
ISSN 0005-1179, Automation and Remote Control, 2016, Vol. 77, No. 9, pp. 1633–1648. c© Pleiades Publishing, Ltd., 2016.
Original Russian Text c© E.R. Gafarov, A. Dolgui, A.A. Lazarev, F. Werner, 2016, published in Avtomatika i Telemekhanika, 2016, No. 9,
pp. 150–166.

CONTROL IN SOCIAL ECONOMIC SYSTEMS,
MEDICINE, AND BIOLOGY

A New Effective Dynamic Program

for an Investment Optimization Problem

E. R. Gafarov∗,a, A. Dolgui∗∗,b, A. A. Lazarev∗,∗∗∗,∗∗∗∗,∗∗∗∗∗,c, and F. Werner∗∗∗∗∗∗,d

∗Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia
∗∗Ecole Nationale Supérieure des Mines, IRCCYN, UMR CNRS 6597, Nantes, France

∗∗∗Lomonosov Moscow State University, Moscow, Russia
∗∗∗∗Moscow Institute of Physiscs and Technology, Dolgoprudny, Russia

∗∗∗∗∗International Laboratory of Decision Choice and Analysis, National Research University,
Higher School of Economics, Moscow, Russia

∗∗∗∗∗∗Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
e-mail: aaxel73@mail.ru, balexandre.dolgui@mines-nantes.fr,

cjobmath@mail.ru, dfrank.werner@ovgu.de

Received July 23, 2015

Abstract—After a series of publications of T.E. O’Neil et al. (e.g. in 2010), dynamic program-
ming seems to be the most promising way to solve knapsack problems. Some techniques are
known to make dynamic programming algorithms (DPA) faster. One of them is the graphical
method that deals with piecewise linear Bellman functions. For some problems, it was previ-
ously shown that the graphical algorithm has a smaller running time in comparison with the
classical DPA and also some other advantages. In this paper, an exact graphical algorithm
(GrA) and a fully polynomial-time approximation scheme based on it are presented for an in-
vestment optimization problem having the best known running time. The algorithms are based
on new Bellman functional equations and a new way of implementing the GrA.

DOI: 10.1134/S0005117916090101

1. INTRODUCTION

The selection of projects is an important problem in science and engineering. In general, project
portfolio selection problems are hard combinatorial problems, often with several conflicting opti-
mization criteria. These problems are often formulated as knapsack problems or in a more general
form as multi-dimensional multi-choice knapsack problems or as knapsack problems with multiple
objectives. They have a wide range of business applications in capital budgeting and production
planning. Often dynamic programming algorithms (DPA) are used for the exact solution of such
knapsack problems, and fully-polynomial time approximation schemes (FPTAS) based on these
algorithms are derived for the approximate solution of such problems.

This paper deals with the following allocation problem which is also a generalization of the
knapsack problem. A set N = {1, 2, . . . , n} of n potential projects and an investment budget
(amount) A > 0, A ∈ Z, are given. For each project j ∈ N , a profit function fj(x), x ∈ [0, A],
is given, where the value fj(x

′) denotes the profit received if the amount x′ is invested into the
project j. The objective is to determine an amount xj ∈ [0, A], xj ∈ Z, for each project j ∈ N
such that

∑n
j:=1 xj ≤ A and the total profit

∑n
j:=1 fj(xj) is maximized. Closely related problems

do not only exist in the area of project investment [1], but also in warehousing, economic lot sizing,
etc. [2].

1633

1634 GAFAROV et al.

In the following, we work with piecewise linear functions fj(x). The interval [0, A] can be written
as a union of intervals in the form

[0, A] = [t0j , t
1
j]
⋃

(t1j , t
2
j]
⋃

· · ·
⋃

(tk−1
j , tkj]

⋃
· · ·

⋃
(t

kj−1
j , t

kj
j]

such that the profit function has the form fj(x) = bkj + ukj (x− tk−1
j) for x ∈ (tk−1

j , tkj], where k is

the number of the interval, bkj is the value of the function at the beginning of the interval, and

ukj is the slope of the function. Without loss of generality, assume that b1j � b2j � · · · � b
kj
j , tkj ∈ Z,

j ∈ N , k = 1, 2, . . . , kj , and that t
kj
j = A, j = 1, 2, . . . , n.

Different solution techniques have been used to solve the knapsack problem or its generalizations
exactly or approximately. Since the project data are often uncertain or imprecise, sometimes fuzzy
techniques are used. For instance, in [3], a fuzzy multi-dimensional multiple-choice knapsack prob-
lem is formulated for the project selection problem, and then an efficient epsilon-constraint method
and an multi-objective evolutionary algorithm are applied. In [4], a data envelope analysis, knapsack
formulation and fuzzy set theory integrated model was suggested. In [5], the problem of selection
projects to be included in an R & D portfolio has also been formulated as a multi-dimensional
knapsack problem. If partial funding and implementation is allowed, linear programming can be
used and the sensitivity of the project selection decisions is examined. The selection among ranked
projects under segmentation, policy and logical constraints was discussed in [6]. After ranking
the projects by a multi-criteria approach, integer programming was applied to get a final solution
satisfying the constraints. At the integer programming phase, a knapsack formulation was applied.
Dynamic order acceptance and capacity planning on a single bottleneck resource has been consid-
ered in [7]. Stochastic dynamic programming was applied to determine a profit threshold for the
accept / reject decision and to allocate a single bottleneck resource to the accepted projects with
the objective to maximize expected revenue.

Since the problems under consideration are hard combinatorial problems, often approxima-
tion algorithms were also applied. In [8], a vector merging problem was considered in a dynamic
programming context which can be incorporated into an FPTAS for the knapsack problem. Ap-
proximation algorithms for knapsack problems with cardinality constraints, where an upper bound
is imposed on the number of items that can be selected, were given in [9]. Improved algorithms
for this problem were given in [10], where hybrid rounding techniques were applied. An efficient
FPTAS for the multi-objective knapsack problem was given in [11]. It uses general techniques such
as e.g. dominance relations in dynamic programming. Approximation algorithms for knapsack
problems with sigmoid utilities were given in [12]. The authors combined algorithms from discrete
optimization with those from continuous optimization. In [13], greedy algorithms for the knapsack
problem were considered and improved approximation ratios for different variants of the problem
were given. A piecewise convex maximization approach for the multi-dimensional knapsack prob-
lem was given in [14]. Some applications of AI techniques to generation planning and investment
were described in [15].

