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Vesna Dragović, Montenegrin Academy of Sciences and Arts
Angelia Nedich, University of Illinois at Urbana Champaign, USA
Alexander P. Afanasiev, Institute for Information Transmission Problems
of RAS, Russia
Anatoly S. Antipin, Dorodnicyn Computing Centre of RAS, Russia
Natalia K. Burova, Dorodnicyn Computing Centre of RAS, Russia
Vladimir A. Garanzha, Dorodnicyn Computing Centre of RAS, Russia
Alexander I. Golikov, Dorodnicyn Computing Centre of RAS, Russia
Alexander Yu. Gornov, Inst. System Dynamics and Control Theory, SB
of RAS, Russia
Alexander V. Lotov, Dorodnicyn Computing Centre of RAS, Russia
Evgeny G. Molchanov, Moscow Institute of Physics and Technology, Rus-
sia
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semiconductor heterostructures
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Multilayer structures based on wide-bandgap semiconductors have some
fundamental advantages for the production of SFH-transistors. Particu-
larly its’ application provides wide possibilities of device bond structure
variation and generation of two-dimensional electronic gas (2DEG) with
high charge carriers density. Application of multilevel computation meth-
ods [1] to the calculation of charge density distribution and mobility as
well as to the modeling of the initial phases of semiconductor heterostruc-
tures growth is considered in this project.

Three-level modeling scheme for the nanoscale semiconductor het-
erostructures with respect of the spontaneous and piezoelectric polariza-
tion is proposed. The scheme combines calculations on three different
scales. First of all ab initio calculations [2] of interface charge density
should be performed. Calculation of charge carriers distribution based
on the conjugated Schrödinger and Poisson equations allows to obtain
following 2DEG properties: energy levels, corresponding wavefunctions,
potential energy distribution and charge carriers density distribution over
the heterostructure [3]. On the third step electron mobility in 2DEG with
respect to various scattering mechanisms can be calculated. The increase
in the calculation process speed was achieved by the use of the approach
based on the approximation of non-linear dependence of electron concen-
tration on the potential. The efficiency of the proposed algorithm for
the problems under consideration is demonstrated. In the framework of
this model the values of 2DEG concentration and mobility were calcu-
lated for various Al concentrations x in AlxGa1-xN barrier. A number of
computational experiments were performed to study the influence of such
heterostructure characteristics as barrier thickness, barrier doping, spacer
width, presence of AlN intermediate layer on the properties of 2DEG.

The developed methods of mathematical modeling open prospects for
solution of the optimization problems actual for development of microwave
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electronics.

The work is supported by the Russian Science Fund (project no. 14-11-

00782).
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One of the priority directions of the current technologies in structural
materials science is receiving new materials with the set of properties.
The newest methods of computer modeling allow to predict structural
characteristics of new materials without carrying out natural experiments
and to count their properties.

In this work multilevel approach at which calculations of structure
and properties of one-component and two-component materials at each
level of scale are carried out with application of the corresponding ap-
proximations and methods is applied. At the nuclear and crystal level
quantum-mechanical calculations are used (on the basis of the theory of
functionality of electronic firmness [1]). The values received at the first
level of scale are transferred to the second microscopic large-scale level.
At this level molecular and dynamic approach with use of modern poten-
tials of interatomic interaction is used. Originally the type of potential of
interatomic interaction (Morse, Tersoff, Lennard-Jones, Brenner-Tersoff’s
potential, etc.) which will model most effectively and precisely behavior
of atoms of a crystal lattice depending on type of a chemical bond (ion,
covalent, metal, etc.), and also from features of the modelled material is
selected. Further selection of parameters of the chosen potential of inter-
atomic interaction is made and the optimizing problem of parametrical
identification is solved [2, 3]. In the course of selection results of the cal-
culations received at the nuclear and crystal level [1] were used. To carry
out identification of parameters of the potential chosen for modeling of
concrete material, criterion function of the following look is formed:

F (ξ) = ω1(Ecoh(ξ) − Efpc
coh )

2 + ω2(a(ξ)− afpc)2+

+ω3(B(ξ)−Bfps)2 + ω4(C
′(ξ)− C′fpc)2 + ω5(C44(ξ)− Cfpc

44 )2+
+ω6(ζ(ξ)− ζfpc)2 → min ξ = (ξ1 . . . ξm).

(1)

In criterion function as the reference the values of cohesive energy
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(Ecoh(ξ)), calculated with the help the ab-initio calculations at the first
large-scale level and the values of cohesive energy (Ecoh), calculated by
means of the optimized potential of interatomic interaction and depend-
ing on its parameters are used. Values of a constant lattice – a(ξ), values
of the volume module of elasticity – B(ξ), the module of shift C′(ξ),
constant elasticity C44(ξ) and Kleynman’s constant ζ(ξ), also depend on
potential parameters. Calculation of all these values was carried out on
the formulas given in [4]. The contribution of each square of a difference
to value of criterion function decided on the help of weight coefficients.
The essence of process of identification of parameters of potential con-
sists in finding of such set of parameters at which the calculated values
of physical quantities are close to reference values that is expressed in
achievement by criterion function (1) minimum value. Thus, the solution
of a problem of minimization of criterion function provides finding of an
optimum set of parameters of potential for the description of structure of
the considered material. The Granular Radial Search and Basin-Hopping
[5] method were applied to the solution of an optimizing task. The prob-
lem of parametrical identification of potentials of interatomic interaction
was solved for unicomponent materials, such as Al, Si, Fe,W , and for the
two-component materials AlN , Al203, SiC. Results of computer modeling
will be coordinated with known tabular data.

The authors were supported by the Russian Science Fund (no. 14-11-00782).
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The using of vector sets for a planning is one of the approaches in
a problem of resource allocation among multiple users. Let the scalar b
be the value of a resource, which is used for the production n types of
commodities. Assume that the model is linear. Denote by xi the output
level of commodity i = 1, . . . , n. Let ai be the cost coefficient. Under
the condition of total consumption of the resource, we have

∑
aixi = b.

Suppose we know the vector set x0 such that its components correspond
to the desired proportions of production. In this case the solution is the
vector x∗ = ωx0, where the scalar ω has the value b/

∑
aix

0
i .

Let us consider the problem related to a methodology for calculating
vector sets. This methodology involves two steps. First the experts must
determine the proportions of production for some couples of commodities.
In the general case, these recommendations may contain contradictions.
The second step is an algorithmic processing of the expert data. This step
generates the vector set x0.

Assume that the experts have determined the proportions of produc-
tion for some couples of commodities: xi/xj = rij , (i, j) ∈ R, where
rij are some positive scalars and R is a set of ordered pairs of indexes.
These proportions may contain contradictions. The simplest example of
such contradiction is the inequality rij 6= 1/rji. Such cases may occur
when one expert group relates the importance of the commodity i to
other commodities, and another expert group take commodity j as a ba-
sis for comparing, where j 6= i. It may be also violated the transitivity:
rijrjk 6= rik. Such improper problems should be regarded as an adequate
to economic realities, when the proportion of the production are evaluated
by independent experts on the basis of personal preferences.

To solve the improper problem of finding a vector set we will use the
methodology of multi-criteria optimization. This means that we minimize
the deviations of actual proportions with respect to the given ones. In
fact, we have the following problem with |R| objective functions:

∣
∣
∣
∣

xi
xj

− rij

∣
∣
∣
∣
→ min, (i, j) ∈ R, xi, xj > 0.
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Let us remark that these objective functions estimate the absolute
values of deviations. This may result to unjustifiably high importance for
the criteria with large absolute values of parameters rij . To eliminate this
influence we propose to use the following |R| objective functions:

∣
∣
∣
∣

1

rij

xi
xj

− 1

∣
∣
∣
∣
→ min, (i, j) ∈ R, xi, xj > 0. (1)

We consider the approach to the definition of a vector set such that
the initial multi-criteria problem is converted into an one-criterion prob-
lem. We assume that the optimal solution is the vector which provides
the minimum of the maximum value in (1). In this case the problem is
formulated as follows: find the vector x∗ and the scalar ω∗ such that

ω → min

under the conditions
∣
∣
∣
∣

1

rij

xi
xj

− 1

∣
∣
∣
∣
6 ω, (i, j) ∈ R, xi, xj > 0.

The author was supported by the Russian Foundation for Basic Research

(project no. 13-07-00730).
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In this report we propose an approach based on replacing the dif-
ferentiation operation on the operation of integration, which has good
conditionality. The main result is a formula representing the analyzed
signal in the form of a power function, whose coefficients are calculated
on the basis of repeated integrations. This formula has an approximating
meaning in relation to the operation of differentiation.

The function ϕ(t) approximating the function f(t) is sought in the
form

ϕ(t) =

n∑

i=0

Ai

ti

i !

Coefficients A0, A1, A2, . . . , An have the sense of derivatives of f(t).
A = (A0, A1, A2, . . . , An)

T calculated by the formula

A = D

(
1

τ

)

M−1D

(
1

τ

)

F (τ)

whereD(· ) diagonal matrix with diagonal elements 1
τ i
, i = 0, 1, 2, . . . , n.

M =
{

1
(i+j) !

}

(n+1)×(n+1)

F (τ) = (f0(τ), f1(τ), f2(τ), . . . , fn(τ))
T ,
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where fi(τ) =

t+τ∫

t

· · ·
∫

︸ ︷︷ ︸

i

f(S0) dS0, dS1, . . . , dSi — n-fold integral.

The formula is compared with the Taylar formula.
The theorem to estimate the accuracy of computation of the deriva-

tives is formulated and proved.

Theorem 1.

Let f(t) – n+ 1 times continuously differentiable function. Then

∣
∣
∣Ak − f

(t)
k

∣
∣
∣ ≤ L

(n+ k) !

(2n+ 1) !
Ck

n+1 τn+1−k,

L− constant,

Ck
n+1 =

(n+ 2− k)(n+ 3− k) . . . (n+ 1)

k !

The proposed approach allows to approach the problem of generaliza-
tion of the differentiation operation to the case of nonsmooth functions.
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We consider the control problem for discrete processes:

xi+1 = fi(X
i, U i), i = 1, 2, ..., N − 1, (1)

f0(X
0, U0) = 0, (2)

fN(XN , UN) → min
u∈V

. (3)

Here xi ∈ Rn is the state of the controlled discrete process at the ith

step, i = 1, 2, ..., N ; X i = (x1, x2, ..., xN ) ∈ RnN ; uj ∈ Rr is the state
of the jth control action, j = 1, 2, ...,M , U = (u1, u2, ..., uM ) ∈ RrN ;
X i ⊂ X and U i ⊂ U are the sets of the object’s and control actions’
states determined by the corresponding index sets X i = {xj : j ∈ Ii ⊂
I = {1, 2, ..., N}}, U i = {uj : j ∈ J i ⊂ J = {1, 2, ...,M}}; fi(·, ·), i =
0, 1, ..., N−1, are given n–dimensional vector-functions, differentiable with
respect to their arguments; fN(·, ·) is the given differentiable function;
V ⊂ RrN is the domain of admissible values of the control actions.

Depending on the structure of the index sets Ii, J i, i = 0, 1, ..., N − 1,
the correlations (1)-(2) can describe one-step, multi-step, loaded, delayed
discrete processes with initial, boundary, as well as non-separated bound-
ary and intermediate conditions.

Depending on the structure of the index sets IN , JN , we obtain dis-
crete analogues of Lagrangian, Mayer, Bolza and Moiseev functionals.

We have obtained necessary optimality conditions for the problem (1)-
(3) in the general form using the Fast Automatic Differentiation technique
[1]. A comparative analysis with known optimality conditions for certain
classes of control problems for discrete processes, obtained by other au-
thors, has been conducted [2-4].
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We give the numerical results of solution to the optimal control prob-
lems for loaded discrete processes with unseparated intermediate and
boundary conditions, based on the derived constructive formulas for the
gradient of the criterion functional and on special algorithms of calcula-
tion of the state of discrete loaded processes with unseparated conditions,
which are analogues of continuous processes [5, 6].
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We consider the oscillatory process describing the transition from one
steady-state fluid motion regime in a pipeline to another:

−∂p(x, t)
∂x

=
∂ω(x, t)

∂t
+ 2aω +

L∑

i=1

ui(t) · δ(x− xi),

−∂p(x, t)
∂t

= c2
∂ω(x, t)

∂x
, x ∈ [0, l], t ∈ [0, T ]. (1)

Here p(x, t), ω(x, t) are the pressure and fluid velocity at the point
x ∈ [0, l] at the time moment t; l is the length of the pipeline; 2a = const
is the parameter of the process, which depends on geometrical dimensions
and on parameters of the fluid itself; xi ∈ (0, l) and ui(t) are the locations
and magnitudes of pointwise impact on the process (pumping stations);
T is the transient period.

We have boundary, initial and final conditions as follows:

ω(x, 0) = ϕ10(x) = const, p(x, 0) = ϕ20(x), (2)

ω(0, t) = v1(t), p(l, t) = v2(t), (3)

ω(x, T ) = ϕ1T (x) = const,

p(x, T ) = ϕ2T (x), x ∈ [0, l], t ∈ [0, T ]. (4)

Here ϕ10(.),ϕ20(.),ϕ1T (.),ϕ2T (.) are given functions.
It is required to find the functions u(t) = (u1(t), ..., uL(t)) and v(t) =

(v1(t), v2(t)), under which the transient period T is minimal. We have the
following constraints on the control actions and on the phase state:
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vi ≤ vi(t) ≤ vi, i = 1, 2, t ∈ [0, T ], (5)

γ
i
p(xi − 0, t) ≤ ui(t) ≤ γip(xi − 0, t), i = 1, 2, ..., L, (6)

ω ≤ ω(x, t) ≤ ω, x ∈ (0, l], t ∈ (0, T ]. (7)

We have carried out numerical analysis of the dependency of the op-
timal transient period from the length and resistance coefficient of the
pipeline, from the number and locations of the pumping stations, as well
as from the initial and final values of the steady-state regimes ([1]).

The investigations being conducted here generalize the results ([1]-
[4]), obtained for boundary controls in case there are intermediate lumped
control actions.
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The problem of localization of leakage points in pipelines of complex
structure is considered in the work. This work differs from many previ-
ously examined cases for certain linear sections of trunk pipelines [1-3].

Fig.1. The scheme of pipe network with 5 nodes.

To be specific, assume that the considered pipeline consists of 5 sections
(Fig.1). Suppose that at some moment t ≥ t0 at the point ξ∈(0, l) of any
kth section of the pipeline network, fluid leakage with the flow rate qloss(t)
began. Fluid motion on the kth linear section of the pipeline network of
the length lk and diameter dk can be described by the following system:







−∂Pk(x,t)
∂x

= ρ
Sk

∂Qk(x,t)
∂t

+ 2ak ρ
SkQ

k(x, t), x ∈ (0, lk), t ∈ (0, T ],

−∂Pk(x,t)
∂t

= c2 ρ
Sk

∂Qk(x,t)
∂x

+ c2 ρ
Sk

L∑

i=1

qlossi (t)δ(x− ξi), k = 1, 5,
(1)

where δ(·) is Dirac’s delta function; P k(x, t), Qk(x, t) the pressure and flow
rate at the point x ∈ (0, lk) on the kth section of the pipeline network; c
the speed of sound in the medium; 2ak = const. Under known leakage
points and leakage flowξi, q

loss
i (t),i = 1, ..., L, for calculation of the fluid

motion regimes in the pipeline on the time interval [t0, T ], we use the
following conditions:

Q1(0, t) = u1(t), Q
3(0, t) = u3(t), P

4(l4, t) = u4(t), Q
5(l5, t) = u5(t). (2)

The conditions (2) provide a predetermined pipeline transportation regime.
In the internal nodes of the network, the following matching conditions
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are fulfilled:
P 1(l1, t) = P 3(l3, t) = P 2(l2, t), Q

1(l1, t) +Q2(l2, t) +Q3(l3, t) = 0,

P 4(0, t) = P 5(0, t) = P 2(0, t), Q4(0, t) +Q5(0, t) +Q2(0, t) = 0 (3)

and the initial state of the process:

Qk(x, 0) = Qk
0(x), P

k(x, 0) = P k
0 (x), k ∈ K = {1, 3, 4, 5}, x ∈ [0, lk].

