
ISSN 0005-1179, Automation and Remote Control, 2016, Vol. 77, No. 4, pp. 656–671. c© Pleiades Publishing, Ltd., 2016.
Original Russian Text c© A.A. Lazarev, D.I. Arkhipov, 2016, published in Avtomatika i Telemekhanika, 2016, No. 4, pp. 134–152.

INTELLECTUAL CONTROL SYSTEMS

Minimization of the Maximal Lateness for a Single Machine

A. A. Lazarev∗,∗∗,∗∗∗,∗∗∗∗ and D. I. Arkhipov∗

∗Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia
∗∗National Research University Higher School of Economics, Moscow, Russia

∗∗∗Lomonosov State University, Moscow, Russia
∗∗∗∗Moscow Physical and Technical Institute, Dolgoprudnyi, Russia

e-mail: jobmath@mail.ru, miptrafter@gmail.com

Received February 20, 2015

Abstract—Consideration was given to the classical NP -hard problem 1|rj |Lmax of the schedul-
ing theory. An algorithm to determine the optimal schedule of processing n jobs where the
job parameters satisfy a system of linear constraints was presented. The polynomially solv-
able area of the problem 1|rj |Lmax was expanded. An algorithm was described to construct
a Pareto-optimal set of schedules by the criteria Lmax and Cmax for complexity of O(n3 logn)
operations.
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1. INTRODUCTION

Consideration was given to the following problem of the scheduling theory: needed is to process
the jobs of the set N = {1, . . . , n} starting from the time instant t. Interrupts of job processing
and simultaneous processing of more than one job are forbidden.

For the jobs of the set N , the following notation is introduced: rj is the release date of the
job j, pj > 0 is the processing time of the jth job dj is the due date, j ∈ N . The due date is
the time during which it is desirable, but not necessary, to complete job processing. We denote
rj(t) = max{rj , t}, j ∈ N . By the schedule π(N, t) is meant the sequence of processing the jobs of
the set N

π(N, t) = (K1, . . . ,Kn)

beginning from the time instant t, where K1 ∪ · · · ∪Kn ≡ N and processing of the job K1 begins
at the time instant s1 = rK1(t), the rest of the job Kj (j = 2, . . . , n) being processed from the
time instant sKj = rKj (sKj−1 + pKj−1). A schedule is called feasible if beginning from the time
instant sj � rj(t) each job j ∈ N is processed without interrupts over the time pj and no two jobs
are processed concurrently. The set of all feasible schedules that are constructible for the set of
jobs N and the time instant t is denoted by Π(N, t). By Cj(π, t) we denote the time of completing
processing of each job j ∈ N under the schedule π ∈ Π(N, t). The difference Lj(π, t) = Cj(π, t)− dj
is called the lateness of the job j under the schedule π starting at the time instant t (Fig. 1). The
maximal lateness for the jobs of the set N under the schedule π is given by

Lmax(π, t) = max
j∈N

Cj(π, t) − dj.

The completion time of all jobs of N under the schedule π is denoted by

Cmax(π, t) = max
j∈N

Cj(π, t).
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Fig. 1. Parameters of the job j.

Problem 1. For the given set of jobs N and time instant t, construct the schedule
π∗ ∈ Π(N, t) for which

Lmax(π
∗, t) = min

π∈Π(N,t)
Lmax(π, t).

In [1] this classical problem of the scheduling theory was denoted by 1|rj |Lmax. As was shown
in [2], the general case of the problem 1|rj |Lmax is NP -hard in the strong sense. Some polynomially
solvable cases were specified since the time of formulating this problem. As was shown in [3], in
the case of rj = 0, j ∈ N , the problem is solved by the schedule where the jobs are arranged
in the nondecreasing order of due dates. Such schedule is also optimal for the case where the
release date and the due dates are coordinated by ri � rj ⇔ di � dj ,∀i, j ∈ N . In the case of
dj = d for all j ∈ N , the optimal schedule can also be constructed in O(n log n) operations in the
nondecreasing release dates. For the case of equal processing times of the jobs pj = p for all j ∈ N ,
the polynomial algorithm of complexity O(n2 log n) was given in [4]. A polynomial algorithm of
complexity of O(n2 log n) operations was described in [5] for a special case where for some constant
A the parameters of all jobs j ∈ N satisfy the constraints

dj − pj −A � rj � dj −A, ∀j ∈ N.

For the case where the job parameters satisfy the system of linear constraints{
d1 � · · · � dn

d1 − p1 − r1 � · · · � dn − pn − rn,

the polynomial algorithm of complexity of O(n3 log n) operations was presented in the book of one
of the present authors [6].

2. PROPERTIES OF THE PROBLEM

We consider the case where for some real numbers α ∈ [0, 1] and β ∈ [0,+∞) the parameters of
the jobs of the set N satisfy the inequality system{

d1 � · · · � dn

d1 − αp1 − βr1 � · · · � dn − αpn − βrn
(1)

and recall that t is the time instant from which the machine is available for processing the jobs.
From the set N we take two jobs f = f(N, t) and s = s(N, t) such that

f(N, t) = argmin
j∈N

{
dj |rj(t) = min

i∈N
ri(t)

}
,

s(N, t) = arg min
j∈N\f

{
dj|rj(t) = min

i∈N\f
ri(t)

}
.
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If N = ∅, that is, |N | = 0, we assume for any real t that

f(∅, t) = 0, s(∅, t) = 0.