The project selection problem considered in this paper has the single criterion of maximizing
the total profit under one budget constraint. A special case of the problem under consideration is
similar to the well-known bounded knapsack problem:

maximize
n∑

j:=1

pjxj

s.t.
n∑

j:=1

wjxj � A,

xj ∈ [0, bj], xj ∈ Z, j = 1, 2, . . . , n,

(1)

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 9 2016

A NEW EFFECTIVE DYNAMIC PROGRAM 1635

for which a dynamic programming algorithm (DPA) of time complexity O(nA) is known [16]. Dy-
namic programming algorithms and a fully polynomial-time approximation scheme for the bounded
set-up knapsack problem, which is a generalization of the bounded knapsack problem in which each
item type has a set-up weight and a set-up value included into the objective function, were sug-
gested in [17]. These algorithms can also be applied to the bounded knapsack problem, and one of
the dynamic programming algorithm has the same time complexity as the best known algorithms
for the bounded knapsack problem.

The following problem is also similar to the problem under consideration:

minimize
n∑

j:=1

fj(xj)

s.t.
n∑

j:=1

xj � A,

xj ∈ [0, A], xj ∈ Z, j = 1, 2, . . . , n,

(2)

where fj(xj) are piecewise linear as well. For this problem, a DPA with a running time of O(
∑

kjA)
[18] and an FPTAS with a running time of O((

∑
kj)

3/ε) [19] are known.

In this paper, we present an alternative DPA based on a so-called graphical approach. This
algorithm has a running time of O(

∑
kj min{A,F ∗}), where F ∗ is the optimal objective function

value. Thus, it outperforms an algorithm from [20] which has a worse running time close to
O(nkmaxA log(kmaxA)), where kmax = maxj−1,...,n kj. The second contribution of this paper is
an FPTAS derived by a scaling argument from this new DPA. Note that an FPTAS was already
proposed for the treated problem in [20], but the new FPTAS has an improved running time: a
running time of O(

∑
kjn log log n/ε).

While the running time of a similar DPA from [18] is proportional to the sum of all linear
profit pieces times the budget A, the new algorithm replaces A by the largest profit of a single
project. The main idea is as follows. Instead of evaluating the dynamic programming functions
for every budget value t = 1, . . . , A, we keep the profit functions (depending on the budget value)
as piecewise linear functions. These functions can be represented by a collection of linear pieces,
instead of a full table of the values. Since all relevant data are integer and the profit functions must
be non-decreasing in the budget value, one can easily bound the number of relevant linear pieces
to obtain the improved complexity.

It is known [21] that all B&B algorithms with a lower and an upper bound calculated in
polynomial time have an exponential running time close to 2O(x) operations, unlike P = NP , where
x is the input length. For example, for the one-dimensional knapsack problem, the time complexity

is equal to or greater than 3
2

2n+3/2√
π(n+1)

, where n is the number of items. This means that B&B

algorithms are not far away from a complete enumeration.

In a series of publications by T.E. O’Neil et al. [22], it was shown that some of the well-known
NP-hard problems can be solved by dynamic programming in sub-exponential time, i.e., in 2O(

√
x)

operations. So, at the moment, dynamic programming seems to be the most promising way to
solve knapsack problems. Some techniques are known to make dynamic programming faster, e.g.,
in [23–25], functional equations and techniques are considered that are different from the ones
considered in this paper.

The remainder of the paper is as follows. In Section 2, we present the Bellman equations to
solve the problem under consideration. In Section 3, an exact graphical algorithm (GrA) based on
an idea from [26] is presented. In Section 4, an FPTAS based on this GrA is derived.

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 9 2016

1636 GAFAROV et al.

2. DYNAMIC PROGRAMMING ALGORITHM

In this section, we present a DPA for the problem considered. For any project j and any state
t ∈ [0, A], we define Fj(t) as the maximal profit incurred for the projects 1, 2, . . . , j, when the
remaining budget available for the projects j + 1, j + 2, . . . , n is equal to t. Thus, we have:

Fj(t) = max
j∑

h:=1

fh(xh)

s.t.
j∑

h:=1

xh � A− t,

xh � 0, xh ∈ Z, h = 1, 2, . . . , j.

(3)

We define Fj(t) = 0 for t /∈ [0, A], j = 1, 2, . . . , n and F0(t) = 0 for any t. Then we have the following
recursive equations:

Fj(t) = max
x∈[0,A−t]

{fj(x) + Fj−1(t+ x)}

= max
1�k�kj

max
x∈(tk−1

j ,tkj]
⋂

[0,A−t]
{bkj − ukj t

k−1
j + ukjx+ Fj−1(t+ x)},

j = 1, 2, . . . , n.

(4)

Lemma 1. All functions Fj(t), j = 1, 2, . . . , n, are non-increasing on the interval [0, A].

The proof of this lemma immediately follows from definition (3) of the functions Fj(t).

The DPA based on the Eqs. (4) can be organized as follows. For each stage j = 1, . . . , n,
for the state t = 0 we compute no more than kjA values vxk = {bkj − ukj t

k−1
j + ukjx+ Fj−1(t+ x)},

1 � k � kj, x ∈ (tk−1
j , tkj] and put them into the corresponding lists Lk. If we have for the next

value vxk � vx−1
k , we do not put it into the corresponding list. This means that the values in each

list Lk are ordered in a non-decreasing order. For the next state t = 1, we only need to exclude
the last element from the considered Lk, k = 1, . . . , n, if it corresponds to an x which is not in
the interval (tk−1

j , tkj]
⋂
[0, A− t] and compare the new kj last elements of the lists. If we continue

in the same way for t = 2, . . . , A, we can calculate Fj(t), t = 1, 2, . . . , A, in O(kjA) time. As a
consequence the running time of the DPA using such a type of Bellman equations is O(

∑
kjA). A

similar idea was presented in [18].

The algorithms presented in [20] for the problem under consideration are based on the functional
Eqs. (3) and another technique to implement the graphical method. In contrast, the GrA presented
in this paper is based on the Eqs. (4).

3. GRAPHICAL ALGORITHM

In this section, we develop an algorithm which constructs the functions Fj(t), j = 1, 2, . . . , n,
in a more effective way by using the idea of graphical approach proposed in [26]. We will use the
name DPA for the algorithm presented in Section 2 and GrA for this new algorithm.

The underlying general idea of improving the DPA for piecewise linear functions is as follows:
Instead of going through all capacity values up to A, we keep the Bellmans functions depending
on the capacity. They are again piecewise linear functions. Keeping these function pieces well
organized for all capacities involves a considerable amount of technicalities and allows for running
time improvements if the data representation is done in a clever way.

