Notice that
δi = b2i−1 − b2i = a2i−1 − a2i, i = 1, . . . , n. The modified problem is equivalent to the original one.

Lemma 5 ([2]). The original EOP problem has a solution if and only if the modified EOP problem does.
By means of the above instance of the EOP, we define a canonical LG instance of the total tardiness problem as follows.

We have 2n+ 1 V -jobs V1, V2, V3, V4, . . . , V2i−1, V2i, . . . , V2n−1, V2n, V2n+1, renumbered as N = {1, 2, . . . , 2n, 2n+ 1} and
satisfying the following conditions:

p1 > p2 > · · · > p2n+1,
d1 < d2 < · · · < d2n+1,
d2n+1 − d1 < p2n+1,
p2n+1 = M = n3b,
p2n = p2n+1 + b = a2n,
p2i = p2i+2 + b = a2i, i = n− 1, . . . , 1,
p2i−1 = p2i + δi = a2i−1, i = n, . . . , 1,

d2n+1 =
n∑
i=1

p2i + p2n+1 +
1
2
δ,

d2n = d2n+1 − δ,
d2i = d2i+2 − (n− i)b+ δ, i = n− 1, . . . , 1,
d2i−1 = d2i − (n− i)δi − εδi, i = n, . . . , 1,

(7)
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Fig. 2. Due date pattern of the canonical LG instance.

where b = n2δ, 0 < ε <
mini δi
maxi δi

. The due date pattern of the canonical LG instance with oppositely ordered processing times
and due dates is presented in Fig. 2.
Let L = 1

2

∑2n
i=1 pi, thenwe have d2n+1 = L+p2n+1 since

1
2

∑2n
i=1 pi =

∑n
i=1 p2i+

1
2δ. Notice that the canonical DL instances

from paper [1] do not correspond to case (7). From the above discussion, we have obtained the following result.

Theorem 5. The single machine total tardiness problem with oppositely ordered processing times and due dates is NP-hard in
the ordinary sense.

Next, we summarize two well-known properties from the literature.

Theorem 6 ([2]). For case (7), all optimal schedules are canonical LG schedules.

Theorem 7 ([2]). The modified EOP problem has a solution if and only if in an optimal canonical LG schedule, we have
C2n+1(π) = d2n+1.

If pj ∈ Z+, j ∈ N , then the exact algorithm B-1 does not only solve case (2), but also the canonical DL instances [1] in
O(n

∑
pj) time. If pj 6∈ Z+, j ∈ N , then algorithm B-1-modified can also solve the canonical DL instances. So, we can also

find a solution for the non-integer even–odd partition and partition problems.

6.2. Property B-1

We say that a schedule π has Property B-1, if for each job k ∈ N: either (k→ j) holds for all jobs j ∈ {k + 1, . . . , n}, or
(j→ k) holds for all jobs j ∈ {k+ 1, . . . , n}.
As a consequence, a scheduleπ does not have PropertyB-1, if there exists a triple of jobs i, j, k ∈ N such that (i→ k→ j)π

and k < min{i, j}, i.e. some job is processed in π between two jobs with greater numbers.
Let ΠB−1(I) be the set of schedules for the initial instance I = {N, t0} which have Property B-1, and Π∗B−1(I) =

ΠB−1(I)
⋂
Π∗(I). For a schedule π , let χj(π) = 0 if j = n or there exists a job i ∈ {j + 1, . . . , n} such that (i → j)π ,

and χj(π) = 1 otherwise. For a schedule π ∈ ΠB−1(I), we have χj(π) = 0 if the job j follows after all jobs from the set
{j+ 1, . . . , n} in π and χj(π) = 1 if a job j precedes all jobs from this set in π . Therefore, we get the following result.

Lemma 6. If Π∗B−1(I) 6= ∅, then algorithm B-1 constructs an optimal schedule for I.