If N = {i}, that is, |N | = 1, we assume for any real t that

f(N, t) = i, s(N, t) = 0.

Denote by (i → j)π the fact that under the schedule π the job i is processed prior to job j.

Lemma 1. If for the job of the set N conditions (1) are satisfied for some α ∈ [0, 1] and
β ∈ [0,+∞), then it is true that

Lj(π, t) < Lf (π, t) (2)

under any schedule π ∈ Π(N, t) and for any job j ∈ N \ {f} such that (j → f)π, and for any job
j ∈ N \ {f, s} such that (j → s)π it is true that

Lj(π, t) < Ls(π, t), (3)

where f = f(N, t), s = s(N, t).

Proof of Lemma 1. For all jobs j such that (j → f)π, the inequality

Cj(π, t) � Cf (π, t)− pf

is satisfied. If dj � df , we have

Lj(π, t) = Cj(π, t)− dj < Cf (π, t) − df = Lf (π, t),

consequently, (2) is satisfied.

Let us consider the case where dj < df is true for the job j ∈ N , (j → f)π. From system (1) we
get

dj < df ⇔ dj − αpj − βrj � df − αpf − βrf .

Then, we establish with regard for rj > rf , α ∈ [0, 1], β ∈ [0,∞), and p > 0 that

0 � αpj + (1− α)pf + β(rj − rf ) ⇔ αpf + βrf � αpj + βrj + pf .

With allowance made for the fact that

dj − αpj − βrj � df − αpf − βrf ⇔ (αpf + βrf )− (αpj + βrj) � df − dj ,

we establish

df � dj + pf .

Obviously, Cj(π, t) � Cf (π, t)− pf . By adding the resulting inequalities, we obtain that

Cj(π, t) + df � Cf (π, t) + dj ⇔ Lj(π, t) � Lf (π, t),

which proves statement (2).

Statement (3) is proved along the same lines. It suffices to notice that the job s from the set N
becomes job f in the set N \ {f} and one has just to replace N by N \ {f}.

We prove the following theorem about the properties of the jobs f and s.
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Theorem 1. Let all jobs of the subset N ′ ⊆ N satisfy the system of inequalities (1) for some
α ∈ [0, 1] and β ∈ [0,+∞). Then, for any time instant t′ � t and any schedule π ∈ Π(N ′, t′) there
exists a schedule π′ ∈ Π(N ′, t′) such that

{
Lmax(π

′, t′) � Lmax(π, t
′)

Cmax(π
′, t′) � Cmax(π, t

′)
(4)

and either the job f = f(N ′, t′) or s = s(N ′, t′) is satisfied first under the schedule π′. If df � ds,
then in π′ the job f is processed first.

Proof of Theorem 1. Let π = (π1, f, π2, s, π3), where π1, π2, π3 are partial subschedules of π.
Consider the schedule π′ = (f, π1, π2, s, π3). We establish from the definitions of rj(t) and f(N, t)
for each job j ∈ N ′ that

rf (t
′) � rj(t

′).

Consequently,

Cmax((f, π1), t
′) � Cmax((π1, f), t

′),
Cmax(π

′, t′) � Cmax(π, t
′).

Therefore,
Lj(π

′, t′) � Lj(π, t
′), ∀j ∈ (π2, s, π3).

From Lemma 1 we obtain that
Lj(π

′, t′) � Ls(π, t
′)

for any j ∈ {π1} ∪ {π2}. Obviously, for f we have

Lf (π
′, t′) � Lf (π, t

′)

from which it follows that {
Lmax(π

′, t′) � Lmax(π, t
′)

Cmax(π
′, t′) � Cmax(π, t

′).

Let π = (π1, s, π2, f, π3), that is, the job s is executed prior to the job f . In this case, we construct
the schedule π′ = (s, π1, π2, f, π3) and repeat the proof along the same lines as above, which proves
the first part of the theorem.

Assume that df � ds and π = (π1, s, π2, f, π3) and consider the schedules π′ = (s, π1, π2, f, π3)
and π′′ = (f, π1, π2, s, π3). Then, for the schedules π, π′ and π′′ the inequality

Cmax((f, π1, π2, s), t
′) � Cmax((s, π1, π2, f), t

′)

is true because rf (t
′) � rs(t

′). Consequently,

Lmax(π3, Cmax((f, π1, π2, s), t
′)) � Lmax(π3, Cmax((s, π1, π2, f), t

′)),

and therefore, the maximum of the objective function Lmax((f, π1, π2, s), t
′) is reached for a job

other than f . The maximum of the objective function Lmax((s, π1, π2, f), t
′) cannot be reached for

the job s because df � ds and Cs((s, π1, π2, f), t
′) < Cf ((s, π1, π2, f), t

′). Then, by Lemma 1,

Lmax((f, π1, π2, s), t
′) = Ls((f, π1, π2, s), t

′) = Cmax((f, π1, π2, s), t
′)− ds

and
Lmax((s, π1, π2, f), t

′) = Lf ((s, π1, π2, f), t
′) = Cmax((s, π1, π2, f), t

′)− df .

Therefore, from the fact that df � ds and Cmax((f, π1, π2, s), t
′) � Cmax((s, π1, π2, f), t

′), we deter-
mine that

Lmax((f, π1, π2, s), t
′) � Lmax((s, π1, π2, f), t

′)
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and
Lmax(π

′′, t′) � Lmax(π
′, t′),

which is what we set out to prove.