Below we prove that the functions Fj(t), j = 1, 2, . . . , n, constructed in the GrA are piecewise
linear. Any piecewise linear function ϕ(x) can be defined by three sets of numbers: a set of break

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 9 2016

A NEW EFFECTIVE DYNAMIC PROGRAM 1637

points I (at each break point, a new linear segment of the piecewise linear function ends), a set of
slopes U and a set of values of the function at the beginning of the intervals B. Let I[k] denote the
kth element of the ordered set I. The same notations will be used for the sets U and B as well.
The notation ϕ.I[k] denotes the kth element of the set I of the function ϕ(x). Then, for example,
for x ∈ (tk−1

j , tkj] = (fj.I[k − 1], fj .I[k]], we have

fj(x) = fj.B[k] + fj.U [k](x− fj.I[k]).

Note that ϕ.I[k] < ϕ.I[k+1], k = 1, 2, . . . , |ϕ.I|−1 and kj = |fj.I|. In each step j, j = 1, 2, . . . , n, of
the subsequent algorithm, temporary piecewise linear functions Ψi

j and Φi
j are constructed. These

functions are used to define functions Fj(t), j = 1, 2, . . . , n, The functions Fj(t) are piecewise linear
as well. For t ∈ Z, their values are equal to the values of the functions Fj(t) in the DPA.

Let ϕ.I[0] = 0 and ϕ.I[|ϕ.I| + 1] = A. The points t ∈ ϕ.I and the other end points of the
intervals with the piecewise linear functions considered in this article will be called break points.
To construct a function in the GrA means to compute their sets I, U and B. Then the GrA is as
follows. At each stage j = 1, . . . , n, we compute the temporary functions Ψk

j (t) and Φk
j (t) which

are used to compute Fj(t). The key features of the algorithm consist in the computation of Φk
j (t),

modifying a piecewise linear function Fj−1(t) by changing linear fragments.

Graphical algorithm

1. Let F0(t) = 0, i.e., F0.I := {A}, F0.U := {0}, F0.B := {0}.
2. FOR j := 1 TO n DO

2.1. FOR k := 1 TO kj DO
2.1.1. Construct the temporary function

Ψk
j (t) = fj.B[k]− fj .U [k]×fj.I[k − 1] + fj.U [k]×t+ Fj−1(t)

according to Procedure 2.1.1.
2.1.2. Construct the temporary function

Φk
j (t) = max

x∈(fj .I[k−1],fj.I[k]]
⋂

[0,A−t]
{Ψk

j (t+ x)− fj.U [k]×t}

according to Procedure 2.1.2.
2.1.3. IF k = 1 THEN Fj(t) := Φk

j (t) ELSE Fj(t) := max{Fj(t),Φ
k
j (t)}.

2.2. Modify the sets I, U,B of the function Fj(t) according to Procedure 2.2.
3. The optimal objective function value is equal to Fn(0).

The above algorithm uses Procedures 2.1.1 and 2.1.2 described below.

In Procedure 2.1.1, we shift the function Fj−1(t) up by the value fj.B[k]− fj.U [k]×fj.I[k − 1]
and increase all slopes in its diagram by fj.U [k]. If all values t ∈ Fj−1.I are integer, then all
values from the set Ψi

j.I are integer as well. It is obvious that Procedure 2.1.1 can be performed
in O(|Fj−1.I|) time.

Procedure 2.1.1

Given are k and j;
Ψk

j .I = ∅, Ψk
j .U = ∅ and Ψk

j .B = ∅.
FOR i := 1 TO |Fj−1.I| DO

add the value Fj−1.I[i] to the set Ψk
j .I;

add the value

fj.B[k]− fj.U [k]×fj.I[k − 1] + fj .U [k]×Fj−1.I[i] + Fj−1.B[i]

to the set Ψk
j .B;

add the value fj.U [k] + Fj−1.U [i] to the set Ψk
j .U ;

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 9 2016

1638 GAFAROV et al.

Fig. 1. Procedure FindMax. Cutting of a non-integer point.

Before describing Procedure 2.1.2., we present Procedure FindMax in which the maximum
function ϕ(t) of two linear fragments ϕ1(t) and ϕ2(t) is constructed.

Procedure FindMax

1. Given are the functions ϕ1(t) = b1 + u1t and ϕ2(t) = b2 + u2t and an interval (t′, t′′]. Let
u1 � u2.

2. IF t′′ − t′ � 1 THEN RETURN ϕ(t) = max{ϕ1(t
′′), ϕ2(t

′′)} + 0×t defined on the interval
(t′, t′′].

3. Find the intersection point t∗ of ϕ1(t) and ϕ2(t).
4. IF t∗ does not exist OR t∗ /∈ (t′, t′′] THEN

IF b1+u1×t′ > b2+u2×t′ THEN RETURN ϕ(t) = ϕ1(t) defined on the interval (t′, t′′];
ELSE RETURN ϕ(t) = ϕ2(t) defined on the interval (t′, t′′].

5. ELSE
IF t∗ ∈ Z THEN

ϕ(t) := ϕ1(t) on the interval (t′, t∗];
ϕ(t) := ϕ2(t) on the interval (t∗, t′′];
RETURN ϕ(t);

ELSE IF t∗ /∈ Z THEN
ϕ(t) := ϕ1(t) on the interval (t′, �t∗�];
ϕ(t) := b2 + u2×�t∗�+ 0×t on the interval (�t∗� − 1, �t∗�];
ϕ(t) := ϕ2(t) on the interval (�t∗�, t′′];
RETURN ϕ(t).

The case when t∗ /∈ Z is presented in Fig. 1. So, if both points t′ and t′′ are integer, then ϕ.I
contains only integer break points t. The running time of Procedure FindMax is constant.

In the subsequent Procedure 2.1.2, we do the following. When we shift s′ to the right, we shift
the interval I ′ = [tleft, tright] of the length fj.I[k]− fj .I[k−1]. We have to use the values Ψk

j (x) for

x ∈ T ′ to calculate Φk
j (t) at the point t = s′. Since Ψk

j (x) is piecewise linear, it is only necessary

to consider the values Ψk
j (x) at the break points belonging to T ′ and at the end points of the

interval T ′. So, if we shift s′ to the right by a small value x ∈ [0, ε] such that all the break points
remains the same, then the value Φk

j (t) will be changed according to the value ϕmax(x).