(4)
The problem lies in finding the leakage pointsξ = (ξ1, ..., ξL),ξi ∈ [0, lk],i =
1, L, k = 1, 5, and the corresponding amount of loss of raw stock qloss(t) =
(qloss1 (t), ..., qlossL (t)) for t ∈ [t0, T ] using the given mathematical model
and observed information. With the purpose of solving the problem, we
consider the following functional determining the deviation of the observed
regimes at the given points of the pipeline section from the calculated
regimes:

J(ξ, qloss(t)) =
∑

k∈{1,3}

T∫

τ

[Qk(t)−Qk
mes(t)]

2dt+
∑

k∈{4,5}

T∫

τ

[P k(t)− P k
mes(t)]

2dt+

+ε1
∥
∥qloss(t)− q̃

∥
∥
2

L2[τ,T ]
+ ε2

∥
∥
∥ξ − ξ̃

∥
∥
∥

2

R
→ min,

whereQk(t) = Qk(lk, t; ξ, q
loss), P k(t) = P k(0, t; ξ, qloss), k ∈ K = {1, 3, 4, 5}

is the solution to the problem (1)-(4) under any given(ξ, qloss(t)); ξ̃, q̃ ∈
RL, ε1, ε2 the regularization parameters. If the number of the section on
which leakage has taken place is not known beforehand, then it is neces-
sary to solve the aforementioned problem for all the sections. It is clear
that the case under which the minimal value of the functional has been
obtained corresponds to the solution to the given problem.
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In the work, we investigate the optimal feedback control problems for
objects described by systems of nonlinear ordinary differential equations

ẋ(t) = f(x(t), u(t), p), t ∈ (t0, T ], (1)

under different forms of feedback both on state and on output, on different
classes of zonal control functions. It is assumed that the initial state of
the object x(t0) can take values from an a-priori known set X0 with the
density (weighting) function ρX0(x), and the time-constant parameters p
of the object take values from the given set P with the density (weighting)
function ρP (p).

Let the quality of control for each given specific initial point x0 ∈ X0

and the values of the parameters p ∈ P be evaluated by the following
functional:

I(u;T, x0, p) =

T∫

t0

f0(x(t), u(t), p)dt +Φ(x(T ), T ). (2)

Given that the initial state and values of the parameters of the object are
unspecified, the quality of control of the object will be evaluated by the
following functional averaged over all x0 ∈ X0 and p ∈ P :

J(u, T ) =

∫

X0

∫

P

I(u, T ;x0, p) · ρX0(x) · ρP (p)dpdx0/(mesX0 ·mesP ). (3)

Control of the dynamics of the process (1) is accomplished based on the
presence of feedback of the object’s current state x(t) or the state of the
object’s output y(t), which is determined by the known nonlinear function
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of its state x(t): y(t) = G(x(t)), y ∈ Rν . Here the ν-dimensional vector-
function of observation G(x) is continuously differentiable with respect
to each variable on the set X . According to these types of feedback, the
synthesized control functions will have, in the general case, the represen-
tations: u = V (x,K) andu =W (y,K). Here K are the parameters of the
synthesized functions; V (., .) andW (., .) are some functions of the object’s
state x(t) and of the object’s output y(t), respectively. In both cases, for
structural construction of the synthesized functions, we introduce the con-
cept of zonality, that is constancy of the values of the control’s synthesized
parameters in each of the subsets (zones), which are obtained by splitting
(partitioning) the set of all possible states of the object or the set of all
possible values of the object’s output. The control functions’ values are
also determined by the type of feedback and the class of functional depen-
dency of the control from the current observed value of the state vector
or the output vector. We analyze the cases of continuous and discrete
feedback, for which we consider piecewise constant and piecewise linear
functional dependencies of the parameters of the zonal control functions
from the state vector or the output vector.

In all the statements of the considered problems the synthesized con-
trol functions are determined by finite constant vectors and matrices,
which eventually lead to finite optimization problems. For solution to
these problems, it is efficient to use numerical first-order optimization al-
gorithms: gradient projection or conjugate gradient projection method
[1]. With this purpose, we derive formulas for the gradient of the cri-
terion functional. We have developed the corresponding software and
carried out numerical experiments on several test problems. We have also
made a comparison between the solutions to the feedback zonal control
problems under the feedback on the object’s output and state [2,3].
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The main purpose of the study is to provide a broad overview of impor-
tant ideas in analysis and search of optimal control nonsmooth system of
differential equations with delay, presented in the form of

ẋ(t) =

{

f1(t, x(t− τ), x(t), u(t)), S(t, x) < 0,

f2(t, x(t− τ), x(t), u(t)), S(t, x) ≥ 0,
(1)

where x ∈ Rn, u ∈ Rm - vectors of the state and control respectively,
τ - constant lag, S(t, x) - scalar function continuously differentiable by
the set of arguments and determining the violation of smoothness of the
right part of the system (1). The main focus of this work is the problem
of necessary optimality conditions and their application to constructions
numerical methods of search for the solution to practical tasks in the field
of immunology, described by a system of differential equations of form (1).
The research examined the different immunological problems of optimal
control in modeling the process of antigens reproduction and neutraliza-
tion, proliferation and differentiation of plasmacells and antibodies. The
above tasks differ from each other in various features, such as the di-
mensionality of phase area, the types of nonlinearities, the restrictions,
multiextremality, types of the gaps in the system, as well as the presence
of lags in the phase variables etc. For the problems considered specialized
methods have been developed for the search of optimal control, a variety
of necessary optimality conditions, the algorithms and the software have
been obtained allow to find the optimum control and give it a meaningful
interpretation.
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The paper considers a class of nonlinear dynamical systems with dis-
continuous right-hand side: ẋ = f(x(t), u(t), t), pr : g(t, x) < 0 with
the initial conditions x(t0) = x0 and controls ui ∈ [ui, ui] on time inter-
val t ∈ [t0, t1]. g(x, t) is event-driven continuously differentiable function
defined by a predicate and determines the changing time of the system
dynamics depending on the state or time. Questions of the solutions ex-
istence for differential equations with discontinuous right-hand sides are
devised in works of N.N. Krasovskii, A.I. Subbotin, A.F. Filippov, etc.

Theoretical and numerical analysis of such systems is significantly com-
plicated. In particular, for the reachable set (RS) approximation attain-
ability (MD) one can not use most of the developed methods. Based on
the multistart idea method of RS stochastic approximation easier than
other ones can be adopted for discontinuous systems. The main difficulty
arising in this approach is the integration, it is repeated many times and
should be made with high accuracy. Among the methods of integration,
that do not use event-function, the simplest version of Euler’s method
with iterations and fixed small, not more than 10−6, step has shown high
efficiency. In this case one integration requires essential time and solution
is a parallel implementation of the approximation method. Nvidia CUDA
technology makes parallel computing on graphics accelerators available.
The resulting implementation of RS stochastic approximation method was
tested on the Intel Core i5-2500K CPU and Nvidia GeForce GTX 580
GPU. The parallel version for two CPU cores allow to obtain double ac-
celeration comparing with the use of single-threaded version. Using a
graphics adapter with 512 cores allows to provide calculation about 50
times faster.

The work was partly supported by the Russian Foundation for Basic Re-

search (project no. 14-01-31296).
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Optimization problems with large and very large dimensions (“Huge-
Scale optimization problems”) occur naturally in a wide range of scientific
fields. One of such modern problem is web page ranking, which involve
finding PageRank vector:

PTx = x

P ∈ Rn×n, x ∈ Rn

〈x, e〉 = 1, e = (1, ..., 1)T

xi ≥ 0, i = 1, ..n

(1)

where P - stochastic matrix specifying the web graph.
The original problem can be reduced to the problem of convex opti-

mization by different ways [1,2]. In the current work we consider following
unconstrianed minimization problem:

f(x) =
1

2
||Ax||22 +

γ−

2

n∑

i=1

(−xi)2+ +
γ+

2
(〈x, e〉 − 1)2 → min (2)

where:

(x)+ =

{

x, if x ≥ 0

0, if x < 0
- the penalty function for negative elements;

γ− - the penalty parameter for negative elements;
γ+ - the penalty parameter for the violation of constraint 〈x, e〉 = 1.
The considered problem has a high computational complexity associ-

ated with large dimensions, of the order of 106 variables and above for
modern practical statements. Therefore, many papers present different
approaches and technologies to accelerate the minimization algorithms
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for problems of this class. The current work discusses the author’s expe-
rience of applying the power of modern graphics accelerators (GPU) in
solving the problem of Pagerank.

The main time-consuming operation for considered problem is the pro-
cedure of multiplying sparse matrix A to a dense vector (y = Ax). This
operation is necessary for computing the function value, and also for cal-
culating its gradient. In [1] proposes an approach for fast update of y
components, which is effective when used in the subgradient optimiza-
tion method. But this technique imposes substantial restrictions on the
structure of the matrix A, and in the worst case cost of subgradient calcu-
lating will be equal to the cost of computing the full gradient. Therefore
this paper presents author’s GPU-implementations of “full-gradient” op-
timization methods – the classic variant of the conjugate gradient method
(Fletcher-Reeves version) and author’s modification of Barzilai-Borwein
method (BB+P), which uses “Polyak step” [3] on iteration in the case of
incorrect choice of minimization step by traditional BB algorithm.

Considered methods are implemented by authors with C++ language
and Nvidia CUDA technology, tested and degugged on several computa-
tional systems with modern CPUs ang GPUs. The results of numerical
experiments for number of PageRank problems, constructed from Stan-
ford University’s collection [4] of network-graphs (up to 106 variables) are
presented. GPU-versions of the implemented methods significantly ac-
celerate (up to 20 times) the solution finding for considered optimization
problems.

The authors were supported by Russian Foundation for Basic Research

(project no. 13-01-00470)
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The paper deals with the dynamic control system, consisting of two
components. One of them is a finite-dimensional boundary value problem.
This problem describes the stable equilibrium state of finite-dimensional
object. Another component of the system is controlled dynamics. It
describes the transition process for system from an arbitrary disturbed
state in the equilibrium state. The model of terminal object has the form







x∗ ∈ Argmin{f(x) | Ax ≤ y∗, x ∈ Rn},
〈p− p∗, Ax∗ − y∗〉 ≤ 0, p ∈ Rm

+ ,

〈y − y∗, p∗〉 ≤ 0, y ∈ Y.

(1)

The first two problems this system are equivalent to the problem of com-
puting the saddle point of the Lagrangian for convex programming. Here
(p∗, x∗) is a saddle point of Lagrange function l (p;x, y) = f(x)+ 〈p,Ax−
y〉, y ≥ 0 is a parameter. The latter problem is variational inequality,
which connects the multipliers of Lagrangian p∗ with vector of right-hand
side of constraints y∗. The boundary value problem is an equilibrium
model of interaction between two participants with partially conflicting
interests. It is assumed that (1) under the action of perturbations lose
the equilibrium. In this case, there is the necessity, using control tools,
return back the object in a state of equilibrium. This can be done using
the following dynamic model







d

dt
x(t) = D(t)x(t) +B(t)u(t) for almost all t ∈ [t0, t1],

x(t0) = x0, x(t1) = x∗1 ∈ X1 ⊆ Rn, u(·) ∈ U,

x∗1 ∈ Argmin{〈f(x1) | A1x1 ≤ y∗1 , x1 ∈ X1},
p∗1 ∈ Argmax{ 〈p1, A1x

∗
1 − y∗1〉 | p1 ≥ 0},

y∗1 ∈ Argmax{ 〈p∗1, y1〉 | y1 ∈ Y1}.

(2)
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The set of admissible controls is expected to be integrally bounded: U =
{u(·) ∈ Lr

2[t0, t1] | ‖u(·)‖2Lr
2
≤ const}; X1 ⊆ Rn is the attainability set,

Y1 ⊂ Rm
+ is a convex closed set, f(x1) is a convex differentiable function,

A1 is a fixed m × n matrix, D(·), B(·) are continuous matrices, x0 is a
given initial value.

It is well known that for each control u(·) ∈ U and given initial condi-
tion x0 there exists a unique trajectory x(·) which satisfies the identity

x(t) = x(t0) +

∫ t

t0

(D(τ)x(τ) +B(τ)u(τ))dτ, t0 ≤ t ≤ t1,

and belongs to the linear variety of absolutely continuous functions. Fur-
ther, we denote this class as ACn[t0, t1] ⊂ Ln

2 [t0, t1].
To solve the problem, we construct iterative sequences xk(·) ∈ ACn[t0, t1],

which, however, may have weak limit points x∗(·) ∈ Ln
2 [t0, t1] lying outside

of this class ACn[t0, t1]. Dual method has the form







p̄k1 = π+(p
k
1 + α(A1x

k(t1)− yk1 )),

ψ̄k(t) = ψk(t) + α(D(t)xk(t) +B(t)uk(t)− d

dt
xk(t)),

yk+1
1 = πY1

(yk1 + αp̄k1),

(xk+1(t1), x
k+1(t), uk+1(t)) ∈ Argmin

{
1

2
|x(t1)− xk(t1)|2 + αf(x(t1))

+α〈p̄k1 , A1x(t1)− yk+1
1 〉+ 1

2
‖x(t)− xk(t)‖2 + 1

2
‖u(t)− uk(t)‖2

+ α

∫ t1

t0

〈ψ̄k(t), D(t)x(t) +B(t)u(t)− d

dt
x(t)〉dt

}

,

pk+1
1 = π+(p

k
1 + α(A1x

k+1(t1)− yk+1
1 )),

ψk+1(t) = ψk(t) + α(D(t)xk+1(t) +B(t)uk+1(t)− d

dt
xk+1(t)).

The convergence of this process for all components of the solution of the
original problem is proved.

The authors were supported by the Russian Foundation for Basic Research
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Wireless sensor network (WSN) consists of sensors that are placed in
the monitoring region and use wireless communication to exchange infor-
mation. The main sensor functions are to collect data, primary processing
and transmission of collected data. In this case, the sensing area of each
sensor is usually represented as a disk with a certain radius centered at
the location of the sensor, and it is said that the sensor covers this disk.
The mail issue in WSN is to save the energy of the sensors. A cover of
plane region S is such a set of disks C, where each point of the region
belongs to at least one of disk. The cover density is defined as the ratio
of the area of all disks in C to the area of S. Under the regular cover
means a cover of the plane region by disks in which the whole region can
be divided into regular polygons (tiles), forming a regular lattice. In this
case, all the polygons should be covered equally.

Usually, researchers determine a min-density cover with the discs of
one, two and three radii [1]. In the paper [2] we perform similar investiga-
tions of a band, however, requiring external monitoring of the area. This
means that, due to some inaccessibility, we cannot place sensors inside
the controlled area. In this paper, we consider the external monitoring
restricted areas. It is proved that the lowest density of the outer coating
of the circle and the square is achieved by 4 circles and is equal to 3 and
3π/8 ≈ 2, 356 respectively. Additionally, examples of effective external
coatings 3D regions are offered.