The schedule π′ ∈ Π(N, t) is called efficient if there exists no schedule π ∈ Π(N, t) such that the
inequality system {

Lmax(π, t) � Lmax(π
′, t)

Cmax(π, t) � Cmax(π
′, t)

is satisfied, at least one of these inequalities being strict. Then, if for the jobs of the set N the
inequality system (1) is true under certain α ∈ [0, 1] and β ∈ [0,+∞), then it follows from Theorem 1
that there exists an efficient schedule π′ under which either the job f = f(N, t) or s = s(N, t) is
executed first. Moreover, if df � ds, then there exists an optimal schedule for which the job f is
executed first.

Let Ω(N, t) be a subset of the set Π(N, t). The schedule π = (i1, . . . , in) belongs to Ω(N, t) if
any job ik, k = 1, . . . , n, is selected from

fk = f(Nk−1, Cik−1
(π, t)) and sk = s(Nik−1

, Cik−1
(π, t)),

whereNk−1 = N \ {i1, . . . , ik−1}, N0 = N and Ci0(π, t) = t. If dfk � dsk , then ik = fk. If dfk > dsk ,
then either ik = fk or ik = sk. Since at most two jobs claim for each place under the schedule, the
set Ω(N, t) contains at most 2n schedules. According to Theorem 1, it is always possible to construct
an efficient schedule belonging to the set Ω(N, t) by enumerating at most 2n variants.

Let ω(N, t) be a partial maximum-length schedule such that by considering successively the job
we have df � ds. The schedule ω(N, t) can be constructed by Algorithm 1 for any set of jobs N
and time t.

Algorithm 1

Data: N, t
Result: ω(N, t)

1 N ′ := N ;
2 t′ := t;
3 f := f(N ′, t′);
4 s := s(N ′, t′);
5 if df ≤ ds then
6 ω = (ω, f);
7 else
8 return(ω);
9 end

10 N ′ := N ′ \ f ;
11 t′ := rf (t

′) + pf ;
12 if N �= ∅ then
13 go to step 3;
14 else
15 return(ω);
16 end

Algorithm 1 lies in that at each run of the cycle 5–13 consideration is given to the jobs f(N ′, t′)
and s(N ′, t′). If df � ds, under the schedule ω the job f(N ′, t′) is processed from the time instant
rf (t

′) to the time instant rf (t
′) + pf . The job f(N ′, t′) is eliminated from the setN ′, t′ := rf (t

′) + pf
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Fig. 2. Construction of the schedule ω(N, t).

is changed, and the cycle is repeated. If df > ds, then the algorithm interrupts its operation and
outputs the constructed partial schedule ω(N, t) (Fig. 2). If df > ds, f = f(N, t), s = s(N, t), then
ω(N, t) = ∅.

Lemma 2. Complexity of constructing the partial schedule ω(N, t) by Algorithm 1 for any N and
t is at most O(n log n) operations.

Proof of Lemma 2. Two jobs f(N ′, t′) and s(N ′, t′) are determined at steps 3–4 of Algorithm 1.
Since the jobs are sorted out according to the release dates rj, at most O(log n) operations are
required to determined the jobs f and s. In view of the fact that the number of runs of the
cycle 3–13 is restricted by the cardinality of the set N , we find that at most O(n log n) operations
are required to construct the partial schedule ω(N, t).

Lemma 3. If the jobs of the set N satisfy the conditions (1) for some α ∈ [0, 1] and β ∈ [0,+∞),
then any schedule π ∈ Ω(N, t) begins from the partial schedule ω(N, t).

Proof of Lemma 3. If ω(N, t) = ∅, the condition of lemma is satisfied in view of the fact
that any schedule begins from an empty schedule. If ω(N, t) = (i1, . . . , il), then dfk � dsk , where
fk = f(Nk−1, Ck−1(π, t)) and sk = s(Nk−1, Ck−1(π, t)), is satisfied for any k = 1, . . . , l. At the same
time for f = f(Nl, Cl(π, t)) and s = s(Nl, Cl(π, t)) we have df > ds. In view of the established
relations between the due dates and definition of Ω(N, t), we get that any schedule from Ω(N, t)
begins from ω(N, t), which is what we set out to prove.

We denote

ω1(N, t) = (f(N, t), ω(N \ f, t′))
and

ω2(N, t) = (s(N, t), ω(N \ s, t′′)),
where t′ = rf (t) + pf and t′′ = rs(t) + ps. We notice that as follows from the definition of ω1(N, t)
and ω2(N, t) and Lemma 2, O(n log n) operations are also required to determine them.

Corollary. If the jobs of the set N satisfy conditions (1) for some α ∈ [0, 1] and β ∈ [0,+∞),
then any schedule π ∈ Ω(N, t) begins either from ω1(N, t) or ω2(N, t).

3. PROBLEM OF MAKESPAN MINIMIZATION
WITH RESTRICTED MAXIMAL LATENESS

Problem 2. Order the set of jobs N since the time instant t so that the maximal lateness be at
most y. Needed is to establish the optimal schedule satisfying

min
π∈Π(N,t)

Cmax(π, t)|Lmax(π, t) � y.

The schedule satisfying the given objective function is denoted by Θ(N, t, y). If there is no such
schedule π ∈ Π(N, t), we state that Θ(N, t, y) = ∅.