Procedure 2.1.2

2.1.2.1. Given are k, j and Ψk
j (t).

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 9 2016

A NEW EFFECTIVE DYNAMIC PROGRAM 1639

2.1.2.2. Φk
j .I := ∅, Φk

j .U := ∅ and Φk
j .B := ∅.

2.1.2.3. s′ := 0, tleft := s′ + fj.I[k − 1], tright := min{s′ + fj.I[k], A}.
2.1.2.4. Let T ′ = {Ψk

j .I[v],Ψ
k
j .I[v + 1], . . . ,Ψk

j .I[w]} be the maximal subset of Ψk
j .I, where

tleft < Ψk
j .I[v] < · · · < Ψk

j .I[w] < tright.
Let T := {tleft}

⋃
T ′ ⋃{tright}.

2.1.2.5. WHILE s′ � A DO
2.1.2.6. IF T ′ = ∅ THEN let

w + 1 = argmaxi=1,2,...,|Ψk
j .I|{Ψ

k
j .I[i]|Ψk

j .I[i] > tright}
and v = argmini=1,2,...,|Ψk

j .I|{Ψ
k
j .I[i]|Ψk

j .I[i] > tleft}.
2.1.2.7. IF w + 1 is not defined THEN let w + 1 = |Ψk

j .I|.
2.1.2.8. IF v is not defined THEN let v = |Ψk

j .I|.
2.1.2.9. IF tleft < A THEN εleft := Ψk

j .I[v] − tleft ELSE εleft := A− s′.
2.1.2.10. IF tright < A THEN εright := Ψk

j .I[w + 1]− tright ELSE εright := +∞.
2.1.2.11. ε := min{εleft, εright}.
2.1.2.12. IF tleft < A THEN

bleft := Ψk
j .B[v] + Ψk

j .U [v]×(tleft −Ψk
j .I[v − 1])− fj.U [k]×s′

ELSE bleft := 0.
2.1.2.13. IF tright < A THEN

bright := Ψk
j .B[w + 1] + Ψk

j .U [w + 1]×(tright −Ψk
j .I[w]) − fj.U [k]×s′

ELSE bright := 0.
2.1.2.14. IF T ′ = ∅ THEN binner := 0 ELSE

binner := max
s=v,v+1,...,w

{Ψk
j .B[s] + Ψk

j .U [s]×(Ψk
j .I[s]−Ψk

j .I[s− 1])} − fj .U [k]×s′.

2.1.2.15. Denote function

ϕleft(x) := bleft − (fj.U [k] −Ψk
j .U [v])×x.

IF tleft = A THEN ϕleft(x) := 0.
2.1.2.16. Denote function

ϕright(x) := bright − (fj .U [k]−Ψk
j .U [w + 1])×x.

IF tright = A THEN ϕright(x) := 0.
2.1.2.17. Denote function

ϕinner(x) := binner − fj.U [k]×x.

IF T ′ = ∅ THEN ϕinner(x) := 0.
2.1.2.18. Construct the piecewise linear function

ϕmax(x) := max
x∈[0,ε]

{ϕleft(x), ϕright(x), ϕinner(x)}

according to Procedure FindMax.
2.1.2.19. Add the values from ϕmax.I increased by s′ to the set Φk

j .I.

2.1.2.20. Add the values from ϕmax.B to the set Φk
j .B.

2.1.2.21. Add the values from ϕmax.U to the set Φk
j .U .

2.1.2.22. IF ε = εleft THEN exclude Ψk
j .I[v] from the set T and v := v + 1.

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 9 2016

1640 GAFAROV et al.

2.1.2.23. IF ε = εright THEN include Ψk
j .I[w + 1] to the set T and w := w + 1.

2.1.2.24. s′ := s′ + ε.
2.1.2.25. tleft := s′ + fj.I[k − 1], tright := min{s′ + fj.I[k], A}, recompute T ′ (for details,

see the proof of Lemma 2).
2.1.2.26. Modify the function Φk

j according to Procedure 2.2. (described below).

Next, we present Procedure 2.2. used in step 2.1.2.6 of Procedure 2.1.2. In Procedure 2.2, we
combine two adjoining linear fragments that are in the same line. That means that, if we have
two adjacent linear fragments which are described by the values (slopes) Fj .U [k], Fj .U [k + 1] and
Fj .B[k], Fj .B[k + 1], where Fj .U [k]×(Fj .U [k] − Fj .U [k − 1]) + Fj .B[k] = Fj .B[k + 1], (i.e., these
fragments are on the same line), then, to reduce the number of intervals |Fj .I| and thus the running
time of the algorithm, we can join these two intervals into one interval.

Procedure 2.2

Given is Fj(t);

FOR k := 1 TO |Fj .I| − 1 DO

IF Fj .U [k] = Fj .U [k+1] AND Fj .U [k]×(Fj .U [k]−Fj .U [k−1])+Fj .B[k] = Fj .B[k+1] THEN
Fj .B[k + 1] := Fj .B[k].
Delete the kth elements from Fj .B, Fj .U and Fj .I.

Lemma 2. Procedure 2.1.2 has a running time of O(|Fj−1.I|).
Proof. Step 2.1.2.14 and the re-computation of T ′ in step 2.1.2.25 have to be performed with the

use of a simple data structure. Let {q1, q2, . . . , qr} be a maximal subset of T ′ having the following
properties:

q1 < q2 < · · · < qr;
there is no q ∈ T ′ such that qi � q < qi+1 and

Ψk
j .B[q]+Ψk

j .U [q]×(Ψk
j .I[q]−Ψk

j .I[q−1])�Ψk
j .B[qi+1]+Ψ

k
j .U [qi+1]×(Ψk

j .I[qi+1]−Ψk
j .I[qi+1−1]),

i = 1, . . . , r − 1.

We can keep track of the set {q1, q2, . . . , qr} by storing its elements in increasing order in a
Queue Stack, i.e., a list with the property that elements at the beginning can only be deleted while
at the end, elements can be deleted and added [27]. This data structure can easily be implemented
such that each deletion and each addition requires a constant time. So, steps 2.1.2.14 and 2.1.2.25
can be performed in constant time.

Each of the steps 2.1.2.6–2.1.2.25 can be performed in constant time. The loop 2.1.2.5 can be
performed in O(|Ψk

j .I|) time, where |Ψk
j .I| = |Fj−1(t).I|, since each time a break point from |Ψk

j .I|
is added or deleted. So, the lemma is true. �

We remind that in the DPA, the functional Eqs. (4) are considered. In fact, in Procedure 2.1.1,
we construct the function

bkj − ukj t
k−1
j + ukj ×(t+ x) + Fj−1(t+ x)

and in Procedure 2.1.2, we construct the function

Φk
j (t) = max

x∈(tk−1
j ,tkj]

⋂
[0,A−t]

{bkj − ukj t
k−1
j + ukj ×(t+ x)− ukj ×t+ Fj−1(t+ x)}.