The authors were supported by the Russian Foundation for Basic Research

(project no. 13-07-00139 ).
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Modern engineering challenges dictate a consideration of dynamic ver-
sions of the classic the traveling salesman problem (TSP). Namely, tra-
jectories of ’cities’ and ’the traveling salesman’ satisfy dynamics in terms
of differential equations.

As the first approximation, dynamics of some objects can be consid-
ered as a linear system. Namely, it is possible to obtain a good approxima-
tion of spacecraft dynamics (in deep space) by using the double integrator
model. In this regard, the TSP for controlled objects described by linear
differential equations is important. A special case of such problem is the
TSP for the double integrator [1].

We considered a double integrator which has to visit a set of given
stationary points at a minimum travel time. Control constraints are de-
fined in terms of a convex compact set. We obtained an upper bound for
the minimum travel time, by developing the method of transformation of
the original problem into a generalised traveling salesman problem. This
transformation is based on a discretisation of sets of admissible visiting
velocities. To solve time-optimal two-point problems, we use the duality
of optimal control problems and convex programming [2].

Note that STOP-GO-STOP [1] heuristic algorithm was proposed. It
was shown that in the worst case scenario STOP-GO-STOP provides so-
lution with total time T

√
2n, where n is a number of nodes to visit and

T is the total time provided by the discretisation algorithm.

The authors were supported by the Russian Foundation for Basic Research

(project no. 14-08-00419 A).
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Let Rn be a real n-dimensional Euclidean space with the inner product
(x, y), for any x, y ∈ Rn.

The modulus of convexity δA(ε) of the set A, introduced by B.T.
Polyak [1,2,3], will be the most important tool for us.

Let E be a Banach space and let a subset A ⊂ E be convex and
closed. The modulus of convexity δA : [0, diamA) → [0,+∞) is the
function defined by

δA(ε) = sup

{

δ ≥ 0

∣
∣
∣
∣
Bδ

(
x1 + x2

2

)

⊂ A, ∀x1, x2 ∈ A : ‖x1 − x2‖ = ε

}

.

We shall consider the standard polyhedral approximation of a closed
convex compact A ⊂ Rn on a grid G = {pk}Nk=1 of unit vectors from Rn

with step ∆ ∈ (0, 12 ):

Â = {x ∈ Rn | (pk, x) ≤ s(pk, A), ∀k, 1 ≤ k ≤ N}.

Here s(p,A) is the supporting function of the set A, i.e.

s(p,A) = max
x∈A

(p, x).

The main result [3] is that

h(A, Â) ≤ 8

7
ε(∆)∆,

where ε(∆) is a solution of the equation δA(ε)
ε

= ∆
4−∆2 and

h(A, Â) = max
‖p‖=1

|s(p, Â)− s(p,A)|

is the standard Hausdorff distance between the sets A and Â.
We also shall consider polyhedral approximations in some special sit-

uation of presupporting function.
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For a positively uniform function f : Rn → R define the set

Of = {p ∈ Rn | ‖p‖ = 1, convf(p) = f(p)}.

We shall postulate that convf(p) is a proper function and f(p) itself is
not convex.

Let R ≥ r > 0 be such constants that r‖p‖ ≤ f(p) ≤ R‖p‖ for all p.
Suppose also that there exists δ > 0 such that for any p ∈ Of and for all
q ∈ Bδ(p) we have

|f(q)− f(p)− (f ′(p), q − p)| ≤ w(‖q − p‖),

where f ′(p) is the Frechet derivative, w(t) > 0 for t ∈ (0, δ) and

lim
t→+0

w(t)
t

= 0.

Let
A = {x ∈ Rn | (p, x) ≤ f(p), ∀p ∈ Rn},
Â = {x ∈ Rn | (p, x) ≤ f(p), ∀p ∈ G}.

Then for sufficiently small step ∆ we have the estimate

h(A, Â) ≤ R

r

w(∆)

1− ∆2

2

.

The work was supported by grant RFBR 13-01-00295-a.
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In 2004 G. Strang and P. Persson suggested simple algorithm (Matlab
code of their algorithm is less than one page) which allows to triangulate
implicit planar domains. The idea of the method is based on using scat-
tered point data set as an input. Edges of the Delaunay triangulation form
spatial network with topology depending on point positions. Each edge
is considered as a nonlinear elastic strut meaning that expanding forces
appear when length of the edge is below the target one. Points which
go outside the domain are projected back to its boundary thus forming
impearmable barrier for expansion. This elastic network is relaxed attain-
ing certain equilibrium. The remarkable feature of the above algorithm is
that during the relaxation process topological irregularities (vertices with
valence not equal to 6) are eventually moved to the boundary which re-
sembles expulsion of dislocation from crystal lattice. The resulting mesh
tends to be topologically regular.

We present algorithm which generalizes the idea of Strang and Persson
and allows to construct 3d tetrahedral meshes in implicit domains with
piecewise-regular boundary. Elastic energy of network in our approach is
combination of expansion potential and sharpening potential. The latter
is applied to boundary face and allows to reproduce sharp edges on the
domain boundary without their explicit definition.

Implicit functions defining the computational domain admit hetero-
geneous and incomplete representation which is illustrated in Fig.1. In
this example “elephant” is defined by tesselation, “pavilion” is defined by
planar cross-sections, while “ball” is defined analytically. Boolean opera-
tions are used to create the final domain. Surface mesh with reconstructed
sharp edges and volume mesh are shown.

Fig.2 illustrates typical behaviour of algorithm when after elastic re-
laxation sharp edges are reconstructed and mesh quality is improved. In
this example the body is defined analytically using boolean operations.
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Fig.1. Heterogeneous representation of computational domain:

Fig.2. Initial Delaunay mesh, mesh after self-organization and
sharpening, and full body.
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Since second half of the seventies of the last century, along with solv-
ability questions intensively studied the spectral properties of local and
nonlocal boundary value problems for mixed type equations.

Research on boundary value problems and their spectral properties
for mixed parabolic-hyperbolic and mixed-composite type equations are
given in [1]. Questions of unique solvability and Volterra property of the
analogue of the generalized Tricomi problem (the problem B) for a mixed
parabolic-hyperbolic equation of the second and third orders were studied
in [1-3].

Completeness and Riesz basis property of the root functions of a class
of nonlocal boundary value problems for a mixed parabolic-hyperbolic
equations of second order proved in [1], and for the third order [4]. Ex-
istence theorems of eigenvalues of the local boundary value problems for
parabolic-hyperbolic equation of the second and third orders were proved
in [1].

Unique solvability and Volterra property of a class of problems with
Bitsadze-Samarskii type conditions (nonlocal conditions) for a mixed para-
bolic-hyperbolic equation with a non-characteristic line of type changing
studied in [1,5]. From the above, arises a question: is it possible to for-
mulate a nonlocal problem for a parabolic-hyperbolic equation that has
its eigenvalues.

The main result of this message is the statement and establishment
of the existence of the problem eigenvalues with the Bitsadze-Samarskii
type conditions for a mixed parabolic-hyperbolic equation:

Lu = f(x, y),

where

Lu =

{

ux − uyy, y > 0

uxx − uyy, y < 0,
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in a finite simply connected domain Ω of the surface of independent
variables x,y, bounded at y¿0 by segments AA0, A0B0, BB0 straight lines
x = 0, y = 1, x = 1 respectively, and at y < 0 by characteristics : x+y = 0
and : x− y = 1 of the Eq.(1). Let us straight line BD is given by equation
y = a(x−1), 0 < a < 1, a

1+a
≤ x ≤ 1, and located inside the characteristic

triangle 0 ≤ x+ y ≤ x− y ≤ 1.
Problem B. To find a solution of Eq. (1), satisfying conditions

u|AA0∪A0B0
= 0,

[ux + uy] [θ1(t)] + µ(t) [ux + uy] ⌊θ∗1(t)⌋ = 0, 0 < t < 1

where θ1(t), (θ
∗
1(t)) is affix of the intersection point of the characteristic

BC (straight line BC) with the characteristic, starting from the point
(t, 0), 0 < t < 1, µ(t) is given function.

Under certain constraints for given problems established the unique
solvability and existence of eigenvalues of the problem B.
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In this talk, we present a new approach to deriving optimality condi-
tions for irregular nonlinear optimization problems in the form

minimize
x∈Rn

f(x) subject to g(x) = (g1(x), . . . , gm(x)) ≤ 0, (1)

where f and gi are sufficiently smooth functions and classical regularity as-
sumptions are not satisfied at a solution x∗ of problem (1). The approach
is based on the p-regularity theory described, for example, in [1, 2].

Without loss of generality, we assume that the set of indices of the
active at x∗ constraints is I(x∗) = {1, . . . ,m}.

Let Hg(x
∗) = {h ∈ Rn | 〈g′i(x∗), h〉 ≤ 0, i ∈ I(x∗)}. For h ∈ Hg(x

∗),
let I1(x

∗, h) = {i ∈ I(x∗) | 〈g′i(x∗), h〉 = 0}. Assuming |I1(x∗, h)| = m1 6=
0, we construct s special acute cones in such a way that each index from
I1(x

∗, h) is used in defining at least one cone. We also require that all
cones are different so that s ≤ m1. For defining a cone with number
k (k = 1, . . . , s) we use indices i1, . . . , irk ∈ I1(x

∗, h) chosen in such a
way that vectors g′i1(x

∗), . . . , g′iri
(x∗) generate an acute cone and ij 6= il,

if j 6= l. As a result, there exist γi ∈ Rn such that 〈g′j(x∗), γi〉 < 0,
j = i1, . . . irk , and for all j ∈ Jk(x

∗, h) = I1(x
∗, h)\{i1, . . . , irk} we have

−g′j(x∗) = αji1g
′
i1
(x∗)+. . .+αjirk

g′irk
(x∗), where αji1 ≥ 0, . . . , αjirk

≥ 0.

Then for every index j ∈ Jk(x
∗, h), we can introduce new mappings:

g̃j(x) = gj(x) + αji1gi1(x) + . . .+ αjirk
girk (x). (2)

Assume that there exists h ∈ Hg(x
∗) such that 〈g̃′′j (x∗)h, h〉 ≤ 0, j ∈

Jk(x
∗, h). Notice that otherwise, x∗ is an isolated feasible point for (1).

Define I1 k
0 (x∗, h) = {i1, . . . , irk}, I10 (x∗, h) =

s⋃

k=1

I1 k
0 (x∗, h), I2 k

0 (x∗, h) =

{i ∈ Jk(x
∗, h) | 〈g̃′′i (x∗)h, h〉 = 0}, and I20 (x

∗, h) =
s⋃

k=1

I2 k
0 (x∗, h).
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D e f i n i t i o n 1. We say that mapping g(x) is tangent 2–regular
at a point x∗ ∈ Rn along a vector h ∈ Hg(x

∗) if for any ξ ∈ Rn satisfying

〈g′ik(x∗), ξ〉 ≤ 0, k = 1, . . . , ri, i = 1, . . . , s,
〈g̃′′iri+j(x

∗)h, ξ〉 ≤ 0, j = 1, . . . ,m1 − ri, i = 1, . . . s,
(3)

there exists a set of feasible points x in the form x = x∗+αh+ω(α)ξ+η(α),
where α > 0 is sufficiently small, ‖η(α)‖ = o(ω(α)), ω(α) = o(α) and
α2/ω(α) → 0 as α → 0.

Theorem 1. Let f ∈ C1(Rn) and g ∈ C2(Rn). Assume that g(x) is
tangent 2-regular at a point x∗ along a vector h ∈ Hg(x

∗) and 〈f ′(x∗), h〉 =
0. Then there exists λ∗(h) = (λ∗i (h))i∈I1

0
(x∗,h)

⋃

I2
0
(x∗,h) ≥ 0 such that

f ′(x∗) +
∑

i∈I1
0
(x∗,h)

λ∗i (h)g
′
i(x

∗) +
∑

i∈I2
0
(x∗,h)

λ∗i (h)g̃
′′
i (x

∗)h = 0. (4)

Notice that since I10 (x
∗, h) ⊂ I1(x

∗, h), I20 (x
∗, h) ⊂ I1(x

∗, h) and for
every j ∈ Jk(x

∗, h), (2) holds, then (4) can be rewritten as

f ′(x∗) +
∑

i∈I1(x∗,h)

λig
′
i(x

∗) +
∑

i∈I1(x∗,h)

γig
′′
i (x

∗)h = 0, λi ≥ 0, γi ≥ 0.

Theorem 1 can be illustrated by an example with f(x) = x1 + x2 −
x3 + x21 + x22 + x23 and g(x) =

(
−x1, −x2, x2 − x21 + x22 + x23

)
≤ 0. In

this example, x∗ = 0, and g(x) is tangent 2-regular at a point x∗ along a
vector h = (1, 0, 1)T .

Similarly to Definition 1, for p > 2, we can define g(x) : Rn → Rm to
be tangent p-regular at x∗ ∈ Rn along a vector h ∈ Hg(x

∗) and formulate
optimality conditions similar to ones given in Theorem 1.
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We consider Generalized Asymmetric Traveling Salesman Problem
(GATSP) with the following statement. There are given n finite disjunct
setsM1, . . . ,Mn (we call themmegapolices), such thatMj = {gj1, . . . , gjp},
and a starting point x0 6∈ ∪Mj . There are given costs ĉ(x0, gjτ ) and
č(gjτ , x0) of transition from x0 to any point gjτ and vice versa, transition
costs c(glσ, gjτ ) for any j, l ∈ Nn = {1, . . . , n}, j 6= l and σ, τ ∈ Np, and
visiting costs (costs of inner jobs) c′(gjτ ). It is required to find a permu-
tation π : Nn → Nn defining the order of visiting of the given megapolices
and a finite sequence gπ(1)τ(1), . . . , gπ(n)τ(n) such that

ĉ(x0, gπ(1)τ(1)) +

n−1∑

i=1

(
c′(gπ(i)τ(i)) + c(gπ(i)τ(i), gπ(i+1)τ(i+1))

)

+ č(gπ(n)τ(n), x0) → min (1)

Actually, the costs ĉ(x0, gij), č(gij , x0), c(gil, gjm), and c′(gij) can de-
pend on several additional parameters, e.g. a list of visited or unvisited
megapolises. To put it simple, hereinafter we will skip them.

This problem has many applications is practice. Among them the well
known dismountling problem for retired Nuclear Power Plants. For all
of these applications, approximate solutions are not allowed. Therefore,
to find an exact solution, we use the classic dynamic programming (DP)
approach (see e.g. [1],[2]). Unfortunately, in general case, an exact solu-
tion can not be found efficiently unless P = NP since GATSP is NP-hard
[3]. In particular, running time of the DP algorithm is Ω(np22n) in the
worst case. Nevertheless, taking into account some kind of additional con-
strains, e.g. precedence constrains defined on the set of megapolices can
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speed up the DP scheme significantly [4]. The results presented extend
the approach introduced in [5], [6].

Consider the following precedence constrains. For a fixed natural num-
ber k, every feasible permutation P should satisfy the equation

∀i, j ∈ Nn (j ≥ i+ k) ⇒ (π(i) < π(j)). (2)

Theorem 1. For any k ∈ Nn and p, time complexity of the DP is
O(n · p2k22k−2).