We represent an algorithm to construct the schedule Θ(N, t, y).

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 4 2016



662 LAZAREV, ARKHIPOV

Algorithm 2

Data: N, t, y
Result: Θ(N, t, y)

1 Θ := ω(N, t);
2 if Lmax(ω(N, t), t) > y then
3 return(∅);
4 end
5 while 1 do
6 N ′ := N \Θ;
7 t′ := Cmax(Θ, t);
8 if N ′ = ∅ then
9 return(Θ);
10 end
11 if Lmax(ω

1(N ′, t′), t′) � y then
12 Θ := (Θ, ω1(N ′, t′));
13 else
14 if Lmax(ω

2(N ′, t′), t′) � y then
15 Θ := (Θ, ω2(N ′, t′));
16 else
17 return(∅);
18 end

19 end

20 end

The first step of the algorithm constructs a partial schedule ω(N, t), includes it in Θ(N, t, y), and
modifies N ′ := N ′ \Θ and t′ := Cmax(Θ, t). Now, the partial schedule ω1(N ′, t′) is constructed, and
the constraint Lmax(ω

1(N ′, t′), t′) � y is verified. In the case of positive result, ω1(N ′, t′) is added
to the schedule Θ(N, t, y). Then, N ′ and t′ are modified, and the cycle 5–20 is iterated. Otherwise,
the partial schedule ω2(N ′, t′) is constructed, and the constraint Lmax(ω

2(N ′, t′), t′) � y is verified.
In the case of positive result, ω2(N ′, t′) is added to the schedule Θ(N, t, y), N ′ and t′ are modified,
and the procedure is repeated (Fig. 3). The algorithm aborts is all jobs of the set N are successfully
included in the schedule Θ or if at some step both schedules ω1(N ′, t′) and ω2(N ′, t′) do not satisfy
the constraint on the maximal lateness. In this case, the algorithm returns Θ(N, t, y) = ∅.

Lemma 4. Complexity of Algorithm 2 does not exceed O(n2 log n) operations.

Proof of Lemma 4. At steps 1, 11, and 14 of Algorithm 2 the schedules ω1(N ′, t′) and ω2(N ′, t′)
are constructed using Algorithm 1. This requires at most O(n log n) operations. As the result of
running cycle 5–20, at least one job is added to the schedule Θ or Θ = ∅ is returned. Consequently,
cycle 5–20 is iterated at most n times. Therefore, Algorithm 2 establishes the schedule Θ(N, t, y)
at most in O(n2 log n) operations.

Fig. 3. Construction of the schedule Θ.
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We prove a theorem about the properties of the constructed schedule Θ(N, t, y).

Theorem 2. Let for the jobs of the set N satisfied be conditions (1) for some α ∈ [0, 1] and
β ∈ [0,+∞). If the schedule Θ(N, t, y) established using Algorithm 2 is not empty, then

Cmax(Θ(N, t, y), t) � Cmax(π, t)

is satisfied for any schedule π ∈ Π(N, t) meeting the constraint Lmax(π, t) � y. If Θ(N, t, y) = ∅,
then

Lmax(π, t) > y

is true for any schedule π ∈ Π(N, t).

Proof of Theorem 2. Since conditions (1) are satisfied for any π ∈ Π(N, t), according to Theo-
rem 1 there exists a schedule π′ ∈ Ω(N, t) such that{

Lmax(π
′, t) � Lmax(π, t)

Cmax(π
′, t) � Cmax(π, t).

It follows from the construction of the schedule Θ(N, t, y) that it pertains to the set Ω(N, t). Then it
follows from Lemma 3 that the schedule Θ(N, t, y) begins from the partial schedule ω(N, t) denoted
by Θ0 = ω(N, t).

The partial schedule Θk is obtained after k runs of cycle 5–20. At that, N ′ = N \ {Θk} and
t′ = Cmax(Θk, t). We assume that there exists a schedule Θ having minimal Cmax, beginning with
the partial schedule Θk, and satisfying the constraint Lmax(Θk, t) � y. Then, by Lemma 3 Θk can
be continued by a schedule from the set Ω(N ′, t′). Three cases are feasible here.

1. Let Θk+1 = (Θk, ω
1(N ′, t′)), that is, Lmax(ω

1(N ′, t′), t′) � y. Then, ω1(N ′, t′) is a partial
schedule with the least Cmax among all possible continuations of the schedule Θk satisfying
Lmax(Θk+1, t) � y.

2. If Θk+1 = (Θk, ω
2(N ′, t′)), then {

Lmax(ω
1(N ′, t′), t′) > y

Lmax(ω
2(N ′, t′), t′) � y,

which follows from the fact that any schedule from the set Ω(N ′, t′) can start either with
ω1(N ′, t′) or with ω2(N ′, t′) and Lmax(ω

1(N ′, t′), t′) > y. As follows from steps 11–19, this
case is possible only if ω2(N ′, t′) is a unique possible continuation of the schedule Θk.

3. Now we consider the case where after k runs of cycle 5–20 we have Lmax(ω
1(N ′, t′), t′) > y and

Lmax(ω
2(N ′, t′), t′) > y. It follows from the assumption that if the schedule Θ ∈ Ω(N, t) exists,

then it must necessarily begin with Θk. Additionally, for any π ∈ Π(N ′, t′) there always exists
π′ ∈ Ω(N ′, t′) such that either

Lmax(π, t
′) � Lmax(π

′, t′) � Lmax(ω
1(N ′, t′), t′) > y

or
Lmax(π, t

′) � Lmax(π
′, t′) � Lmax(ω

2(N ′, t′), t′) > y.