Unlike the DPA, to construct Φk
j (t) in the GrA, we do not consider all integer points x ∈ (tk−1

j , tkj]
⋂

[0, A − t], but only the break points from the interval, since only they influence the values of Φk
j (t)

(and in addition tleft, tright). Step 2.1.3 can be performed according to Procedure FindMax as
well, i.e., to construct the function Fj(t) := max{Fj(t),Φ

i
j(t)}, their linear fragments have to be

compared in each interval, organized by their break points. It is easy to see that we do the same

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 9 2016

A NEW EFFECTIVE DYNAMIC PROGRAM 1641

operations with the integer points t as in the DPA. So, the values Fj(t), t ∈ Z, are the same for
the GrA and the DPA, and we can state the following:

Lemma 3. The values Fj(t), j = 1, 2, . . . , n, at the points t ∈ [0, A]
⋂
Z are equal to the values

of the functions Fj(t) considered in the DPA.

Lemma 4. All functions Fj(t), j = 1, 2, . . . , n, are piecewise linear on the interval [0, A] with
integer break points.

Proof. For F0(t), the lemma is true. In Procedure 2.1.1, all break points from the set Ψi
1.I are

integer as well (see the comments after Procedure 2.1.1). Since all points from f1.I are integer, we
have ε ∈ Z and as a consequence, s′ ∈ Z. According to the Procedure FindMax, all points ϕmax.I
considered in Procedure 2.1.2 are integer. So, all break points from Φi

j.I, i = 1, 2, . . . , kj , are

integer as well. Thus, the break points of the function F1(t) := max{F1(t),Φ
i
1(t)} are integer, if

we use Procedure FindMax to compute the function max{F1(t),Φ
i
1(t)}. Analogously, we can prove

that all break points of F2(t) are integer, etc.

It is obvious that all functions Fj(t), j = 1, 2, . . . , n, constructed in the GrA are piecewise linear.
Thus, the lemma is true. �

Theorem. The GrA finds an optimal solution of the problem in

O

(∑
kj min

{

A, max
j=1,2,...,n

{|Fj .B|}
})

time.

Proof. Analogously to the proof of Lemma 4, after each step 2.1.3 of the GrA, the func-
tion Fj(t), j = 1, 2, . . . , n, has only integer break points from the interval [0, A]. Each function Φi

j .I,
j = 1, 2, . . . , n, i = 1, 2, . . . , kj , has only integer break points from [0, A] as well. So, to perform
step 2.1.3, we need to perform Procedure FindMax on no more than A + 1 intervals. Thus, the
running time of step 2.1.3 is O(A). According to Lemmas 1 and 2, the running time of steps 2.1.1
and 2.1.2 is O(Fj .I), where Fj .I � A. The running time of step 2.2 is O(Fj .I) as well.

Analogously to Section 2, it is easy to show that Fj(t), j = 1, 2, . . . , n, is a non-increasing
function in t. Thus,

Fj .B[k] � Fj .B[k + 1], j = 1, 2, . . . , n, k = 1, 2, . . . , |Fj .I| − 1.

Then, according to Procedure 2.2, there are no more than 2×|Fj .B| different values in the set Fj .I.

Thus, the running time of the GrA is

O

(∑
kj min

{

A, max
j=1,2,...,n

{|Fj .B|}
})

. �

In fact, the running time is less than O(
∑

kj min{A,F ∗}), where F ∗ is the optimal objective
function value, since maxj=1,2,...,n |Fj .B| � F ∗.

4. EXAMPLE

Next, we will illustrate the idea of the GrA using the numerical example presented in Fig. 2. A
full description of all calculations can be found in [20]. Here, we only present a short sketch. In
this instance, we consider four projects with the profit functions fj(t), j = 1, 2, 3, 4 (see table).

Functions fj(t)
f1.I = {3, 10, 13, 25} f2.I = {5, 25} f3.I = {2, 4, 6, 25} f4.I = {3, 4, 25}
f1.U = {0, 1, 13 , 0} f2.U = { 2

5 , 0} f3.U = {0, 2, 12 , 0} f4.U = {0, 0, 0}
f1.B = {0, 0, 7, 8} f2.B = {0, 2} f3.B = {0, 0, 4, 5} f4.I = {0, 1, 4}

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 9 2016

1642 GAFAROV et al.

Fig. 2. Functions fj(t).

Step j = 1, k = 1. According to Procedure 2.1.1, we have Ψk
j (x) = 0, Ψk

j .I = {0}, Ψk
j .U = {0}

and Ψk
j .B = {0}.

Next, we consider each iteration of the cycle [2.1.2.5] in Procedure 2.1.2.

First consider, s′ = 0. Before the first iteration, we have T ′ = ∅, tleft = 0, tright = 3, and thus, in
step 2.1.2.11, we have ε = min{25− 0, 25 − 3} = 22. In steps 2.1.2.12–2.1.2.14, we obtain bleft = 0,
bright = 0 and binner = 0 and in steps 2.1.2.15–2.1.2.17, we have ϕleft(x) = 0, ϕright(x) = 0,
ϕinner(x) = 0 and, as a consequence, ϕmax(x) = 0. In step 2.1.2.24, we get s′ = s′ + 22 = 22;

So, we have Φ1
1(x) = ϕmax(x) = 0 for x = [0, 22] (from the previous to the current value of s′).

Next, consider s′ = 22. After steps 2.1.2.22–2.1.2.25 in the previous iteration, we have T ′ = {25},
tleft = 22 and tright = 25. These values are used in this iteration. In step 2.1.2.11, we have
ε = 25− 22 = 3. Then we get bleft = 0, bright = 0 and binner = 0. Moreover, ϕleft(x) = 0,
ϕright(x) = 0 and ϕinner(x) = 0. Thus, ϕmax(x) = 0. We get s′ = 22 + 3 = 25.

So, we have Φ1
1(x) = ϕmax(x) = 0 for x = [22, 25] as well and as a consequence, Φ1

1(x) = 0,
Φ1
1.I = {0}, Φ1

1.U = {0} and Φ1
1.B = {0}. Observe that instead of approximately 25 states t in the

DPA, here we considered only two states s′. Next, we present the detailed computations for the
functions Φ2

1,Φ
3
1 and Φ4

1.