Constraints (2) can be relaxed in the following way. Suppose, to any
i a parameter k(i) is assigned such that

∀i, j ∈ Nn (j ≥ i+ k(i)) ⇒ (π(i) < π(j)). (3)

Theorem 2. Running time of the DP algorithm for GATSP with prece-
dence constrains (3) is O(p2

∑n
i=1 k

∗(i)(k∗(i)+1)2k
∗(i)−2), where k∗(i) =

max{k(j) : i− k(j) + 1 ≤ j ≤ i}.
The authors were supported by the Russian Science Foundation (project
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Lungs are modeled by full dichotomy tree oriented to its root called
I-tree and denoted D−1(b, r, n, l) with the following parameters
— l ∈ N - depth of the tree;
— n ∈ N - each edge (bronchus) from D−1 is splitted into n equaled parts,
called lash and indexed by values i from 1 to n;
— b, r ∈ N - two values 2l−jb and 2l−jr are assinged to each edge with
depth j and called capacity and swapping measure of the edge’s lash.

The process of transportation of substance is the process defined on
defined I-tree D−1(b, r, n, l) with the set of the restrictions described in
[1].

In terms of the process of transportation additional characteristics is
added to the I-tree – amount V ′ of substance distributed over the tree.
That I-tree is denoted D−1(b, r, n, l, V ′)

Let function L(b, r, n, l, V ′) is the maximum amount of time required
for clearing of I-treeD−1(b, r, n, l, V ′) with a random initial distribution of
substance. That function is usually called Shannon’s complexity function.

Theorem 1. Function L(b, r, n, l, V ′) is defined by the following

1) if (2l − 1)bn ≤ V ′ ≤ V than L(b, r, n, l, V ′) =
]
b
r

[
(2nl − 1);

2) if 0 < V ′ < (2l − 1)bn then

i) if r = 1 then

a) if V ′ ≤ bn then

L(b, 1, n, l, V ′) =

{

V ′ + b(n− 1), if l = 1 and n =
]
V ′

b

[

,

2V ′−]V
′

b
[+nl− 1, otherwise;

b) if bn < V ′ ≤ bn+ (l − 1)n then

L(b, 1, n, l, V ′) = V ′ + n(l + b− 1)− 1
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c) if V ′ > bn+ (l − 1)n then

L(b, r, n, l, V ′) =

{

]
bh3

2l−1
[+2b(nl−1), if k3 = 1 h3 = 1,

2

(

]
bh3

2l−k3
[+(b−1)(n(l−k3+1)−h3)+nl− 3

2

)

, otherwise;

ii) if r > 1 then
a) if V ′ ≤ nl then L(b, r, n, l, V ′) = V ′ + nl − 1;
b) if V ′ > nl then

L(b, r, n, l, V ′) =

{

]
bh3

2l−1r
[+2] br [(nl−1), if k3 = 1 h3 = 1,

2

(

]
bh3

2l−k3 r
[+(] br [−1)(n(l−k3+1)−h3)+nl− 3

2

)

, otherwise;

where

k3 = 1 + [l − log2(
V ′−nl
(b−1)n + 1)], h3 = n−]V

′−nl−(2l−k3−1)(b−1)n
2l−k3 (b−1)

[+1,

bh3
= V ′ − nl − (2l−k3 − 1)(b− 1)n− 2l−k3(b− 1)(n− h3) + 1.

Let V is maximum possible value of V ′, Lm(b, r, n, l) and L(b, r, n, l) are
middle value (1) and maximum value (2) over all L(b, r, n, l, V ′)

Lm(b, r, n, l) =
1

V
·

V∑

V ′=1

L(b, r, n, l, V ′) (1)

L(b, r, n, l) = max
1≤V ′≤V

L(b, r, n, l, V ′) (2)

Theorem 2. Lm(b, r, n, l) ∼ 2n] b
r
[l if l → ∞.

Theorem 3. Lm(b, r, n, l) ∼ L(b, r, n, l) if l → ∞.
Results of the further research are included to [2], [3] and to the set of

the other author’s articles.
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Determination of the optimal allocation of risks is an important task
of the theory and practice of actuarial calculations. The optimal param-
eters of reinsurance depend on the situation on the insurance market,
which defines the possible values for these parameters, including at the
administrative level.

In the reinsurance theory there are two types of reinsurance: excess
of loss and excess of loss ratio for the portfolio as a whole. In the first
case, the reinsurance operation is applied to each policies of the portfolio
and in the second - to the total risk. We consider the combination of
these two types of reinsurance under restriction on loss ratio of portfolio.
The relation between the limits of the retention for individual and total
losses and problem of minimization of the reinsurance premiums were
investigated in [1].

For a discrete process of changes in capital of the insurance company
Uk+1 = Uk + c−Wk, where c - the amount of the annual premiums, Uk -
capital at the end of the year k, Wk - total loss,

Wk =

Nk∑

j=1

Xjk,

Xjk - individual payment for the end of the year j, operation of individual
loss reinsurance is formulated as a definition of actual payment

Yjk =

{

Xjk, Xjk 6 dX

dX , Xjk > dX
, (1)

In this case, the operation of total loss reinsurance is defined as following

Zk =

{

Wk,Wk 6 min(dW , a · cr)
dW ,Wk > min(dW , a · cr)

, (2)
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Where a - ultimate loss ratio for the portfolio, cr - retained after reinsur-
ance premium. The problem of optimization of parameters of reinsurance
corresponds to the solution of the following problem

E[Zk/cr] → min

P (cr − Zk < 0) 6 qk, (3)

where qk - the limit value of probability of a negative financial result.
The solution to this problem is investigated in dependence on the

frequency of payments and the parameters of individual losses.
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Problems with a small parameter in the derivative refer to stiff equa-
tions [1-5]. It is difficult to formulate a precise definition of stiffness, but
the main idea is that the equation includes some terms that can lead to
rapid variation in the solution.

In applying explicit methods to solve stiff problems step size is limited
to numerical stability rather than accuracy. Very strong stability of the
differential equation is a disadvantage in terms of the accuracy of the
numerical solution using the classical explicit methods [1-5].

As an example let consider the linear problem in general form:

ẏ(t) = Ay(t) + g(t), g ∈ Rn, A ∈ Rn×n, y ∈ Rn, y(0) = y0, (1)

where A – is a constant value matrix. Let λ1, λ2, ..., λn are eigenvalues of
the matrix A. The problem (1) is called stiff if

1. There are λi for which Reλi ≪ 0.
2. There are λi such that they are small in comparison with the

absolute value of the eigenvalues satisfying item 1.
3. There is no λi with a large positive value of real part.
4. There is no λi with a large imaginary part, for which the condition

Reλi ≪ 0 is not satisfied.
The stiffness of the system for nonlinear problems described in terms of

the eigenvalues of the Jacobi matrix along the curve of the exact solution.
The stiffness of the nonlinear problem can be completely described in
terms of stiffness for a linear problem with variable coefficients

∆̇(t) =M(t)∆(t), t ≥ t∗,∆(t∗) = ȳ(t∗)− y(t∗). (2)
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The mathematical model of a typical bank can be rewrited in the
following notation [6]:

ẋ1 = −x1
(u1
τ

+
u2
∆

)

+ x2

(
r(t)

q(t)
+

1

θ(t)
+

1− u2
∆

)

−

− x3

(

r1(t)−
1

η(t)
+
u3
∆1

)

+
u3kI0
∆1

− p(t)C(t) + Φ(t);

ẋ2 = x1
u2
∆

+ x2

(
q̇(t)

q(t)
+

1

θ(t)
− 1− u2

∆

)

;

ẋ3 = −x3
(

1

η(t)
+
u3
∆

+
u3kI0
∆1

)

, t ∈ [0, T ]. (3)

For the numerical solution of the problem of eigenvalues [7] distributed
computing [8] and GRID-technologies are used.

The authors were supported by the Russian Foundation of Basic Research
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Problems concerning controllability, controllability criteria and meth-
ods of determining programmed control are discussed. The problem of
complete controllability criterion for discrete unsteady control systems
was studied for example in [1]. Complete controllability criteria for linear
nonstationary discrete systems are offered.

As an example consider linear nonstationary discrete controlled sys-
tem:

Xk+1 = PkXk +Buk + Fk, k = 0, 1, 2, . . . , (1)

where Xi = [xi1, xi2, . . . , xin]
T , Pk ∈ Rn×n, Fk ∈ Rn, k = 0, 1, 2, . . . ,

B ∈ Rn, uk, k = 0, 1, 2, . . . , – control (all values are real).
D e f i n i t i o n 1. The system (1) is completely controllable on

segment [0, N ] (n ≤ N) if for any initial state X(0) and any final state
X(N) there exists control u = (u0, u1, . . . , uN−1)

T leading the system (1)
from the state X(0) to the state X(N) in N steps i.e X0 = X(0), XN =
X(N). Any control solving this problem will be called as programmed
control.

Consider a matrix D(N) ∈ Rn×N :

D(N) =
∥
∥
∥
∏N−1

i=1 PiB,
∏N−1

i=2 PiB, . . . , PN−1B, B
∥
∥
∥ .

The following theorem is valid.
Theorem 1. In order that the system (1) is completely controllable

it is necessary and sufficient that the matrix A(N) = D(N)DT (N) is
positive definite. And the programmed control is determined by relations:

U = DT (N)C + V, (2)

C = A−1(N)(X(N)−
N∏

i=0

PiX(0)−
N−1∑

k=1

N−1∏

i=r

PiFk−1 − FN−1,
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D(N) V = 0, V = (v0, v1, . . . , vN−1)
T . (4)

The proof of the theorem 1 is based on the idea that the matrix A(N)
is positively definite if and only if the rows of the matrixD(N) are linearly
independent [2].

Remark 1. If the system (1) in completely controllable on the seg-
ment [0, N ] then it is completely controllable on the segment [0,M ],
M > N .

Remark 2. It is not difficult to see that in stationary case Pi = A,
i = 0, 1, 2, . . ., the theorem 1 is entirely equivalent to Kalman criterion [3].

Remark 3. It is clear that programmed control is not determined
uniquely. Therefore we can select programmed control which will be op-
timal in some sense. Then a problem of optimal control reduces to a
problem of constrained optimization:

Φ(X(0), X(N), F0, F1, . . . , FN−1, V ) → min, D(N) V = 0.

All these results can be extended to following cases:

• on each step control is a vector i.e.

B ∈ Rn×m, uk = (uk1, uk2, . . . , ukm)T , k = 0, 1, 2, . . . ;

• the system of control is not stationary i.e. the system (1) becomes

Xk+1 = PkXk +Bkuk + Fk, k = 0, 1, 2, . . . ,

where Bk ∈ Rn×m, uk = (uk1, uk2, . . . , ukm)T , k = 0, 1, 2, . . ..
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The search of conditions of optimal stabilization and construction of
corresponding algorithms is actual problem in research of behavior of non-
linear controlled systems [1–4]. Fundamental approach to optimal stabi-
lization for systems of ordinary differential equations was developed by
V.V. Rumyantsev [1] with use of condition of minimization for a func-
tional characterizing the quality of control.

In the present work we consider two types of dynamical models of tech-
nical controlled systems: the model technical manipulator and the model
of functioning of cascade power system. Indicated models are described by
nonlinear multiply connected systems of ordinary differential equations.
The conditions of optimal stabilization to respect to all phase variables
and to respect to a part phase variables are obtained. For research of mod-
els method of Lyapunov functions and method of multi-level stabilization
are used. We consider also the continuously-discrete systems with con-
struction of piesewisely continuous control. The results of present work
continue researches [4–8] and can find application in problems of analysis
of controlled technical systems.

The authors were supported by the Russian Foundation for Basic Research

(project no. 13-08-00710).
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We consider the problem of finding the stochastic equilibrium in Beck-
mann [1] model for congested traffic flows. Let Γ = (V,E) be the graph of
transport network, where V is the set of vertices and E ∈ V ×V is the set
of edges. We denote n = |V | ∼= 104, m = |E| ∼= 4|V |. Also we assume that
the set of all pairs origin-destination OD satisfies n≪ |OD| ≪ n2. Let P
be the set of all paths in Γ. To define B-model we also need xp – the flow
on the path p, fe(x) =

∑

p∈P δepxp – the flow on the edge e, where δep
equals 1 if e ∈ p and 0 otherwise. Let τe(fe(x)) be the cost for choosing
the edge e. Let Gp(x) =

∑

e∈E τe(fe(x))δep be the cost for the path p.
Also let dw, w ∈ OD be the demand corresponding to the pair of origin
and destination w. Then the feasible set of flow distribution is given by
X = {x ≥ 0 :

∑

p∈Pw
xp = dw, w ∈ OD}, where Pw is the set of all paths

corresponding to w. The problem of finding the stochastic equilibrium in
Beckmann model is equivalent to the solution of the problem

min
f=Θx,x∈X






Φ(f(x)) =

1

|E|
∑

e∈E

σe(fe(x)) + γ
∑

w∈OD

∑

p∈Pw

xp ln (xp/dw)






,

where σe(fe(x)) =
∫ fe(x)

0
τe(z)dz, ∂Φ(f(x))/∂xp = Gp(x), p ∈ P , Θ =

‖δep‖e∈E,p∈P , γ > 0.
We compare different modern approaches (semi-stochastic gradient de-

scent (e.g. [2]), randomized dual coordinate ascent (e.g. [3]), APPROX,
ALPHA [4] etc.) to the special sum-type convex optimization problem
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with entropy regularization. Close problems arise in Machine Learning,
but in this paper we restrict ourselves mainly by traffic flow applications.
The novelty of our approach is the following: we consider conditional opti-
mization problems, our gradient step can’t be done explicitly (so we have
to use the concept of inexact oracle). It seems that in this short paper
we first time explain the nature of modern sum-type convex optimization
methods in perspective of comparison this methods with each other and
we try to explain them from unified point of view.

Details can be found at http://arxiv.org/abs/1505.07492.
The research was partially supported by RFBR, research project No. 13-

01-12007-ofi m and 15-31-20571- mol a ved.
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We consider the problem of finding an equilibrium in Beckmann (B) [1] and
stable dynamics (SD) models [2]. These two models play an important role in
congested traffic flow modeling. Also they are important for optimization of
railroad freight. In a recent work [3] the authors consider these two models
and show that stable dynamics model can be obtained from the B-model with
a particular cost functions on the links as a limit when some parameter tends
to 0. In some applications one need to mix both models, so that some edges
have B-type cost function and some have SD-type cost function. In this work
we extend [3] and develop efficient methods for calculating the equilibrium in
Beckmann model and in the mix of B- and SD-model.

Let Γ = (V,E) be the graph of transport network, where V is the set of
vertices and E ∈ V ×V is the set of edges. We denote n = |V | ∼= 104, m = |E| ∼=
4|V |. Also we assume that the set of all pairs origin-destination OD satisfies n≪
|OD| ≪ n2. Let P be the set of all paths in Γ. To define B-model we also need xp
– the flow on the path p, fe(x) =

∑
p∈P δepxp – the flow on the edge e, where δep

equals 1 if e ∈ p and 0 otherwise. Let τe(fe(x)) be the cost for choosing the edge
e. Let Gp(x) =

∑
e∈E τe(fe(x))δep be the cost for the path p. Also let dw, w ∈

OD be the demand corresponding to the pair of origin and destination w. Then
the feasible set of flow distribution is given by X = {x ≥ 0 :

∑
p∈Pw

xp =
dw, w ∈ OD}, where Pw is the set of all paths corresponding to w. The problem
of finding the equilibrium flow distribution is equivalent to the solution of the
problem min

{
Φ(f(x)) =

∑
e∈E σe(fe(x)) : f = Θx, x ∈ X

}
, where σe(fe(x)) =∫ fe(x)

0
τe(z)dz, ∂Φ(f(x))/∂xp = Gp(x), p ∈ P , Θ = ‖δep‖e∈E,p∈P .