Consequently, Θ = ∅.
Therefore, the desired schedule Θ(N, t, y) is constructed at most after n runs of cycle 5–20. If

case 3 arises at least once, then the schedule Θ(N, t, y) does not exist at all, which is what we set
out to prove.

4. ALGORITHM TO CONSTRUCT A SET OF PARETO-OPTIMAL SCHEDULES
BY THE CRITERIA CMAX AND LMAX

We present below an algorithm determining the Pareto-set of schedules Φ(N, t) such that 1 �
|Φ(N, t)| � n for any set of jobs N and time instant t. The optimal Pareto-set is constructed if
condition 1 is satisfied.
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Algorithm 3

Data: N, t
Result: Φ(N, t)

1 y := +∞;
2 π∗ := ω(N, t);
3 Φ := ∅;
4 m := 0;
5 while 1 do
6 N ′ := N \ π∗;
7 t′ := Cmax(π

∗, t);
8 if N ′ = ∅ then
9 Φ := Φ ∪ {π∗};
10 return(Φ);

11 end
12 if Lmax(ω

1(N ′, t′), t′) � Lmax(π
∗, t) then

13 π∗ := (π∗, ω1(N ′, t′));
14 else
15 if Lmax(ω

1(N ′, t′), t′) � y then
16 y′ := Lmax(ω

1(N ′, t′), t′);
17 Θ := Θ(N ′, t′, y′);
18 if Θ = ∅ then
19 π∗ := (π∗, ω1(N ′, t′));
20 else
21 π′ := (π∗,Θ);
22 if (m = 0) or (Cmax(π

′
m, t) < Cmax(π

′, t)) then
23 m := m+ 1;
24 π′

m := π′;
25 Φ := Φ ∪ {π′

m};
26 y := Lmax(π

′
m, t);

27 else
28 π′

m := π′;
29 end

30 end

31 else
32 if Lmax(ω

2(N ′, t′), t′) � y then
33 π∗ := (π∗, ω2(N ′, t′));
34 else
35 π∗ := π′

m;
36 return(Φ).

37 end

38 end

39 end

40 end

Algorithm 3 runs as follows. By Lemma 3, any schedule from Ω(N, t) that is optimal for the
criterion Lmax begins with ω(N, t). Therefore, we denote π0 = ω(N, t) and consider operation of
cycle 5–40. Let the partial schedule π∗ = πk and the set Φ = {π′

1, . . . , π
′
m} be constructed after k

first runs of cycle 5–40 of Algorithm 3, and let N ′ = N \ {πk} and t′ = Cmax(πk, t) be the values
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obtained at steps 5 and 6 during the (k + 1)st run of cycle 5–40. We consider possible continuations
of the schedule πk.

1. If Lmax(ω
1(N ′, t′), t′) � Lmax(πk, t), then carried out are the assignment π∗:=πk+1 =

(πk, ω
1(N ′, t′)) and the return to step 5 after selecting the optimal continuation for the cri-

terion Cmax without violating the current value of the objective function Lmax(πk+1, t) �
Lmax(πk, t).

2. Lmax(πk, t) < Lmax(ω
1(N ′, t′), t′) � y and Θ(N ′, t′, Lmax(ω

1(N ′, t′), t′)) = ∅. In this case, car-
ried out are the assignment π∗ := πk+1 = (πk, ω

1(N ′, t′)) and the return to step 5 after selecting
the optimal continuation for the criterion Cmax without violating Lmax(πk+1, t) � y.

3. Lmax(πk, t) < Lmax(ω
1(N ′, t′), t′) � y and Θ(N ′, t′, Lmax(ω

1(N ′, t′), t′)) �= ∅. The assign-
ment π′:=(π∗,Θ(N ′, t′, Lmax(ω

1(N ′, t′), t′))) is carried out. Since y′ � y, the schedule π′ sat-
isfies the constraint Lmax(πk+1, t) � y. If the value of Cmax(π

′, t) increased as compared
with Cmax(π

′
m, t), then the counter is incremented by m := m+ 1, inclusion of π′ in the set Φ is

performed, and the constraint y is modified (steps 23–26). If we have Cmax(π
′, t) �Cmax(π

′
m, t),

then the schedule π′
m is replaced by π′ in the set Φ (step 28). After any possible outcome, the

return to step 5 is performed.

4. Lmax(ω
1(N ′, t′), t′) > y, Lmax(ω

2(N ′, t′), t′) � y. The unique possible variant of continua-
tion πk without violation of the constraint Lmax(πk+1, t) � y (step 33), the assignment π∗ :=
πk+1 = (πk, ω

2(N ′, t′)) is performed, followed by the passage to step 5.

5. Lmax(ω
1(N ′, t′), t′) > y, Lmax(ω

2(N ′, t′), t′) > y. It is impossible to continue the schedule πk
without violating the constraint Lmax(πk+1, t) � y. Execution of the system is interrupted
(step 36). The algorithm completes operation if all jobs of the set N are included in the
schedule π∗ or if there is not way to continue the schedule π∗ without violating the constraint y
(step 36).