Step j = 1, k = 2. We have Ψk
j (x) = x− 3, Ψk

j .I = {25}, Ψk
j .U = {1} and Ψk

j .B = {−3}.
First, consider s′ = 0. We get T ′ = ∅, tleft = 3, tright = 10 and ε = min{25 − 3, 25− 10} = 15.

Moreover, bleft = 0, bright = 7 and binner = 0. Then ϕleft(x) = 0+ (1− 1)x, ϕright(x) = 7+ (1− 1)x
and ϕinner(x) = 0. Thus, ϕmax(x) = 7. We get s′ = s′ + 15 = 15.

Next, consider s′ = 15. We have T ′ = {25}, tleft = 15 + 3 = 18, tright = 15 + 10 = 25 and ε =
25− 18 = 7. Moreover, bleft = −3 + 1× 18 − 1× 15 = 0, bright = 0 and binner = −3 + 1× (25 − 0)−
1× 15 = 7. We get ϕleft(x) = 0 + (1− 1)x, ϕright(x) = 0 and ϕinner(x) = 7− x. Thus, we obtain
ϕmax(x) = 7− x. We get s′ = s′ + 7 = 22.

Finally, consider s′ = 22. We have T ′ = ∅, tleft = 25, tright = 22 + 10 = 32 and ε = A− s′ =
25 − 22 = 3. Moreover, ϕleft(x) = ϕright(x) = ϕinner(x) = 0. Then ϕmax(x) = 0. We get s′ =
s′ + 3 = 25.

We have Φ2
1.I = {15, 22, 25}, Φ2

1.U = {0,−1, 0} and Φ2
1.B = {7, 7, 0}.

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 9 2016

A NEW EFFECTIVE DYNAMIC PROGRAM 1643

Fig. 3. Calculations in the example.

Step j = 1, k = 3. We have Ψk
j (x) = x+32

3 , Ψ
k
j .I = {25}, Ψk

j .U = {1
3} and Ψk

j .B = {32
3}. This

step is performed analogously. We have to consider s′ = 0, 12, 15.

We obtain Φ3
1.I = {12, 15, 25}, Φ3

1.U = {0,−1
3 , 0} and Φ3

1.B = {8, 7, 0}.
Step j = 1, k = 4. We have Ψk

j (x) = 8, Ψk
j .I = {25}, Ψk

j .U = {0} and Ψk
j .B = {8}. This step

is performed analogously. We have to consider s′ = 0, 12.

We obtain Φ4
1.I = {12, 25}, Φ4

1.U = {0, 0} and Φ4
1.B = {8, 0}.

So, after Step j = 1, we have F1(t) = max{Φ1
1,Φ

2
1,Φ

3
1,Φ

4
1}, F1.I = {12, 15, 22, 25}, F1.U =

{0,−1
3 ,−1, 0} and F1.B = {8, 8, 7, 0}, see Fig. 3a. In fact, the function F1(t) is obtained only

from the two functions Φ2
1 and Φ3

1, where Φ2
1 is the maximum function on the interval [0, 15] and

Φ3
1 is the maximum function on the interval [15, 25].

Next, we only present the states considered and the functions calculated in the steps j = 2, 3, 4.
As mentioned before, the full description of all calculations can be found in [20].

Step j = 2, k = 1. The states considered are s′ = 0, 7, 10, 12, 15, 17, 20, 22. We have Φ1
2.I =

{7, 10, 15, 20, 25}, Φ1
2.U = {0,−1

3 ,−2
5 ,−1,−2

5} and Φ1
2.B = {10, 10, 9, 7, 2}, see Fig. 3b.

Step j = 2, k = 2. Since f2.U [2] = 0, this step can be done in an easier way. It is only necessary
to shift the diagram of the function F1(t) to the left by the value 5 and up by the value 2. So, we have
Φ2
2.I = {12−5, 15−5, 22−5, 25−5}, Φ2

2.U = {0,−1
3 ,−1, 0} and Φ2

2.B = {8+2, 8+2, 7+2, 0+2}.
AUTOMATION AND REMOTE CONTROL Vol. 77 No. 9 2016

1644 GAFAROV et al.

Fig. 4. Function F4(t).

In Fig. 3c, the maximum function is presented. In fact, we have F2(t) = Φ1
2(t), i.e., F2.I =

{7, 10, 15, 20, 25}, F2.U = {0,−1
3 ,−2

5 ,−1,−2
5} and F2.B = {10, 10, 9, 7, 2}.

Step j = 3, k = 1. Since f3.U [1] = 0, this step can be done in an easier way. To obtain the
function Φ1

3(t), it is only necessary to shift the diagram of the function F2(t) to the left by the
value 0 and up by the value 0.

Step j = 3, k = 2. The states considered are s′ = 0, 3, 5, 6, 8, 11, 13, 16, 18, 21, 23. We
have Φ2

3.I = {7− 4, 10 − 4, 15 − 4, 20 − 4, 25 − 4, 23, 25}, Φ2
3.U = {0,−1

3 ,−2
5 ,−1,−2

5 ,−2, 0} and
Φ2
3.B = {14, 14, 13, 11, 6, 4, 0}.
Step j = 3, k = 3. The states considered are s′ = 0, 1, 3, 4, 6, 9, 11, 14, 16, 19, 21. We have Φ3

3.I =
{1, 4, 9, 11, 152

3 , 19, 21, 25}, Φ3
3.U = {0,−1

3 ,−2
5 ,−1

2 ,−1,−2
5 ,−1

2 , 0} and Φ3
3.B = {15, 14, 12, 11, 61

3 ,
5, 0}. In this example, we do not cut the point 152

3 as it is presented in Fig. 1. So, here we
have two non-integer break points.

Step j = 3, k = 4. Since f3.U [4] = 0, this step can be done in an easier way. To obtain the
function Φ4

3(t), it is only necessary to shift the diagram of the function F2(t) to the left by the value
6 and up by the value 5.

The functions Φ1
3(t) and Φ2

3(t) are presented in Fig. 3d, and the functions Φ3
3(t) and Φ4

3(t) are
shown in Fig. 3e. In Fig. 3f, the maximum function

F3(t) = max{Φ1
3(t),Φ

2
3(t),Φ

3
3(t),Φ

4
3(t)}

is presented. So, we have F3.I = {1, 4, 9, 11, 152
3 , 21, 22

1
2 , 25}, F3.U = {0,−1

3 ,−2
5 ,−1

2 ,−1,−2
5 ,

−1
2 ,−2

5} and F3.B = {15, 14, 12, 11, 61
3 , 4, 1}.