We propose to solve this problem using Conditional Gradient Descent (Frank-
Wolfe, FW) (see e.g. [4]). Every step needs calculation of ∇Φ(f(x)) which can
be done by Dijkstra algorithm. In the work [3] authors consider cost functions
parametrized by parameter µ, e.g. τe(fe) = t̄e

(
1− µe ln(1− fe/f̄e)

)
. Then the

SD-model can be obtained from B-model as a limit when µe → +0∀e ∈ E. For
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some applications such limit needs to be taken not for all edges but only for
a subset of them. Also important is the situation when for some edges µe is
taken very small. In such situations the function Φ(f(x)) become non-smooth
or starts to have large Lipschitz constant of the gradient and FW-algorithm
becomes inapplicable.

We propose for the described case to construct a dual problem for the con-
sidered one. We obtain a non-smooth problem on a simple set. To calculate
its subgradient we need to calculate shortest paths (in terms of cost τe(fe). We
apply primal-dual method from [5]. Also we use the fact that the goal function
in the dual problem is the sum of large number of similar functions and propose
a randomized method for solving it. The main advantage that calculating the
subgradient of one random function in the sum is much cheaper than calculat-
ing the full subgradient. We provide complexity analysis in terms of arithmetic
operations for both proposed method.

The research was partially supported by RFBR, research project No. 13-
01-12007-ofi m and 15-31-20571-mol a ved.
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Affine control systems are nonlinear systems that are linear in controls; that,
is, these are the systems of the form

ẏ = f0(y) + f(y)u, y ∈M ⊂ Rn, u ∈ Rr. (1)

Here, y are the phase variables; u are the controls; and M is the phase space
that is a domain. We assume that f0 is a smooth vector field; f is an n-by-r
matrix in which the columns fα, α = 1, 2, . . . , r, are smooth vector fields; and
rankf(y) = const. A solution (or phase trajectory) of system (1) is defined as
a continuous piecewise smooth function y(t) for which there exists a piecewise
continuous control u(t) such that y(t) and u(t) satisfy (1).

A diffeomorphism ψ : M → M is a symmetry of system (1) whenever y(t)
is a solution of system (1), y′(t) = ψ(y(t)) is also a solution of system (1).
Knowledge of symmetries is helpful in finding new solutions of control systems
from already known solutions. Moreover, symmetries play an important role
in decomposition of control systems. For example, some group of symmetries
determines reduction of system (1) by substitution of variables to the system

ż1 = v1, (2)

ż2 = h0(z2) + h(z2)v2, (3)

where z1, z2 — new phase variables, v1, v2 — new controls. The decomposition
(2) (3) separates the trivial part (2). This is helpful in decomposing any control
problem related to system (1) into two problems—a trivial problem related to
trivial system (2) and, in general, a nontrivial problem related to system (3).

The author was supported by the Russian Foundation for Basic Research
(project no. 13-01-00866).
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We consider the Travelling Salesman Problem (TSP) with Vertex Requisi-
tions [2]: given a complete digraph G = (X,U), where X = {x1, . . . , xn} is the
set of vertices, U = {(x, y) : x, y ∈ X,x 6= y} is the set of arcs with non-
negative weights ρ(x, y), (x, y) ∈ U . Besides that, a family of vertex subsets
(requisitions) Xi ⊆ X, i = 1, . . . , n, is given, such that 1 ≤ |Xi| ≤ 2 for all
i = 1, . . . , n.

Let F denote the set of the bijections from Xn = {1, . . . , n} to X that satisfy
the conditions f(i) ∈ Xi, i = 1, . . . , n, for all f ∈ F . The problem asks for a

mapping f∗ ∈ F , such that ρ(f∗) = min
f∈F

ρ(f), where ρ(f) =
n−1∑
i=1

ρ(f(i), f(i +

1)) + ρ(f(n), f(1)) for f ∈ F .

The TSP with Vertex Requisitions is strongly NP-hard [2], and this problem
does not admit a fully polynomial time approximation scheme unless P=NP.
In [2], A.I. Serdyukov developed exact algorithm for solving the problem, based
on enumeration of all perfect matchings in a special bipartite graph.

Let us construct a bipartite graph Ḡ = (Xn, X, Ū) where the subsets of
vertices of bipartition Xn, X have equal size and the set of edges is Ū = {(i, x) :
i ∈ Xn, x ∈ Xi}. There is a one-to-one correspondence between the set F of
feasible solutions to TSP with Vertex Requisitions and the set of perfect match-
ings in graph Ḡ. An edge (i, x) ∈ Ū is called special, if (i, x) belongs to all
perfect matchings in graph Ḡ. A maximal (by inclusion) bi-connected subgraph
with at least two edges is called a block. Every perfect matching in graph Ḡ
is defined by a combination of maximal matchings chosen in each block (one
matching per block) and the set of all special edges [2].

It was proved in [2] that the set of feasible solutions in almost all instances
of the TSP with Vertex Requisitions has at most n elements and these instances
are solvable in O(n2) time.

In this work we propose a modification of algorithm [2] using the approach
form [1]. The modification speeds up the evaluation of objective function during
the process of perfect matching enumeration. Such modification realizes some
preliminary computations of objective function for block contacts [1]. As a
result it is shown that almost all instances of the TSP with Vertex Requisitions
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are solvable in O(nln(n)) time.
Using a connection with perfect matchings in bipartite graph Ḡ and prelim-

inary computations of objective function the following results are obtained. A
mixed integer linear programming model is formulated for the TSP with Vertex
Requisitions. The model consists of O(n) Boolean variables, O(n2) real vari-
ables and constraints. A method of neighbourhood construction for the local
search algorithm of the considered problem is proposed. A neighbourhood of the
solution to the TSP with Vertex Requisitions is defined through neighbourhood
of the corresponding perfect matching.

The authors are supported by the RSF Grant (project no. 15-11-10009).
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Elements of many communication networks use wireless communication for
data exchange. Herewith energy consumption of a network’s element is pro-
portional to ds, where s ≥ 2, and d is a transmission range [1, 3]. In some
networks, e.g., in wireless sensor networks, each element (sensor) has a limited
energy, and its efficient use permits to extend the lifetime of a whole network
[2, 3]. For the rational energy usage, modern sensor can adjust its transmission
range. Then the problem under consideration is to find a transmission range for
each element that supports a strongly connected subgraph in order to minimize
the energy consumption. The problem can be formulated in the following way.

Given a simple undirected weighted graph G = (V,E) with a vertex set V ,
|V | = n, and an edge set E, find a spanning tree T ∗ of G which is the solution
to the following problem:

W (T ) =
∑

i∈V
max

j∈Vi(T )
cij → min

T
, (1)

where Vi(T ) is the set of vertices adjacent to a vertex i in the tree T , and

cij ≥ 0 be the weight of the edge (i, j) ∈ E.
Any feasible solution of (1), i.e., a spanning tree in G, is called a communi-

cation tree (subgraph). It is known that (1) is strongly NP-hard [1] and if N 6=
NP, then the problem is inapproximable within the ratio 1 + 1

260
[3].

In [1] it is shown that a minimal spanning tree is a 2-approximation solution
to the problem (1). In [3] a more precise ratio estimate for the minimal spanning
tree is reported. In [3] a set of heuristic algorithms is proposed and their a
posteriori analysis is performed. Since we were not completely satisfied with
the results obtained, in [3] we proposed a new hybrid heuristics that combines
genetic algorithm with the variable neighborhood search [4]. There two new
local search heuristics for the problem (called LI and VND) are proposed. They
are then used as a mutation operator within the genetic algorithm (GA). The
computational results show the high efficiency of the proposed hybrid heuristic.

63

In this paper we propose the different heuristics based on the variable neigh-
borhood search (VNS) [4]. Contribution of this paper may be summarized as
follows.

• New local search that is based on “elementary tree transformation” [4]
is proposed. In terms of solution quality it significantly outperforms the
previous one (named as LI), but uses more computation time.

• Several Basic VNS and General VNS based heuristics are proposed and
tested. Some of those new heuristics give results of better quality than
recent state-of-the-art (hybrid heuristic [2]), especially for solving more
realistic large size problems.

The authors were supported by the Russian Foundation for Basic Research
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Republic of Kazakhstan (project no. 0115PK00550).
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A method for solving the inverse linear programming problem is proposed.
For a given linear programming (LP) problem we adjust the cost coefficients as
less as possible (under Lp measure) so that a known feasible solution becomes
the optimal one. The first inverse LP problem within this formulation under
L1 and L∞ measure was considered in [1,2]. The inverse LP problem under the
L1 as well as L∞ norm is also a linear programming problem. Here we consider
the Euclidean vector norm L2 [3]. In such a case the inverse LP problem is
reduced to unconstrained minimization of convex piecewise quadratic function.
The Generalized Newton method can be used for unconstrained minimization
this function and it converges globally in a finite number of steps.

The authors were supported by the Russian Foundation for Basic Research
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4640.2014.1
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A new and unified methodology for computing first order derivatives of
functions obtained in complex multistep processes is developed on the basis of
general expressions for differentiating a composite function. From these results,
we derive the formulas for fast automatic differentiation (FAD) of elementary
functions, for gradients arising in optimal control problems, nonlinear program-
ming and gradients arising in discretizations of processes governed by partial
differential equations. In the proposed approach we start with a chosen dis-
cretization scheme for the state equation and derive the exact gradient expres-
sion. Thus a unique discretization scheme is automatically generated for the
adjoint equation. For optimal control problems, the proposed computational
formulas correspond to the integration of the adjoint system of equations that
appears in Pontryagin’s maximum principle. This technique appears to be very
efficient, universal, and applicable to a wide variety of distributed controlled
dynamic systems and to sensitivity analysis.

The application of the FAD-technique to complex optimal control problems
is discussed. The examples of solved problems with the help of FAD-technique
are presented.

This work was supported by the Russian Science Foundation, project no.
14-11-00782.
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Parallel computing is one of the most common ways to cope with high com-
putational complexity of deterministic global optimization. Many optimization
methods relies on branch-and-bound (B&B) scheme when the initial problem
is partitioned into smaller sub-problems forming so-called B&B tree. Since the
structure of the tree is not known in advance the static distribution is usu-
ally not efficient. To overcome this problem parallel B&B solvers use dynamic
load balancing to distribute the computational load among processors. Though
experimental evaluation on real problems and parallel platforms is an indispens-
able tool for performance study it can be resources consuming for large scale
HPC systems.

In this paper we propose an alternative approach based on simulation. The
developed tool simulates both a parallel system and a tree search process. This
approach allows to easily run many virtual experiments on thousands of pro-
cessors and branch-and-bound trees of various sizes. In BNB-Solver [1] library
used for our experiments schedulers interact via a strictly defined interface with
a solver and a parallel platform. The simulator transparently substitutes the
real parallel system and the real solver. Thus we can conveniently evaluate the
performance of scheduling algorithms incorporated to the BNB-Solver library.
Besides the simulator we also developed a graphical front-end that visualizes
the processors load and communication among processors.

Supported by Ministry of Science and Education of Republic of Kazakhstan,
project 0115PK00554 and by the Russian Foundation for Basic Research (project
no. 14-07-00805)
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Let the primal LP problem be written in the following form:

f∗ = min
x,x0∈Z

x0, (P ′)

Z = {x ∈ Rn, x0 ∈ R1 : Ax = b, −c⊤x+ x0 = 0, x ≥ 0n}.

Let ẑ be a fixed arbitrary vector in Rn+1, ẑ⊤ = [x̂⊤, x̂0]. Then the problem
(P ′) reduces to the following unconstrained maximization problem:

I ′ = max
p∈Rm,p0∈R1

S(p, β′, ẑ), p⊤ = [p⊤, p0], (1)

where β′ is a fixed scalar, and the function S is determined by:

S(p, β′, ẑ) = b⊤p− 1

2
‖(x̂+ A⊤p− p0c)+‖2 − 1

2
(x̂0 + p0 − β′)2. (3)

There exists β′
∗ such that for all β′ ≥ β′

∗ the solution p(β′), p0(β′) to problem
(1) define the projection of the point ẑ on the solution set of the problem (P ′)
by formulas:

[
x̂∗

x̂∗
0

]
=

[
(x̂+ A⊤p(β′)− p0(β

′)c)+
x̂0 + p0(β

′)− β′

]
. (4)

It turns out that a threshold value of the parameter β′ is smaller than in
method from [1] for LP problems, where the optimum value of the objective
function is a strictly positive.

Also, it is possible to identify a class of problems where we can take x̂0 = β′

in (4) and the function S becomes independent of the parameter:

S(p) = b⊤p− 1

2
‖(x̂+ A⊤p− p0c)+‖2 − 1

2
p20. (5)
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The method above based on the unconstrained minimization of convex piece-
wise quadratic function can be used to find the sparsest solution of a large un-
derdetermined system of linear equations. In [2] it was suggested that such a
problem can be effectively solved by minimizing the l1-norm of the vector being
the solution of this system of equations:

f∗ = min
x∈X

‖x‖1, X = {x ∈ Rn : Ax = b}. (P1)

Using change of variables x = x+ − x−, where x+, x− ≥ 0n, the problem
(P1) can be written in the form of the standard LP problem:

f∗ = min
x∈X

x+ + x−, X = {x ∈ Rn : A(x+ − x−) = b, x+, x− ≥ 0n},

which reduces to the unconstrained maximization:

max
p∈Rm

b⊤p− 1

2
‖(A⊤p− β)+‖2 − 1

2
‖(−A⊤p− β)+‖2, (6)

where β is a parameter.

In this work it was estimated the density of the solution found using method
above. The generalized Newton method with Armijo’s rule for step size was used
for solving unconstrained maximization problem (6).
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Over the past decades, the theory of finite-dimensional optimization has
accumulated a huge store of approaches and methods for a local extremum
search. The basis of modern optimization software traditionally consists of a
set of algorithms that allows to implement a good working multimethod com-
putational schemes. Software libraries of algorithms implemented in common
standards can also simplify the creation of necessary service and computing pro-
cess management tools, such as interactive subsystems, calculations scheduler,
verification and test units. In our opinion, the relevance of this task of selection
and implementation of such algorithms collection is defined by the huge-scale
problems difficulty and the importance of the unimodal, optimization problem
which is widely used as an auxiliary in the algorithms of global optimization.

The report considers a library of algorithms of local optimization, focused on
a class of unimodal functions. Our goal was to implement in a single software
system as much algorithms as possible. All the algorithms are local, some
of them are well known and bases on strict mathematical theory, and some
implement new heuristic approaches. Currently, the library includes about 50
methods implementation, and we the work can not be considered complete.
In particular, it includes algorithms modifications requiring quadratic memory.
They are regularized Newton method, quasi-Newton BFGS and DFP algorithm,
non-gradient Powell-Brent method, the method of ellipsoids and other. Also
there are some more efficient methods: conjugate gradient (23 versions), the L-
BFGS method, Polyaks method, barzilai-borwein method, several versions for
the the gravity centers method, several methods proposed by Yu.E.Nesterov.

The report shows results of computational experiments for several classes
of problems: problems of small (up to 10 000 variables), medium (between
10 000 and 100 000 variables), large (over one million variables) dimension and
degenerate or close to them problems.