Lemma 5. The complexity of Algorithm 3 is less than or equal to O(n3 log n) operations, and
the cardinality of the set Φ(N, t) does not exceed n.

Proof of Lemma 5. Constructions of the partial schedules ω1(N ′, t′) and ω2(N ′, t′) and Θ
represent the most laborious operations at running cycle 5–40. Determination of ω1(N ′, t′) and
ω2(N ′, t′) requires O(n log n) s, and the schedule Θ needs O(n2 log n) operations. Since the partial
schedules ω1(N ′, t′) and ω2(N ′, t′) consist of at least one job, at least one job is added to the
partial schedule π∗ at each run of the cycle, and the set Φ(N, t) includes at most one schedule.
Consequently, the number of runs of cycle 5–40 of Algorithm 3 is less than or equal to n. Therefore,
the cardinality of the set Φ(N, t) does not exceed n and the total number of operations is less than
or equal to O(n3 log n).

Theorem 3. Let the conditions (1) be satisfied for the jobs of the set N under some α ∈ [0, 1] and
β ∈ [0,+∞). Then, the schedule π∗ constructed by Algorithm 3 is optimal for the criterion Lmax.

For any schedule π ∈ Π(N, t), there exists π′ ∈ Φ(N, t) such that{
Lmax(π

′, t) � Lmax(π, t)

Cmax(π
′, t) � Cmax(π, t)

and the set of schedules Φ(N, t) is Pareto-optimal for the criteria Lmax and Cmax.

Proof of Theorem 3. Let us assume that there exists a schedule π ∈ Π(N, t) not belonging to
Φ(N, t) and for which at least one of the inequalities

Cmax(π, t) < Cmax(π
′, t) (5)

or

Lmax(π, t) < Lmax(π
′, t) (6)
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Fig. 4. Set of Pareto-optimal schedules

is satisfied for any schedule π′∈Φ(N, t). According to Theorem 1, there exists a schedule π′′∈Ω(N, t)
such that {

Lmax(π
′′, t) � Lmax(π, t)

Cmax(π
′′, t) � Cmax(π, t).

If π′′ ∈ Φ(N, t), then, obviously, none of conditions (5) and (6) can be satisfied. Consequently,
π′′ ∈ Ω(N, t) \Φ(N, t).

As follows from the definition of the set Ω(N, t), any schedule π′′ from the set Ω(N, t) is
representable as a union of the partial schedules π′′ = (ω0, ω1, . . . , ωk′′), where ω0 = ω(N, t) and
ωi is either ω

1(N ′′
i , C

′′
i ) or ω

2(N ′′
i , C

′′
i ) and N ′′

i = N \ {ω0, . . . , ωi−1}, C ′′
i = Cmax((ω0, . . . , ωi−1), t),

i = 1, . . . , k′′.
The schedule π′ is structured similarly because Φ(N, t) ⊆ Ω(N, t), that is, π′ = (ω′

0, ω
′
1, . . . , ω

′
k′),

where ω′
0 = ω(N, t) and ω′

i is either ω1(N ′
i , C

′
i) or ω2(N ′

i , C
′
i) and N ′

i = N \ {ω′
0, . . . , ω

′
i−1}, C ′

i =
Cmax((ω

′
0, . . . , ω

′
i−1), t), i = 1, . . . , k′.

Let us assume that k first partial schedules π′ and π′′ coincide, that is, ω′
i = ωi ∀i = 0, . . . , k − 1,

and ω′
k �= ωk. We assume that y = Lmax(ω0, . . . , ωk−1, t), Nk = N ′

k = N ′′
k and Ck = C ′

k = C ′′
k and

construct the schedule Θ = Θ(Nk, Ck, y) using Algorithm 2. If Θ = ∅, according to Algorithm 3 we
establish that ω′

k = ω1(Nk, Ck). Since ωk �= ω′
k, we obtain that ωk = ω2(Nk, Ck). The condition

Lmax(ω
2(Nk, Ck), Ck) � y cannot be satisfied because Θ = ∅. The entire structure of Algorithm 3 is

built around the idea of arranging the jobs as densely as possible until a job with the critical Lmax

occurs. Consequently, by continuing the partial schedule ω1(Nk, Ck) we obtain{
Cmax(π

′, t) � Cmax(π
′′, t)

Lmax(π
′, t) � Lmax(π

′′, t).

In the case of Θ �= ∅, we have for the schedule π′ = (ω′
0, . . . , ω

′
k,Θ) that{

Cmax(π
′, t) � Cmax(π

′′, t)
Lmax(π

′, t) = Lmax(π
′′, t).

Consequently, for any schedule π′′ ∈ Ω(N, t) \ Φ(N, t) there exists a schedule π′ ∈ Φ(N, t) such that
Cmax(π

′, t) � Cmax(π
′′, t) and Lmax(π

′, t) � Lmax(π
′′, t).

For the set of schedules Φ(N, t) = {π′
1, . . . , π

′
m} we have (Fig. 4){

Cmax(π
′
1, t) < Cmax(π

′
2, t) < · · · < Cmax(π

′
m, t)

Lmax(π
′
1, t) > Lmax(π

′
2, t) > · · · > Lmax(π

′
m, t).

(7)
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Consequently, Φ(N, t) is the Pareto-optimal set of schedules, and by Lemma 5 we have
|Φ(N, t)| � n. Therefore, we obtain that the schedule π′

1 is optimal for the criterion Cmax, whereas
the schedule π′

m has the best value of the maximal lateness Lmax, which is what we set out to prove.