Hence, if we a priori know that there exists an optimal schedule which has Property B-1 for some instance I , then
algorithm B-1 finds an optimal schedule for I . As a practical matter, Lemma 6 has no importance since, to solve an instance I
by algorithm B-1,we need to knowwhether there exists some optimal schedulewith Property B-1 or not. However, Lemma6
allows us to use algorithm B-1 to solve the even–odd partition problem since Du and Leung [1] have shown that an instance
I corresponding to an instance of the even–odd partition problem has an optimal schedule with Property B-1.
Property B-1 has a rather general character and can be used for the solution ofmany combinatorial problems, in particular

for the even–odd partition problem.

6.3. Modification of algorithm B-1 for the even–odd partition problem

Since a canonical schedule has Property B-1, it follows that algorithm B-1 finds a solution for the even–odd partition
problem. We construct a scheduling problem with 3n + 1 jobs: Wn+1 and n triples of jobs V2i−1, V2i,Wi, 1 ≤ i ≤ n. We
observe that each triple of jobs can be processed only in two ways (V2i−1 → Wi → V2i)π∗ and (V2i → Wi → V2i−1)π∗ in an
optimal canonical schedule π∗. We can use the following modification of algorithm B-1 for the canonical instances.
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Table 1
Special cases and algorithms.

Algorithm Conditions Complexity

B-k, k < n

p1 ≥ p2 ≥ · · · ≥ pn (∗)

d1 ≤ d2 ≤ · · · ≤ dn (∗∗)

pj ∈ Z+ (∗ ∗ ∗)
O(kn

∑
pj)

B-1-modified
{
(∗), (∗∗),

dn − d1 ≤ pn

B-1-canonical
{
(∗), (∗∗), (∗ ∗ ∗)

dmax − dmin ≤ pmin
O( pmin

n4
)

B-F
{
(∗), (∗∗)

fixed number of tardy jobs O(n3)

B-n
{
dj − dj−1 > pj, j = 2, 3, . . . , n O(n2)

C-1
{
dmax − dmin ≤ 1 O(n2)

Fig. 3. The subcases of the problem.

Algorithm B-1-canonical
1: πn(t) := (Wn+1), Fn(t) := max{0, pWn+1 − t};
2: for k = n− 1, n− 2, . . . , 1 do
3: π1 := (V2k−1,Wk, πk+1(t − a2k−1 − b), V2k);
4: π2 := (V2k,Wk, πk+1(t − a2k − pWk), V2k+1);
5: F(π1) := max{0, a2k−1 − dV2k−1(t)} +max{0, a2k−1 + b− dWk(t)}+

Fk+1(t − a2k−1 − b)+max{0,
∑n
j=k(a2j−1 + a2j + b)− dV2k(t)};

6: F(π2) := max{0, a2k − dV2k(t)} +max{0, a2k + b− dWk(t)}+
Fk+1(t − a2k − b)+max{0,

∑n
j=k(a2j−1 + a2j + b)− dV2k−1(t)};

7: Fk(t) := min{F(π1), F(π2)}; πk(t) := argmin{F(π1), F(π2)};
8: end for
9: return schedule π1(dn) and its total tardiness value F1(dn).
Thus, we can present the following theorem.

Theorem 8. Algorithm B-1-canonical constructs an optimal canonical schedule (i.e. it solves instances of the even–odd partition
problem) in O(nδ) time where δ = 1

2

∑n
i=1(a2i−1 − a2i).

For the canonical instances, we have pmin = p2n+1 = n3b = n5δ, so δ =
pmin
n5
, and the complexity of algorithm B-1-

canonical is O(nδ) = O( pmin
n4
).

7. Concluding remarks

In this paper, wemainly considered the total tardiness problemwith oppositely ordered processing times and due dates.
We presented pseudo-polynomial and polynomial algorithms for several cases. A simplified representation of the subcases
considered is shown in Fig. 3.
An overview on the results obtained is given in Table 1. If in the line B-1-modified additionally the integer condition (∗∗∗)

is considered, the complexity of algorithm B-1 is O(n
∑
pj).
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Moreover, there is a parallel paper [20], where we deal with the application of Property B-1 to specific combinatorial
problems, namely to the knapsack and partition problems.
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