The work was partly supported by the Russian Foundation for Basic Re-
search (project no. 13-01-00470 and no. 15-07-03827).
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Many problems in computational geometry can be solved via construction
of spatial homeomorphisms with controlled properties. 2d and 3d manifold
flattening and parameterization, deformation and morphing are widely used
in computer graphics, computational biology and anatomy, molecular biology,
pattern recognition, GIS, geology and stratigraphy, mesh generation, shape op-
timization, reverse engineering and other fields.

Viable solution to the above problems is provided by hyperelastic defor-
mations of specially devised polyconvex materials. Existence theory for poly-
convex stored energy functionals developed by John Ball assumes: (a) the set
of admissible mappings is not empty; (b) minimizing sequence is constructed
by the so-called direct method. From the computational point of view above
statements are translated into: (a) mesh untangling problem (construction of
admissible deformation) and, (b) mesh optimization problem.

Mesh untangling is hard and inherently nonlinear problem. In 1997 S.A.
Ivanenko have shown that untangling problem can be solved using only finite
number of steps where nonlinear variational problem is solved exactly. We show
that this result can be extended to the case of inexact solution of variational
problem.

Untangling and construction of optimal discrete deformations for real-life
problems can become extremely stiff problem and requires powerful precondi-
tioning. We present new nonlinear preconditioning strategy which combines ad-
vantages of simple iterative scheme due to (Charakhchyan, Ivanenko, 1988) and
implicit solver due to (Garanzha, Kaporin, 1999) and is applicable to very stiff
deformation problems. New adaptive untangling procedure based on dynamic
extraction of subdomains with tangled mesh allows to reduce computational
cost for untangling.

Thick near-wall prismatic layers and large offsets can be constructed using
springback procedure when thin highly compressed layer of hyperelastic material
is attached to fixed surface and is allowed to expand. This procedure allows
to construct one-cell-wide layers and offsets with thickness comparable to the
characteristic size of the body. Resulting mesh layer does not contain inverted
cells. Self-intersection zones can be easily eliminated by cutting off excessive
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thickness. This procedure generally does not lead to offset thickness reduction
due to local dents or elevations which is quite different from the advancing front
collision detection technique. When small surface elements are present discrete
variational problem can become quite stiff due to very large target height-to-
base ratio of expanding elasting cells. Problem with convergence of iterative
procedure is manifested as final thickness falling short of target values. We
show how new preconditioning strategy performs on the variational springback
problem and illustrate its behaviour on hard real-life test cases. Fig.1 illustrates
hard untangling test when large rigid cube is rotated inside elastic one.

Fig. 1. Elastic deformation of mesh cell due to rotation of rigid
interior cube by angle π/8 and π, respectively.

Fig. 2. Surface mesh for TSAGI SRV and prismatic layer.

This work is supported by the Russian government under grant “Measures
to Attract Leading Scientists to Russian Educational Institutions” (contract No.
11.G34.31.0072) and RFBR grant 14-07-00805.
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Search of equilibrium in multistage models of transport flows results in the
solving of saddle-point problem (1) with the convex-concave structure:

min
∑n

j=1
xij = Li,

∑n
i=1

xij = Wj,

i, j = 1, . . . , n

max
y∈Q

{
n∑

i,j=1

xij ln xij +

n∑

i,j=1

cij(y)xij + g(y)

}
, (1)

where cij(y) and g(y) are concave smooth functions.

The dual problem for (1) is written in the form (2).

max
y∈Q

max
λ,µ

{
〈λ,L〉+ 〈µ,W 〉 −

n∑

i,j=1

exp(−cij(y)− 1 + λi + µj) + g(y)

}
(2)

Internal maximization problem for (λ, µ) can be explicitly made in terms of µ
when λ is fixed and vice verse. This approach is well-known as balancing method
for calculation of matrix of correspondences from the entropy model. It can be
considered as method of simple iteration for explicit expressions for (λ, µ) from
extremum conditions: λ = Λ(µ), µ = M(λ). Operator (λ, µ) → (Λ(µ),M(λ))
is contracting one in Birkhoff-Gilbert metric and thus have geometric rate of
convergence (one need to perform N = O

(
ln(σ−1)

)
iterations to guarantee this

accuracy σ). That operator demonstrates fast convergence on practice and thus
allows effective solution of internal problem. Due to the lack of knowledge about
overall problem (for example, unknown Lipschitz constant) Nesterov’s universal
method with inexact oracle (see def. 1) is used.

D e f i n i t i o n 1. (δ, L)-oracle provides (F (y),G(y)) and that (F (y),G(y))
satisfy (3) for any y, y′ ∈ Q.
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0 ≤ f(y′)− F (y)− 〈G(y), y′ − y〉 ≤ L

2
‖y′ − y‖2 + δ (3)

The problem with Hölder’s gradient of the goal function (v ∈ [0, 1]; ‖∇f(y′)−
∇f(y)‖∗ ≤ Lv‖y′ − y‖v) can be considered as a smooth problem with inexact
oracle for any δ with

L = Lv

[
Lv(1− v)
2δ(1 + v)

] 1−v
1+v

(4)

Theorem 1. There is one-parametric family of universal gradient methods
(with parameter p ∈ [0, 1]) which require no more than Np(ε) iterations (5) to
solve the problem with accuracy ε if δ ≤ O (ε/Np(ε)

p).

Np(ε) = O

(
inf

v∈[0,1]

(
LvR

1+v

ε

) 2
1+2pv+v

)
(5)

The time required for solving the problem (2) will be O(N1(ε)T ln(ε−1))
where T is the time required to solve auxiliary problem by balancing method
with relative error 1%. Experiments show that it is required T ≈ 1s on modern
PC for n = 102.

The crucial feature of this method is its adaptability (it does not require
knowledge of Lipschitz constant) and self-tuning to the optimum smoothness of
the function.

Authors acknowledges Yu.E. Nesterov for the set of valuable comments.
The research was partially in MIPT with support of Russian Foundation

for Basic Research (project no. 15-31-20571-mol a ved, 14-01-00722-a, 13-01-
12007-ofi m)
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We make several observations on efficient approximation algorithms with
proven guarantees for some discrete optimization problems that mainly as-
sociated with rooting, covering and clustering. The problems considered are
NP-hard in general case. We pay particular attention to the results achieved
in recent years through research in Novosibirsk State University and Sobolev
Institute of Mathematics. Most of the problems considered is to find in the
complete weighted graph multiple discrete disjoint structures (subgraphs) with
the extremal total weight of edges within them. We will touch on the following
problems.

1. m-Peripatetic Salesman Problem (m-PSP): finding several Hamiltonian
circuits in complete weighted graph.

2. Random MIN m-PSP with different weight functions of their routes on
instances unbounded from above.

3. m-Capacitated 2-PSP with capacity restrictions.
4. Combinatorial algorithms with performance guarantees for finding several

Hamiltonian circuits in a complete directed weighted graph.
5. Diameter-bounded (from belou) Minimum Spanning Tree Problem.
6. TSP-approach to construction an approximation algorithm for solving

the problem m-CYCLES (CHAINS) COVER: covering a complete graph by m
disjoint cycles (chains) with extremal total weight of edges.

7. Euclidean MAX m-CYCLES COVER.
8. Random MIN m-CYCLES COVER on instances UNI(0, 1).
9. Metric and Quadratic Euclidean MAX m-Weighted Clique Problems:

2-approximation algorithm.
10. Euclidean MAX Vector Subset Problem: a randomized algorithm.
11. Clustering Problem in network models.
12. Clustering Problem on the real axis.

The work was supported by the Russian Foundation for Basic Research
(projects no. 15-01-00976, no. 13-07-00070).
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Clustering is the classification of patterns (observations, data items, or fea-
ture vectors) into groups (clusters). The clustering problem has been addressed
in many contexts and by researchers in many disciplines. However, clustering
is a difficult problem combinatorially.

In this report, we consider a special case of Euclidean clustering problem,
namely the problem of clustering on the real axis. Let the set X = {xi} of n
elements (points) on the real axis and a natural number m < n of clusters be
given. Each point x ∈ X is described by the weight w(x) and by a cost function
f(x) for its assigning as the center of some cluster. Each cluster Ck has the
capacity Wk, k = 1, . . . ,m. Let the distance function ρ(x, y) between points
x, y on real axis be given.

The problem is to find a partition of the set X = {xi} on disjoint subsets
(clusters) C1, C2, . . . , Cm such that

m∑

k=1

min
y∈Ck

(
f(y) +

∑

x∈Ck

w(x)ρ(x, y)
)
→ min

{Ck}
, (1)

under constraints ∑

x∈Ck

w(x) ≤Wk, k = 1, . . . ,m. (2)

Our results:
1) We prove that the problem (1)-(2) is NP-hard, even for the linear or

quadratic distance function.
2) The example is presented that shows nonoptimality of the decision for

the problem with connected clusters C1, C2, . . . , Cm.
3) For solving the special problem with connected clusters the exact algo-

rithm is constructed. The algorithm implements the dynamic programming
technique and runs in time O(mn2m), i.e. in the case of fixed parameter m it
has linear time complexity depending on n.
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Given a complete edge-weighted graph G, the m-CYCLES COVER prob-
lem is to find m cycles of extremal total weight, such that every vertex in G
belongs to exactly one cycle. The problem is strong NP-hard even in Metric or
Euclidean cases [1]. The TSP-approach to construct approximation algorithms
for m-CYCLES COVER problem consists in reordering some spanning cyclic
configuration of the TSP approximate solution into a spanning subgraph for
m-CYCLES COVER problem.

Approximation algorithm for our problem finds an approximate solution
(Hamiltonian cycle) H̃ = (1, . . . , n) for the TSP and solves the auxiliary problem
∑m
k=1

(
w(uk−1+1, uk)−w(uk, uk+1)

)
→ minu(maxu) for all feasible partitions

u = (u1, u2, . . . , um) of the cycle H̃ into a set of disjoint segments (chains)
Ck = (uk−1 + 1, . . . , uk), k = 1, . . . ,m, such that 1 ≤ u1 < u2 < . . . < um ≤ n,
and each segment contains at least 2 edges; u0 = um. As a resulting solution
for m-CYCLES COVER problem we take the set of cycles obtained by adding
edges (u∗

k−1 + 1, u∗
k) to the chains Ck, k = 1, . . . , m, where u∗ is the solution of

the auxiliary problem.

Let us introduce some examples of implementation of this approach.

1. Euclidean MAX m-CYCLES COVER. Suppose, that the lengths
(number of vertices) L1, . . . , Lm of the cycles may be given or not.

Build a Hamiltonian cycle H̃ using the asymptotically optimal algorithm
for Euclidean MAX TSP [2,3].For the auxiliary problem, set arbitrary ui with
Li = ui+1 − ui ≥ 3; if the length Li of a cycle is given, set ui+1 = ui + Li.
Adding the corresponding edges to these segments, we get the solution of the
problem. Note, that cyclically shifting the edges to be deleted from H̃, we can
obtain n feasible solutions and then choose the best one as an answer.

If m = o(n) the algorithm for Euclidean MAX m-CYCLES COVER is
asymptotically optimal and runs in O(n3) time.

2. Random MIN m-CYCLES COVER. Build a Hamiltonian cycle
H̃ using asymptotically optimal algorithm for Random MIN TSP on UNI(0, 1)
random inputs [4]. For the auxiliary problem contract procedure with parameter
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p = 1

n1/3 that finds m edges (i, i+1) (one in each segment (uk−1+1, uk) ), such

that the random graph G′
p contains a pair of edges (uk−1 +1, i+1) and (i, uk),

that convert the segment to a cycle. For the Random MINm-CYCLES COVER
problem on UNI(0, 1) random inputs an asymptotically optimal solution can

be obtained for m ≤ n1/3

lnn
in O(n3) time.

3. Symmetric MAX m-CYCLES COVER. We use 3/4-approximation

algorithm from [5] to find Hamiltonian cycle H̃. Then we remove m edges,
that don’t belong to the 2-factor and the perfect matching. Adding the edges
to convert the segments to cycles we will only improve the ratio 3/4 for the
Symmetric MAX m-CYCLES COVER problem.

Similar considerations can be used to modify other known algorithms for
the TSP (see, for example,[6]) into algorithms solving the m-CYCLES COVER
problem.

The authors were supported by the Russian Foundation for Basic Research
(project no. 15-01-00976, 13-07-00070, 14-11-00109).
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At the previous OPTIMA–2013 conference, we presented the talk ”A Nu-
merical Method for Solving Bimatrix Games”. The then proposed algorithm
(2LP-method) first selects an ordered sequence of initial points (pure strate-
gies). For a current initial point (for example, a vector y0 with components
y01 = 1, y0j = 0, j = 2, . . . , n) the method successively solves (for t = 0, 1, 2, . . .)
two linear programming (LP) problems:

α− x′(A+B)yt → min, x′B ≤ α, x′ 1m = 1, x ∈ E+
m, α ∈ E1, (1)

β − (xt+1)′(A+B)y → min, Ay ≤ β, y′ 1n = 1, y ∈ E+
n , β ∈ E1. (2)

Here (αt+1, xt+1) is an optimal solution of problem (1) for a fixed vector y = yt;
(βt+1, yt+1) is an optimal solution to problem (2) for a fixed vector x = xt+1; 1k
is the unit vector (composed of k ones, where k equals either m, or n); finally,
′ means transposition.

The iterations stop when either one finds a Nash equilibrium point (x, y)
where the Nash function becomes zero: F (x, y) = α+β−x′(A+B)y−α−β = 0,
or the Nash function is stabilized at a nonzero value. In the latter case, the
algorithm restarts from the next initial point. On practice, the minimum value
of the Nash function achieved by having applied the algorithm to the sequence
of starting points is sufficiently close to zero.

The well-known Lemke–Howson method (LH-algorithm) [1] also fails for
some problems to find a Nash equilibrium point after a reasonable running time.
For instance, we generated several games with linearly dependent matrices A
and B, which proved to be unsolvable by the 2LP-algorithm, and their solution
by the LH-method took unacceptably long time.

Now we propose a hybrid approach that makes search of the Nash points
in two steps. First, making use of the 2LP-method we find a solution with a
low value of the Nash function, and then we transform the latter into a starting
point for the LH-algorithm.

At a Nash point of the bimatrix game, the following relationships must hold:

Ay + u = 1m, x′B + v = 1n, x, u ∈ E+
m, y, v ∈ E+

n , (3)

together with the complementarity conditions

xi ui = 0, i = 1, . . . ,m, yj vj = 0, j = 1, . . . , n.
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In the resulting solution obtained by the 2LP-algorithm with a nonzero value
of the Nash function, one or more complementarity conditions are usually vio-
lated. When the first step of the hybrid algorithm is over, in order to start a
procedure of Lemke–Howson kind, we combine the bases of problems (1)–(2) to
compose a basis for relationships (3). Next, we try to reduce the number of vio-
lated complementarity relationships by pivoting, that is, by entering non-basic
variables instead of the basic ones involved in the flawed complementarity con-
ditions. If no Nash equilibrium has been achieved, we introduce an additional
column generated in a special way so that after entering it to the basis, at least
one variable of each pair engaged in the complementarity conditions becomes
zero. After that, the LH-procedure is exercised in order to make this column
leave the basis. If the latter occurs, a Nash equilibrium point is obtained.