5. MEMBERSHIP VERIFICATION FOR AN INSTANCE
OF POLYNOMIALLY SOLVABLE AREA

For an arbitrary instance of the problem 1|rj |Lmax, needed is to know whether it is possible to
select α and β such that the inequality system (1) is true. For that, it is necessary and sufficient
to solve the following problem.

Problem 3. Given are 3n real numbers r1, . . . , rn, d1, . . . , dn, p1, . . . , pn. Are there real numbers
α ∈ [0, 1] and β ∈ [0,+∞) such that the inequality system (1) is satisfied?

It is known that d1 � · · · � dn for all i = 1, . . . , n− 1. We make changes

Di = di+1 − di,

Pi = pi+1 − pi,

Ri = ri+1 − ri.

Then, the system of inequalities (1) is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1 � 0
. . .

Dn−1 � 0

αP1 + βR1 � D1

. . .

αPn−1 + βRn−1 � Dn−1.

(8)

Theorem 4. For the set of parameters r1, . . . , rn, d1, . . . , dn, p1, . . . , pn there are α0 ∈ [0, 1] and
β0 ∈ [0,+∞) such that the inequality system (8) is satisfied if and only if there exist α1 ∈ {0, 1}
and β1 ∈ [0,+∞) for which system (8) is satisfied.

Proof of Theorem 4. Let us consider possible variants of the inequalities of system (8) (Fig. 5).
Let M = {1, . . . , n− 1} be the set of indices used in system (8). Represent M as a union of subsets
M1 ∪ · · · ∪M7 depending on the values of Pi and Ri in compliance with the following rules.

1. If Pi = 0, Ri = 0 are satisfied for i ∈ M , then i ∈ M1, and the inequality αPi + βRi � Di is
satisfied for any values of α and β under Di = 0 and not satisfied under Di > 0.

2. If Pi = 0, Ri �= 0 for are satisfied for i ∈ M , then i ∈ M2. In this case, the inequality has the
form βRi � Di ⇔ β � Di

Ri
. Denote mini∈M2

Di
Ri

by D2

R2 . Then, the inequality αPi + βRi � Di

is satisfied if and only if β � D2

R2 .
3. If Pi �= 0, Ri = 0 are satisfied for i ∈ M , then i ∈ M3. In this case, the inequality is given

by αPi � Di ⇔ α � Di
Pi
. Denote mini∈M3

Di
Pi

by D3

P 3 . Then, the inequality αPi + βRi � Di is

satisfied for all values of α � D3

R3 and only for them.
4. If Pi < 0, Ri < 0 are satisfied for i ∈ M , then i ∈ M4. In this case, solution exists if and only

if α = β = 0. Consequently, if M4 �= ∅, then α0 = β0 = 0 are the sole possible coefficient for
which (8) has a solution.

5. If Pi > 0, Ri < 0 are satisfied for i ∈ M , then i ∈ M5 and

Pi + βRi � αPi + βRi � Di,

Di − Pi

Ri
� β � 0.
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Fig. 5. Types of inequalities of system (8).

We notice that the inequality αPi + βRi � Di is satisfied for α = 1 and β � Di−Pi
Ri

. Denote

B = mini∈M5
Di−Pi
Ri

and notice that B � 0 and for any i ∈ M5 the inequality αPi + βRi � Di

is satisfied for α = 1 and β ∈ [0, B].

6. If Pi < 0, Ri > 0 are satisfied for i ∈ M , then i ∈ M6.

7. If Pi > 0, Ri > 0 are satisfied for i ∈ M , then i ∈ M7.

We note that all possible pairs of Pi and Ri were considered, whence it follows that M ≡ M1 ∪ . . .
∪M7. We assume that there are α0 ∈ [0, 1] and β0 ∈ [0,+∞) such that system (8) is true.
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IfM1 �= ∅, then the inequality α0Pi + β0Ri � Di ⇔ 0 � Di is true for any i ∈ M1. Consequently,
this inequality is satisfied for all α ∈ [0, 1] and β ∈ [0,+∞).

If M3 �= ∅, then for any i ∈ M3 the inequality αPi + βRi � Di is true if and only if α � D3
0

P 3
0
.

Consequently, if the inequality has solution for some α0 ∈ [0, 1], then for α1 = 1 � α0 � D3
0

P 3
0

this

inequality is also true for all i ∈ M3.

IfM4 �= ∅, then α0 = 0, β0 = 0 is a sole possible solution of system (8). Consequently, system (8)
is true for α1 = β1 = 0.

Let M5 �= ∅. We demonstrate that the inequality αPi + βRi � Di can be satisfied for all
i ∈ M2 ∪M5 ∪M6 ∪M7 under some α0 ∈ [0, 1] and β0 ∈ [0,+∞) if and only if it is satisfied for
α1 = 1 and β1 = B. For i ∈ M5 this assertion is a self-evident truth.

If M5 �= ∅ and M2 �= ∅, then β0 � D2

R2 is satisfied. We note that since M5 �= ∅, then B � β0, and
consequently, the inequality αPi + βRi � Di is satisfied for all i ∈ M2 ∪M5.