Steps j = 4, k = 1, 2, 3 are performed in an easy way, i.e., to obtain the functions Φ1
4(t),Φ

2
4(t)

and Φ3
4(t), we have to shift the diagram of the function F3(t) to the left by the value 0, 3, 4 and up

by the value 0, 1, 4, respectively. In Fig. 4, the maximum function F4(t) is presented.

To find an optimal solution at the point s = 0, we can do backtracking. We have x4 = 4 and
f4(x4) = 4, x3 = 6 and f3(x3) = 5, x2 = 5 and f2(x2) = 2 as well as x1 = 10 and f1(x1) = 7. So,
the optimal objective function value is F ∗(0) = 18.

In the GrA, we considered the following number of states s′ : 2 + 3 + 3 + 2 = 10 (for j = 1),
8 + 4 = 12 (for j = 2, where 4 states were considered for k = 2), 5 + 10 + 11 + 5 = 31 (for j = 3,
where 5 states were considered for k = 1 and k = 4), 7 + 7 + 7 = 21 (for j = 4, i.e., during the
shift of the diagram). So, in total we considered 10 + 12 + 31 + 21 = 74 states s′. In the DPA,
approximately 25(3 + 2+ 4+ 3) = 300 states will be considered. If we scale our instance to a large
number M (i.e., we multiply all input data by M), the running time of the DPA increases by the
factor M , but the running time of the GrA remains the same. Of course, for each state in the GrA,

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 9 2016

A NEW EFFECTIVE DYNAMIC PROGRAM 1645

we need more calculations than in the DPA. However, this number is constant and the GrA has a
better running time.

5. AN FPTAS BASED ON THE GRA

In this section, a fully polynomial-time approximation scheme (FPTAS) is derived based on the
GrA presented in Section 3.

First, we recall some relevant definitions. For the optimization problem of minimizing a func-
tion F (π), a polynomial-time algorithm that finds a feasible solution π′ such that F (π′) is at most
ρ � 1 times less than the optimal value F (π∗) is called a ρ-approximation algorithm; the value of ρ
is called a worst-case ratio bound. If a problem admits a ρ-approximation algorithm, it is said to
be approximable within a factor ρ. A family of ρ-approximation algorithms is called an FPTAS, if
ρ = 1 + ε for any ε > 0 and the running time is polynomial with respect to both the length of the
problem input and 1/ε.

Let LB = maxj=1,...,n fj(A) be a lower bound and UB = nLB be an upper bound on the optimal
objective function value.

The idea of the FPTAS is as follows. Let δ = εLB
n . To reduce the time complexity of the GrA,

we have to diminish the number of columns |Fj .B| considered, which corresponds to the number
of different objective function values b ∈ Fj .B, b � UB. If we do not consider the original values
b ∈ Fj .B but the values b which are rounded up or down to the nearest multiple of δ values b, there

are no more than UB
δ = n2

ε different values b. Then we will be able to approximate the function Fj(t)

into a similar function with no more than 2n2

ε break points (see Fig. 5). Furthermore, for such a
modified table representing a function F j(t), we will have

|Fj(t)− Fj(t)| < δ � εF (π∗)
n

.

If we do the rounding and modification after each step 2.2, the cumulative error will be no more
than nδ � εF (π∗), and the total running time of the n runs of the step 2.2 will be

O

(
n2 ∑ kj

ε

)

,

i.e., an FPTAS is obtained.

Fig. 5. Substitution of columns and modification of Fl(t).

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 9 2016

1646 GAFAROV et al.

In [28], a technique was proposed to improve the complexity of an approximation algorithm for
optimization problems. This technique can be described as follows. Let there exist an FPTAS for
a problem with a running time bounded by a polynomial P (L, 1ε ,

UB
LB), where L is the input length

of the problem instance and UB, LB are known upper and lower bounds, respectively. Let the
value UB

LB be not bounded by a constant. Then this technique enables us to find in P (L, log log UB
LB)

time values UB0 and LB0 such that

LB0 � F ∗ � UB0 < 3LB0,

i.e., UB0
LB0

is bounded by the constant 3. By using such values UB0 and LB0, the running time of the

FPTAS will be reduced to P (L, 1ε), where P is the same polynomial. So, by using this technique,
we can improve the FPTAS to have a running time of

O

(
n×∑

kj
ε

(1 + log log n)

)

,

Finally, we only note that an FPTAS based on a GrA was presented in [29] for some single
machine scheduling problems.

6. CONCLUDING REMARKS

In this paper, we used a graphical approach to improve a known pseudo-polynomial algorithm
for the project investment problem and to derive an FPTAS with the best known running time.

The practical usefulness of the graphical approach is not limited to this project investment
problem or similar warehousing and lot sizing problems. The graphical approach can be applied
to problems, for which a pseudo-polynomial algorithm exists and Boolean variables are used in the
sense that yes/no decisions have to be made. This is the case for many applications of capital bud-
geting in science and engineering. However, e.g., for the knapsack problem, the graphical algorithm
mostly reduces substantially the number of states to be considered but the time complexity of the
algorithm remains pseudo-polynomial [26]. On the other side, e.g., for the single machine schedul-
ing problem of maximizing total tardiness, such a graphical algorithm improved the complexity
from O(n

∑
pj) to O(n2) [31]. Thus, it is a subject of future research to explore the theoretical and

practical issues of this new approach and to apply it to more general problems.

ACKNOWLEDGMENTS

This work has been supported by the Russian Foundation for Basic Research, projects nos.
13-01-12108, 13-08-13190, 15-07-03141, 15-07-07489 and DAAD A/1400328 and HSE Faculty of
Economics. Research was supported by The Ministry of Education and Science of Russia, unique
identifier—RFMEFI58214X0003.

REFERENCES

1. Li, X.M., Fang, S.-C., Tian, Y., and Guo, X.L., Expanded Model of the Project Portfolio Selection
Problem with Divisibility, Time Profile Factors and Cardinality Constraints, J. Operat. Res., 2004,
doi:10.1057/jors.2014.75.

2. Dolgui, A. and Proth, J-M., Supply Chain Engineering: Useful Methods and Techniques, Berlin:
Springer-Verlag, 2010.

3. Tavana, M., Khalili-Danghani, K., and Abtahi, A.R., A Fuzzy Multidimensional Multiple-Choice Model
for Project Portfolio Selection Using an Evolutionary Algorithm, Ann. Operat. Res., 2013, vol. 206,
no. 1, pp. 449–483.