Our hybrid approach has successfully solved several bimatrix games that
proved to be failure for both pure 2LP and LH algorithms.
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Let us formulate the simplest case of the bilevel programming problems with
an equilibrium as follows:

〈c, x〉+ 〈d1, y〉+ 〈d2, z〉 ↑ max
x,y,z

,

x ∈ X = {x ∈ IRm | Ax ≤ a, x ≥ 0, 〈b1, x〉+ 〈b2, x〉 = 1},
(y, z) ∈ C(ΓM(x)),





(BPΓM )

where C(Γ(x)) is the set of saddle points of the game

〈y,Bz〉 ↑ max
y
, y ∈ Y (x) = {y | y ≥ 0, 〈en1

, y〉 = 〈b1, x〉},
〈y,Bz〉 ↓ min

z
, z ∈ Z(x) = {z | z ≥ 0, 〈en2

, z〉 = 〈b2, x〉}.

}
(ΓM(x))

c, b1, b2 ∈ IRm, y, d1 ∈ IRn1 ; z, d2 ∈ IRn2 ; a ∈ IRp; b1 ≥ 0, b1 6= 0, b2 ≥ 0, b2 6=
0; A,B are matrices and en1

= (1, ..., 1), en2
= (1, ..., 1).

In order to elaborate numerical methods for the solving of (BPΓM ) we need
to reformulate it as single level problem. We can replace a game at the lower
level by its optimality conditions [1]. Hence, it is possible to formulate the
following equivalent to (BPΓM ) optimization problem:

f(x, y, z)
△
= 〈c, x〉+ 〈d1, y〉+ 〈d2, z〉 ↑ max

x,y,z,v
, (x, y, z) ∈ S

〈b1, x〉(Bz) ≤ ven1
, 〈b2, x〉(yB) ≥ ven2

.

}
(PM)

where S = {x, y, z ≥ 0 | Ax ≤ a, 〈b1, x〉+ 〈b2, x〉 = 1, 〈en1
, y〉 = 〈b1, x〉,

〈en2
, z〉 = 〈b2, x〉}. It can readily be seen, that (PM) is a global optimization

problem with a nonconvex feasible set and we can apply the Global Search
Theory (GST) for the problems with d.c. constraints [2, 3].

The group of (n1+n2) bilinear constraints generates the basic nonconvexity
in the problem (PM). We proposed to reduce the bilinear constraints to a
single, but nondifferentiable, constraint:

F = max

{
max

1≤i≤n1

〈en1
, y〉(Bz)i − v; v − min

1≤j≤n2

〈en2
, z〉(yB)j

}
≤0, (1)

and we obtained explicit decomposition of function (1) by the difference of two
convex functions: F (y, z, v) = g(y, z, v)− h(y, z).

81

The Local Search Algorithm for problem with d.c. constraint consists of
two following procedures. Starting from given point (x, y, z, v) : (x, y, z) ∈
S, F (y, z, v) ≥ 0, first procedure constructs a point (x̄, ȳ, z̄, v̄) such that (x̄, ȳ, z̄) ∈
S, F (ȳ, z̄, v̄) = 0, f(x̄, ȳ, z̄) ≥ f(x, y, z).
Second procedure starts at a point (x̄, ȳ, z̄, v̄) and constructs a sequence {(xr, yr, zr, vr)}
such that

(xr, yr, zr) ∈ S, F (yr, zr, vr) ≥ 0, f(xr, yr, zr) ≥ ρ,
g(yr+1, zr+1, vr+1)− 〈∇h(yr, zr), (yr+1, zr+1)〉 − δr ≤

≤ inf
x,y,z,v

{g(y, z, v)− 〈∇h(yr, zr), (y, z)〉 | (x, y, z) ∈ S, f(x, y, z) ≥ ρr}.
The Global Search Procedure for problem (PM) may be represented as

follows. Let there be given an approximate critical point (xk, yk, zk, vk) in
(PM). For escaping it one needs to realize the following key stages.

1) Choose a number β ∈ [inf(g, S), sup(g, S)] and construct an approxima-
tion Ak = {pi = (yi, zi) ∈ IRn1+n2 | h(pi) = β, i = 1, . . . , N} It is possible to
choose β0 = h(yk, zk).

2) Compute ρk = f(xk, yk, zk) and starting from point (xk, yi, zi, vk) obtain
a critical point (x̃i, ỹi, z̃i, ṽi) to (P) by the Local Search Algorithm.

3) Choose from the set of points (x̃i, ỹi, z̃i, ṽi), i = 1, . . . , N , the triplet
(x̃, ỹ, z̃) best with respect to the goal function f(·).

4) If the value of the goal function at the point (x̃, ỹ, z̃) turns out to be better
than in a current point (xk, yk, zk) then (xk+1, yk+1, zk+1, vk+1) := (x̃, ỹ, z̃, ṽ)
and the process is repeated.

First results of our computational simulation demonstrate efficiency of the
above technique.

This research was supported by the Russian Science Foundation (project
No. 15-11-20015).
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In our talk we will consider quasi-variational inequality:
find x∗ ∈ C(x∗) such that

〈F (x∗), y − x∗〉 ≥ 0, ∀y ∈ C(x∗), (QV I)

where F : H 7→ H is an operator of a Hilbert space H and C : H → 2H is a
multifunction with nonempty closed and convex values. For C(x) = C ⊆ H we

have variational inequality

find x ∈ C : 〈F (x∗), y − x∗〉 ≥ 0, ∀y ∈ C. (V I)

The theory, as well as solution methods of the variational inequality, have
been well documented in the literature.

In recent years the theory of quasi-variational inequalities attracted a grow-
ing attention. This theory includes variational inequalities and many others
important problems of interest as particular cases and it provides a mathe-
matical tools for studying a wide range of the problems of theory of games,
equilibrium programming, structural mechanics.

Let us note that from the point of theory of existence and solution methods,
quasi-variational inequalities do not have an extensive literature. The reason
is because quasi-variational inequalities require simultaneously solving of vari-
ational inequality and fixed point problemof multifunction. As a consequence,
we have that the theory of quasivariational inequalities contains many questions
to be answered. For example, the solution methods of variational inequalities
are not always convenient (and they can not be adapted) for solving quasi-
variational inequalities. In our talk we will present some recently developed
methods for solving quasivariational inequalities. We will suggest first and sec-
ond order gradient mathod, proximal method and extra-gradient method. For
every method we will find rate of convergence.
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Bifurcation as a phenomenon has been studied in the recent decades, and the
possibility of controlling a system in which a bifurcation occurs has attracted
the attention of many researchers. Our goal in researching the problem of
bifurcation control is to find suitable control directions for a system undergoing
bifurcation in order to steer it into a favorable solution.

We will work with impulsive controls, and will show a method for finding
desirable control directions. This method is based on a bifurcation theorem for
abstract problems with constraints, represented by inequalities on initial and
terminal conditions.

We demonstrate our method with two examples of controlled dynamical
systems. These examples will show how directions of control are chosen, and
the impact that the initial conditions of the desired solution have on this choice.
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In this work, it is suggested to use an iterative algorithm based on the Kro-
tov optimality principle in solving of optimal control problems of the complex
nonlinear systems. As it is known, [1–2] the general scheme of this principle is
to transition from the original optimization problem {J [v]→ min

v
} to a certain

dual problem {L[ϕ, v]→ max
ϕ
}.

The key idea of the transition to dual problem based on the following trans-
formation of the optimal control problem:

J [x, u] =

T∫

0

f0(x, u, t)dt+ F (x(T ))→ min
{x,u}∈D

, (1)

D = {x(t), u(t)| x′(t) = g(x, u, t), x(0) = x0, t ∈ (0, T )}, (2)

using the Krotov function ϕ(x, t) to a problem:

L[ϕ; x, u] = −
T∫

0

R(ϕ;x(t), u(t), t)d t+G(ϕ;x(T ))→ max
ϕ∈Φ

, (3)

where R(ϕ;x, u, t) = −f0(x, u, t) +
∂ϕ(x, t)

∂t
+

n∑

i=1

∂ϕ(x, t)

∂xi
gi(x, u, t),

G(ϕ;x) = F (x) + ϕ(x, T )− ϕ(x0, 0),

L[ϕ; x, u] = J [x, u] at {x, u} ∈ D, (4)

We define the class of functions Φ in the following way: in order for ∀ϕ ∈ Φ
functionals (3), R(ϕ;x, u, t) and G(ϕ;x) would be defined and the relation (4)
is true. An iterative algorithm for solving the problem (1)–(2), based on the
given transformation.
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The suggested algorithm is applied for the numerical solution of optimal
control problems of complex power system, [3]:

It is required to minimize the functional

J(ν) = J(ν1, ..., νl) = 0.5
l∑

i=1

T∫

0

(
wsiS

2
i +wνiν

2
i

)
d t+ Λ(δ(T ), S(T )), (5)

under the conditions

d δi
d t

= Si,
d Si
d t

=
1

Hi
[−DiSi − fi(δi)−Ni(δ) +Mi(δ) + ui], i = 1, l, (6)

where
fi(δi) = Pi[sin (δi + δFi − αi)− sin (δFi − αi)],

Ni(δ) =
l∑

j=1, j 6=i
N ij(δ1, ..., δl) =

l∑

j=1, j 6=i
Γ1
ij [sin (δij + δFij)− sin δFij ],

Mi(δ) =
l∑

j=1, j 6=i
M ij(δ1, ..., δl) = Γ2

ij [cos (δij + δFij)− cos δFij ],

Γ1
ij = Pij cos αi, Γ2

ij = Pij sin αi, Pij = Pji, Γkij = Γkji, k = 1, 2.

The control will be found in the form of:

ui = νi −Mi(δ), i = 1, l, where the functions νi to be determined. (7)

For given numerical data for problem (5)–(7) numerical experiments has
been conducted.
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In many applications, it is important to know if solutions to parametric
complementarity problems are monotone with respect to parameters involved
(see, for example, [1] and [2]). This paper establishes conditions of various
types that guarantee the latter property. In the majority of them, the crucial
requirement is that the mappings defining the problem be monotone (in certain
sense) by the state variables and antitone with respect to parameters.

Consider a nonlinear complementarity problem with parameters: given a
parameter vector u = (u1, u2, ..., um) ∈ Rm, find a point x ∈ Rn such that

x ≥ 0, Ax+Bu+ ϕ(x, u) ≥ 0, and

xT (Ax+Bu+ ϕ(x, u)) = 0; (1)

here A,B are given n× n and n×m real matrices, and ϕ : Rn × Rm → Rn is
a nonlinear function. We say that a ≥ b if ai ≥ bi, i = 1, ..., n.

D e f i n i t i o n 1 [3]. A matrix A is called:

• a Z-matrix if its non-diagonal elements are non-positive;

• a P-matrix if all its principal minors are positive;

• an M-matrix if it is a Z-matrix and a P-matrix.

In order not to restrict our research to the case of equal numbers of decision
variables and parameters, we will use not the concept of monotonicity defined
by the inner product of the vector-function and the vector of parameters, but
the component-wise monotonicity notion (cf., [4]) given below.

D e f i n i t i o n 2. A mapping f : Rn → Rm is called monotone [antitone]
if x1 ≥ x2 implies f(x1) ≥ f(x2) [f(x1 ≤ f(x2)].

Theorem 1. Let A be a positive definite M-matrix, B a non-positive one,
and ϕ(x, u) a differentiable function monotone by x and antitone with respect
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to u. Moreover, suppose ϕ′
x = ϕ′

x(x, u) to be a positive definite M-matrix for
each x and u. Then the solution x = x(u) to problem (1) is monotone by u.

A symmetrical result concerning the antitone behavior of solutions of the
complementarity problem (1) is obtained readily by the theorem below.

Theorem 2. Let A be a positive definite M-matrix, B a non-negative
one, and ϕ(x, u) a differentiable function monotone by both x and u. Moreover,
suppose ϕ′

x = ϕ′
x(x, u) to be a positive definite M-matrix for each x and u. Then

the solution x = x(u) to problem (1) is antitone by u.

The paper also comprises monotonicity results for linear and implicit para-
metric complementarity problems, as well as for more general variational in-
equality problems.

The authors were supported by the Research Department of the Instituto
Tecnológico y de Estudios Superiores de Monterrey (ITESM), Campus Mon-
terrey, and by the SEP-CONACYT project CB-2013-01-221676, Mexico. The
second author was also supported by the PAICYT project No. CE250-09.
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In this article, the (2+1)-dimensional nonlinear A4-model, generalizing the
Korteweg-de Vries equation, was considered. In this paper we explained the
economic meaning of (2+1)-dimensional nonlinear A4-model. The definition of
economic soliton as a solution to the mathematical model was given. Economic
sense of the method of direct scattering problem, corresponding to the positive
analytical approach to the economy, is described.

Korteweg-de Vries equation is called universal mathematical model because
it describes many of the physical problems of nonlinear waves in different phys-
ical environments.Multidimensional analogues of Korteweg-de Vries equation is
also universal. Alexeyeva A. presented the class of the spatially two-dimensional
nonlinear mathematical models A1-A14 and AI-AXII [1], generalizing the clas-
sical Korteweg-de Vries equation [2].

Consider the (2+1)-dimensional nonlinear A4-model has the form

Ψt + Vxxy + 3[V 2]y = 0 ,

where Vx = Ψy and complex valued function Ψ = Ψ(x, y, t) ∈ C∞(R1 ×
R1×R1

+) and decreases with all its partial derivatives faster than any power of
|x|−1.

We constructed hierarchy of auxiliary linear systems for the (2+1)-dimensional
nonlinear A4-model. Also we showed the compatibility condition for these sys-
tems which connencts the auxiliary linear systems with this model. We found
soliton solutioans of the (2+1)-dimensional nonlinear A4-model.

We solved the (2+1)-dimensional nonlinear A4-model by the method of
direct scattering problem.
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Spatially (2+1)-dimensional nonlinear A4-model adequately describes the
objective reality of any economic phenomenon or process. It is known [3] that
the behavior of the microsubjects of economy has wave character. Here, the
function Ψ = Ψ(x, y, t) is the wave function describing the state of the economy
microsubject, x, y are the potentials of collective economic interactions; t is the
time factor, which serves as a transformation parameter.

If to apply the method of direct scattering problem to the economic prob-
lems, it will conform to the implementation of a positive approach to economic
policy.

In particular, the requirement to assess the consequences of any predefined
permanent economic activities, such as budget, formally corresponds to the so-
lution of the direct problem of scattering. I.e. data recovery in the scattering
matrix for a given function Ψ = Ψ(x, y, t) in advance on the collective interac-
tions of x and y. This interpretation of the direct scattering problem method
is consistent with the positive analytical approach in the economy.

Thus, we examined the (2+1)-dimensional nonlinear A4-model, generalizing
the Korteweg-de Vries equation. We considered the auxiliary linear system for
it, determined the conditions of zero curvature, which connects the auxiliary
linear system with this model. We explained the economic meaning of (2+1)-
dimensional nonlinear A4-model. We defined an economic soliton as solution of
this mathematical model. We explained the economic meaning of the method
of direct scattering problem corresponding to the positive analytical approach
in the economy.
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The work is dedicated to creating software for solving linear stochastic prob-
lems of the form:

F 0 =M

(
n∑

j=1

cjxj

)
→ max, (1)

F i = P

{
n∑

j=1

aijxj ≤ bi
}
≥ αi, i = 1, ..., m, (2)

n∑

j=1

dilxj ≤ fl, l = 1, ..., k, xj ≥ 0, j = 1, ..., n. (3)

In the analysis of modern mathematical packages, in which it is possible
to solve optimization problems, means for solving the problem (1.1)-(1.3) has
not been found, and it was decided to develop of such software. A feature of
developed software is the integration with popular free math software SciLab.
This allowed to use the tools of SciLab for optimization tasks and use all mod-
ern means of high-level language C♯ and .Net. At this stage, implement the
solution of problem (1)-(3) with indirect method (through the construction and
solve of deterministic equivalent), as well as the stochastic method of reducing
residual[2], which refers to direct methods for solving stochastic problem.