If M5 �= ∅ and M6 �= ∅, then the inequalities α0Pi + β0Ri −Di � 0 and α0Pj + β0Rj −Dj � 0
are satisfied for any i ∈ M5 and j ∈ M6. We take i = argmini∈M5

Di−Pi
Ri

and obtain

Di − α0Pi

Ri
� β0 �

Dj − α0Pj

Rj
⇒
(
Di

Ri
− Dj

Rj

)
− α0

(
Pi

Ri
− Pj

Rj

)
� 0.

Since Ri < 0 and Rj > 0,

Di

Ri
− Dj

Rj
< 0 ⇒ α0

(
Pi

Ri
− Pj

Rj

)
> 0,

consequently, (
Di

Ri
− Dj

Rj

)
−
(
Pi

Ri
− Pj

Rj

)
� 0,

that is,

B =
Di − Pi

Ri
� Dj − Pj

Rj
,

Pj +BRj � Dj .

Therefore, we obtain that for all j ∈ M6 the inequality αPj + βRj � Dj is satisfied under α1 = 1
and β1 = B.

If M5 �= ∅ and M7 �= ∅, then for any i ∈ M5 and j ∈ M7 satisfied are the inequalities α0Pi +
β0Ri −Di � 0 and α0Pj + β0Rj −Dj � 0. Let i = argmini∈M5

Di−Pi
Ri

. We establish that

Di − α0Pi

Ri
� β0 �

Dj − α0Pj

Rj
⇒
(
Di

Ri
− Dj

Rj

)
− α0

(
Pi

Ri
− Pj

Rj

)
� 0.

Since 0 � α0 � 1 Pi
Ri

< 0 and
Pj

Rj
> 0, we obtain(

Di

Ri
− Dj

Rj

)
−
(
Pi

Ri
− Pj

Rj

)
�
(
Di

Ri
− Dj

Rj

)
− α0

(
Pi

Ri
− Pj

Rj

)
� 0.

Consequently,

B =
Di − Pi

Ri
� Dj − Pj

Rj
,

Pj +BRj � Dj .

Therefore, for all j ∈ M7 the inequality αPj + βRj � Dj is satisfied under the values of α1 = 1 and
β1 = B.

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 4 2016



670 LAZAREV, ARKHIPOV

As follows from what was proved above, if M5 �= ∅, then the inequality αPi + βRi � Di is
satisfied for all i ∈ M2 ∪M5 ∪M6 ∪M7 under α1 = 1 and β1 = B. The inverse proposition is
evident, it suffices to take α0 = 1 and β0 = B.

If M5 = ∅, then the aforementioned reasoning is true for B′ = maxi∈M2∪M6∪M7
Di−Pi
Ri

. There-
fore, if for some α0 ∈ [0, 1] and β0 ∈ [0,+∞) the system of inequalities (8) is true, then:

• if M4 �= ∅, the system (8) is true for α1 = 0 and β1 = 0;

• if M4 = ∅,M5 �= ∅, system (8) is true for α1 = 1, β1 = B;

• if M4 = ∅,M5 = ∅,M �= M3, system (8) is true for α1 = 1, β1 = B′;

• if M = M3, system (8) is true for α1 = 1, β1 = 0.

We present an algorithm for determination of α1 ∈ {0, 1}, β1 ∈ [0,+∞).

Algorithm 4

Data: P1, . . . , Pn, R1, . . . , Rn,D1, . . . ,Dn

Result: α1, β1
1 if M4 �= ∅ then
2 α1 := 0, β1 := 0;
3 else
4 if M5 �= ∅ then

5 α1 := 1, β1 := min
i∈M5

Di−Pi
Ri

;

6 else
7 if M �= M3 then

8 α1 := 1, β1 := max
i∈M2∪M6∪M7

Di−Pi
Ri

;

9 else
10 α1 := 1, β1 := 0;
11 end

12 end

13 end
14 for (i = 1, i < n, i++) do
15 if α1Pi + β1Ri < Di then
16 return(Do not exist α ∈ [0, 1] and β ∈ [0,+∞) for which system (1) is true.);
17 end

18 end
19 return(α1, β1).

To make sure that there are α0 ∈ [0, 1] and β0 ∈ [0,+∞) such that system (8) is satisfied, it
suffices to verify for satisfiability all system inequalities for the determined values of α1 and β1. If
at least one of the inequalities is not true, then it follows from the above proof that there is no
α0 ∈ [0, 1] and β0 ∈ [0,+∞) for which the system of inequalities (8) and, consequently, system (1)
are true.

Therefore, the system of inequalities (1) is true for some α0 ∈ [0, 1] and β0 ∈ [0,+∞) if and only
if the system of inequalities (8) for α1, β1 determined using Algorithm 4 is true, which is what we
set out to prove.

Lemma 6. Complexity of Algorithm 4 does not exceed O(n log n) operations.

Proof of Lemma 6. Algorithm 4 performs one sorting, two assignments, O(n) clarifications of
the types of inequalities, and verification of satisfiability of O(n) inequalities. Sorting in terms of
complexity of O(n log n) operations is the most difficult part.
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6. CONCLUSIONS

Extended was the polynomially solvable area of the classical NP -hard in the strong sense prob-
lem 1|rj |Lmax. In compliance with the criteria Lmax and Cmax, presented was the algorithm to
construct the set of Pareto-optimal schedules of complexity of O(n3 log n) operations. An algo-
rithm was presented to determine membership of an instance to the polynomially solvable area and
the parameters α and β having complexity of O(n log n) operations.
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