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 9 2016

A NEW EFFECTIVE DYNAMIC PROGRAM 1647

4. Chang, P.-T. and Lee, J.-H., A Fuzzy DEA and Knapsack Formulation Integrated Model for Project
Selection, Comput. Operat. Res., 2012, vol. 30, pp. 112–125.

5. Beaujon, G.J., Marin, S.P., and McDonald, G.C., Balancing and Optimizing a Portfolio of R&D Projects,
Nav. Res. Logist., 2001, vol. 48, pp. 18–40.

6. Mavrotas, G., Diakoulaki, D., and Kourentzis, A., Selection Among Ranked Projects under Segmenta-
tion, Policy and Logical Constraints, Eur. J. Operat. Res., 2008, vol. 187, no. 1, pp. 177–192.

7. Herbots, J., Herroelen, W., and Leus, R., Dynamic Order Acceptance and Capacity Planning on a Single
Bottleneck Resource, Nav. Res. Logist., 2007, vol. 54, pp. 874–889.

8. Kellerer, H. and Pferschy, U., Improved Dynamic Programming in Connection with a FPTAS for the
Knapsack Problem, J. Combinat. Optimiz., 2004, no. 8, pp 5–11.

9. Caprara, A., Kellerer, H., Pferschy, U., and Pisinger, D., Approximation Algorithms for Knapsack
Problems with Cardinality Constraints, Eur. J. Operat. Res., 2000, vol. 123, no. 2, pp. 333–345.

10. Mastrolilli, M. and Hutter, M., Hybrid Rounding Techniques for Knapsack Problems, Discr. Appl. Math.,
2006, vol. 154, no. 4, pp. 640–649.

11. Bazgan, C., Hugot, H., and Vanderpoorten, D., Implementing an Effcient FPTAS for the 0-1 Multi-
Objective Knapsack Problem, Eur. J. Operat. Res., 2009, vol. 198, no. 1, pp. 47–56.

12. Sristava, V. and Bullo, F., Knapsack Problems with Sigmoid Utilities: Approximation Algorithms via
Hybrid Optimization, Eur. J. Operat. Res., 2014, vol. 236, no. 2, pp. 488–498.

13. Guler, A., Nuriyev, U.G., Berberler, M.E., and Nurieva, F., Algorithms with Guarantee Value for
Knapsack Problems, Optimization, 2012, vol. 61, no. 4, pp. 477–488.

14. Fortin, D. and Tseveendory, I., Piecewise Convex Maximization Approach to Multiknapsack, Optimiza-
tion, 2009, vol. 58, no. 7, pp. 883–895.

15. Wu, F.L., Yen, Z., Hou, Y.H. and Ni, Y.X., Applications of AI Techniques to Generation Planning and
Investment, IEEE Power Engineering Society General Meeting, Denver, 2004, 936–940.

16. Kellerer, H., Pferschy, U., and Pisinger, D., Knapsack Problems, Berlin: Springer-Verlag, 2004.

17. McLay, L.A. and Jacobson, S.H., Algorithms for the Bounded Set-up Knapsack Problem, Discr. Opti-
miz., 2007, vol. 4, pp. 206–412.

18. Shaw, D.X. and Wagelmans, A.P.M., An Algorithm for Single-Item Capacitated Economic Lot Sizing
with Piecewise Linear Production Costs and General Holding Costs, Manage. Sci., 1998, vol. 44, no. 6,
pp. 831–838.

19. Kameshwaran, S. and Narahari, Y., Nonconvex Piecewise Linear Knapsack Problems, Eur. J. Operat.
Res., 2009, vol. 192, pp. 56–68.

20. Gafarov, E.R., Dolgui, A., Lazarev, A.A., and Werner, F., A Graphical Approach to Solve an Investment
Optimization Problem, J. Math. Model Algor., 2014, vol. 13, no. 4, pp. 597–614.

21. Posypkin, M.A. and Sigal, I.Kh., Speedup Estimates for Some Variants of the Parallel Implementations
of the Branch-and-Bound Method, J. Math. Math. Physics, 2006, vol. 46, no. 12, pp. 2189–2202.

22. O’Neil, E.T. and Kerlin, S., A Simple 2O(
√
x) Algorithm for PARTITION and SUBSET SUM, 2010,

http://www.lidi.info.unlp.edu.ar/WorldComp2011-Mirror/FCS8171.pdf.

23. Bar-Noy, A., Golin, M.J., and Zhang, Y., Online Dynamic Programming Speedups, J. Theory Comput.
Syst., 2009, vol. 45, no 3, pp. 429–445.

24. Eppstein, D., Galil, Z., and Giancarlo, R., Speeding up Dynamic Programming, Proc. 29th Symp. Found.
Comput. Sci., 1988.

25. Wagelmans, A.P.M. and Gerodimos, A.E., Improved Dynamic Programs for Some Batching Problems
Involving the Maximum Lateness Criterion, Oper. Res. Lett., 2000, vol. 27, pp. 109–118.

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 9 2016

1648 GAFAROV et al.

26. Lazarev, A.A. andWerner, F., A Graphical Realization of the Dynamic ProgrammingMethod for Solving
NP-hard Problems, Comput. Math. Appl., 2009, vol. 58, no. 4, pp. 619–631.

27. Aho, A.V., Hopcroft, J.E., and Ullman, J.D., Data Structures and Algorithms, London: Addison-Wesley,
1983.

28. Chubanov, S., Kovalyov, M.Y., and Pesch, E., An FPTAS for a Single-Item Capacitated Economic
Lot-Sizing Problem with Monotone Cost Structure, Math. Program., 2006, vol. 106, pp. 453–466.

29. Gafarov, E.R., Dolgui, A., and Werner, F., A Graphical Approach for Solving Single Machine Scheduling
Problems Approximately, Int. J. Production Res., 2014, vol. 52(13), pp. 3762–3777.

30. Schemeleva, K., Delorme, X., Dolgui, A., et al., Lot-Sizing on a Single Imperfect Machine: ILP Models
and FPTAS Extensions, Comput. Indust. Engin., 2013. vol. 65, no. 4, pp. 561–569.

31. Gafarov, E.R., Lazarev, A.A., and Werner, F., Transforming a Pseudo-Polynomial Algorithm for the
Single Machine Total Tardiness Problem into a Polynomial One, Ann. Operat. Res., 2012, vol. 196,
pp. 247–261.

This paper was recommended for publication by M.V. Gubko, a member of the Editorial Board

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 9 2016

		2016-09-07T11:44:56+0300
	Preflight Ticket Signature