The authors were supported by the Russian Foundation for Basic Research
(project no. 15-41-04436).
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Matrices via the K-condition number

Igor Kaporin1

1 Dorodnicyn Computing Centre of RAS, Moscow, Russia;
igorkaporin@mail.ru

The construction and analysis of compressed sensing (CS) matrices is the
key point in the CS research [1]. We consider an alternative reformulation of
the restricted isometry property (RIP) required for a rectangular m × n CS
matrix A. Here m < n, and it is necessary to measure the degree of linear
independence of any subset of k < m columns [aj(1), . . . , aj(k)] = AJ of A.
Instead of using the spectral condition number of ATJAJ (i.e., the ratio of its
extreme eigenvalues), we propose to use its K-condition number (i.e., the ratio
of their arithmetic to the geometric mean values taken in the kth power). For
the latter quantity, there exists a lower bound which holds for any CS matrix.
In particular, assuming AAT = n

m
Im and (ATA)ii = 1, we prove that there

always exist such J = {j(1), . . . , j(k)} that

K(ATJAJ) ≡
(
k−1trace(ATJAJ)

)k

det(ATJAJ)
≥
k−1∏

i=1

1− i
n

1− i
m

≈ exp

(
k2

2m
− k2

2n

)
.

It must be stressed that the result is completely deterministic. The proof is
based on an appropriate generalization of the Binet-Cauchy determinant iden-
tity. Note that standard RIP estimates in terms of the spectral condition num-
ber follow from this result by inequalities presented in [2]. The next step in
the research might be a performance analysis for certain CS solvers in terms
of this K-condition number characterization (thus circumventing the standard
RIP condition).

The author was supported by the Russian Foundation for Basic Research
(project no. 14-07-00805). and by the grant NSh-4640.2014.1.
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We consider some quadratic Euclidean 2-clustering problems induced by
actual issues such that data analysis, pattern recognition, statistics, computa-
tional geometry, and approximation theory. These problems are also important
in a wide range of natural-science and engineering applications. The purpose
of the report is overviewing new (previously unstudied), known (weakly stud-
ied) and recent results on computational complexity of these problems, and on
efficient algorithms with performance guarantees for these problems.

Below is a list of considered problems.
Problem1. Minimum Sum-of-Squares 2-Clustering with Given Center of

one cluster.
Problem2. Minimum Sum-of-Squares 2-Clustering problem on Sequence

with Given Center of one cluster.
Problem3. Quadratic Euclidean Max-Cut.
Problem4. Quadratic Euclidean Min-Sum All-Pairs 2-Clustering.
Problem5. Euclidean Balanced Variance-based 2-Clustering.
Problem6. Euclidean Balanced Variance-based 2-Clustering with Given

Center of one cluster.

We focus on the 2-clustering problems (for the finite set and finite sequence
of points in the Euclidean space) with the given center of one cluster. So, the
desired center of one of the clusters is given (without loss of generality at 0)
as an input, while the center of the second cluster is unknown (a variable for
optimizing). Two variants of the problems are analyzed, where the cardinalities
of the clusters are either the parts of input or unknown.

The work was supported by the the Russian Foundation for Basic Research
(projects no. 15-01-00462, no. 13-07-00070).
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We consider following strongly NP-hard [1]
Problem (Minimum sum-of-squares 2-clustering problem on sequence with

given center of one cluster and cluster cardinalities). Given a sequence Y =
(y1, . . . , yN ) of points from Rq, and some positive integer numbers Tmin, Tmax

and M . Find a subset M = {n1, . . . , nM} ⊆ N = {1, . . . , N} such that

∑

j∈M
‖yj − y(M)‖2 +

∑

i∈N\M
‖yi‖2 → min,

where y(M) = 1
|M|

∑
i∈M yi, under constraints

1 ≤ Tmin ≤ nm − nm−1 ≤ Tmax ≤ N, m = 2, . . . ,M,

on the elements of (n1, . . . , nM ).

The problem is to find a partition of a finite Euclidean sequence Y of points
into two clusters minimizing the sum over the both clusters of the intracluster
sums of squared distances from the elements of the cluster to its center. The
center y(M) of the first cluster {yj | j ∈M} is defined as the mean values of all
points in a cluster. The center of the second cluster {yi| i ∈ N\M} is given in
advance and is equal to 0. Additionally, the partition has to satisfy the following
condition: for all points that are in the first cluster the difference nm − nm−1

between the indices of two consequent points from this cluster is bounded from
below and above by some constants Tmin and Tmax. This problem is actual, in
particular, in the noise-proof analysis of time series.

In [2], a 2-approximation algorithm for the problem is proposed. The run-
ning time of the algorithm is O(N2(N+ q)) for the case when Tmin < Tmax, and
O(qN2) for the case when Tmin = Tmax.

A pseudopolynomial algorithm which finds an optimal solution for the case
of integer components of the points in the input set and fixed space dimension,
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was proposed in [3]. The running time of the algorithm is O(N3(MD)q), where
D is the maximum absolute coordinate value of the points in the input set.

In this paper, we prove that the general case of this problem does not admit
fully polynomial time approximation scheme (FPTAS), unless P=NP. In addi-
tion, for the case of fixed space dimension, we present
FPTAS with O(N4(1/ε)q/2)-time complexity, where ε is an arbitrary relative
error.

The authors were supported by the Russian Foundation for Basic Research
(projects no. 15-01-00462, no. 13-07-00070).
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We consider the following strongly NP-hard [1]
Problem (Minimum sum-of-squares 2-clustering problem with given center

of one cluster and cluster cardinalities). Given a set Y = {y1, . . . , yN} of points
from Rq and a positive integer number M . Find a partition of Y into clusters
C and Y \ C such that

∑

y∈C
‖y − y(C)‖2 +

∑

y∈Y\C
‖y‖2 → min,

where y(C) = 1
|C|
∑
y∈C

y is the centroid of C, under constraint |C| = M .

In [2], a 2-approximation algorithm for the problem is proposed. The run-
ning time of the algorithm is O(qN2). In [3], a polynomial-time approximation
scheme (PTAS) with a O(qN2/ε+1(9/ε)3/ε)-time complexity, where ε is an ar-
bitrary relative error, is constructed.

A randomized algorithm for the problem is presented in [4]. The running
time of the algorithm for the fixed failure probability, relative error of the solu-
tion, and for the certain value of parameter k is O(2kq(k+N)). The algorithm
has also been proven to be asymptotically exact and to have O(qN2)-time com-
plexity for the special values of the parameters.

A pseudopolynomial algorithm which finds an optimal solution in the case
of integer components of the points in the input set and fixed space dimension
is proposed in [5]. The running time of the algorithm is O(N(MD)q), where D
is the maximum absolute coordinate value of the points in the input set.

In this paper (see also [6]) we prove that, unless P=NP, in the general case of
the problem there is no fully polynomial-time approximation scheme (FPTAS).
In addition, we present such a scheme for the case of fixed space dimension.

96



The running time of the algorithm is O(N3(1/ε)q/2), where ε is an arbitrary
relative error.

The authors were supported by the Russian Foundation for Basic Research
(project no. 13-07-00070, no. 15-01-00462).

References

1. A.V. Kel’manov, A.V. Pyatkin. “Complexity of Certain Problems of Search-
ing for Subsets of Vectors and Cluster Analysis,”Computat. Math. and Math.
Phys., 49, No. 11, 1966–1971 (2009).

2. A.V. Dolgushev, A.V. Kel’manov. “An Approximation Algorithm for Solving
a Problem of Cluster Analysis,”J. Appl. Indust. Math., 5, No. 4, 551–558
(2011).

3. A.V. Dolgushev, A.V. Kel’manov, V.V. Shenmaier. “PTAS for one problem
of cluster analysis,” Intelligent Information Processing: Proc. of the 9th
Intern. Conf., Montenegro, Budva, 242–244 (2012). (In Russian).

4. A.V. Kel’manov, V.I. Khandeev. “A Randomized Algorithm for Two-Cluster
Partition of a Set of Vectors,” Computat. Math. and Math. Phys, 55, No.
2, 330-339 (2015).

5. Alexander Kel’manov, Vladimir Khandeev. “An exact pseudopolynomial algo-
rithm for a bi-partitioning problem,” Proceedings of V International Confer-
ence Optimization and applications (OPTIMA-2014), Petrovac, Montenegro,
September 28 – October 4, 108-109 (2014).

6. A.V. Kel’manov, V.I. Khandeev. “FPTAS for a special case of a quadratic
Euclidean 2-clustering problem,” Computat. Math. and Math. Phys, (2015),
(accepted).

97

An exact pseudopolynomial algorithm for a special
case of a Euclidean balanced variance-based

2-clustering problem

Alexander Kel’manov1, Anna Motkova2

1 Sobolev Institute of Mathematics, Novosibirsk State University,
Novosibirsk, Russia; kelm@math.nsc.ru

2 Novosibirsk State University, Novosibirsk, Russia; anitamo@mail.ru

We consider the following strongly NP-hard [1]
Problem (Euclidean balanced variance-based 2-clustering with given center

of one cluster and cluster cardinalities). Given a set Y = {y1, . . . , yN} of points
from Rq and a positive integer number M . Find a partition of Y into clusters
C and Y \ C such that

|C|
∑

y∈C
‖y − y(C)‖2 + |Y \ C|

∑

y∈Y\C
‖y‖2 → min,

where y(C) = 1
|C|
∑
y∈C

y is the centroid of C, under constrain |C| =M .

This problem is actual, in particular, in data analysis.

In this work we present a pseudopolynomial algorithm which finds an opti-
mal solution for the case of integer components of the points in the input set
and fixed space dimension. The running time of the algorithm is O(N(MD)q),
where D is the maximum absolute coordinate value of the points in the input
set.

The authors were supported by the Russian Foundation for Basic Research
(projects no. 15-01-00462, no. 13-07-00070).
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We consider the following problem. Given a finite set of points from Eu-
clidean space find a partition of this set into two clusters minimizing the sum
of weights of the clusters multiplied by their cardinalities. By the weight of the
cluster we mean the sum of squared distances from the elements of the cluster
to its center. The center of one cluster is given while for the second cluster it
is unknown (so, it is estimated by the centroid, that is the mean value of the
elements of the cluster).

Euclidean Balanced Variance-based 2-Clustering with Given Cen-

ter of one cluster. Given a set Y = {y1, . . . , yN} of points from Rq. Find:
a partition of the set Y into two subsets X and Z such that |X |∑x∈X ‖x −
x(X )‖2 + |Z|∑z∈Z ‖z‖2 −→ min, where x(X ) = 1

|X|
∑
x∈X

x is the centroid of

subset X .

This problem is actual, in particular, for solving problems in data analysis.
The complexity status of this problem was open.

We prove [1] that this problem (1) is strongly NP-hard and (2) do not admit
FPTAS, unless P=NP. The proof is based on polynomial-time reduction from
the strongly NP-hard Minimum Bisection problem on cubic graphs.

The work was supported by the the Russian Foundation for Basic Research
(projects no. 15-01-00462, no. 15-01- 00976, no. 13-07-00070).
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Advantages of the method of finding the set of equivalence [1, 2] for solving
the multicriterial discrete optimization problems comparing to the method of
finding the Pareto efficiency set are shown. An example of a set of key indicators
of economic efficiency of any commercial enterprise is given and the correspond-
ing mathematical model is formulated. In contrast to the classical problem
of finding the maximum profit for any business, in this paper a multicriterial
optimization problem [3, 4] is considered. In order to find the best enterprise
business project, the method for solving the inverse multicriterial problems in a
multidimensional pseudo-metric space is described. The solution of a concrete
problem of this type is given.

The spacial distributions of optimal sets for each criterion and of the set of
equivalence are shown on fig.1 and fig.2.

Fig. 1
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Fig. 2
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In the Department of design techniques for developing systems of Comput-
ing Centre of RAS was developed methods, algorithms and programs for solving
complex of problems of regional planning [1]. These problems arise primarily
in the development of new regions of Siberia and the Far East. This includes
the placement of infrastructure facilities for various purposes: collection and
processing of natural resources, settlements of different categories, industrial
facilities for various purposes, the objects of social infrastructure. At the same
time it is possible to solve problems of designing circuits communications for var-
ious purposes: roads of different categories, pipe networks for various purposes,
electricity grids of different voltage levels, communications and other infrastruc-
ture networks. When designing networks for different purposes it is possible to
consider the heterogeneity of the territory in which they are held, and to solve
the tasks of tracing the individual parts of the network. It is possible to use
different forms of representation of the territory to define categorizing grid site
or to set exclusion zones of various configurations for carrying out communi-
cations. It is also possible to take into account agglomeration effects from the
integration of the various networks within the same corridor.When designing
pipe networks, problems of hydraulic and optimization calculations are solved
to select the optimal diameter of individual links of the network under con-
straints on the allowable pressure drop and with possibility to accommodate
the necessary compressor or pumping stations. These tasks are solved also in
the design of utility networks for various purposes. CPRP was tested in the de-
sign of the General schemes of arrangement of various oil and gas fields. Thus,
its use has significantly reduced the capital cost of construction compared with
traditional design methods. A brief descriptions of the main systems of CPRP
are given below.

The design system of General schemes of development of oil and gas fields.
The system is intended for the design of master plans as a separate technology
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systems of the arrangement well pad wells, gathering and transportation of oil
and associated gas, reservoir pressure maintenance, electricity and roads), and
all of them together and enables the designer mode of the computer to get the
”real” construction projects. The system allows: to determine the best variants
of draft of the General scheme of technological systems of arrangement, and
options which are close to optimal according to various criteria; to form the
structure of networks for different purposes: gathering and transportation of
oil and associated gas, conduits of high and low pressure, roads, electricity; to
determine the routes of communications for various purposes taking into account
the heterogeneity of the territory and the presence of exclusion zones for their
conduct; to calculate the optimal parameters of pipe networks: the diameters
of individual sections of the network and the pressure in the network nodes; to
simulate all possible solutions to find a real project in the ”designer - computer”
regim.

The system for allocation of objects and communications. The system is
designed for solving the placement of items on the processing of raw materials,
problems of construction and routing communications between the sources of
raw materials, processing and consumption and the calculation of the pipe net-
works. The dialog mode of the system allows you to quickly view the various
accommodation options with the identification and viewing of parameters of the
generated project. System of network analysis and design. The system allows
to solve the following network tasks: network distribution problem; the problem
of the maximum flow of minimum cost; the task of designing the structure of
the network; hydraulic calculations of networks.

The system of planning production, storage, transportation and distribution
of petroleum products. The system allows to solve the following tasks: planning
the production of various types of petroleum products; planning of petroleum
products transportation by different modes of transport; calculation of storage
volume in the tank farms; dynamic scheduling of production and distribution
of petroleum products; calculation of the volume of supply to consumers.
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For a fixed natural number k, the Minimum-weight k-Size Cycle Cover Prob-
lem (Min-k-SCCP) is studied. The problem can be treated as some generaliza-
tion of the Traveling Salesman Problem (TSP) and some special case of the
Vehicle Routing Problem (VRP) simultaneously. Min-k-SCCP has the follow-
ing mathematical statement. For a complete weighted digraph (with loops), it
is required to find a partition {C1, ..., Ck} of the graph by vertex-disjoint cycles
having the minimum total weight.

It is known, that Min-k-SCCP is strongly NP-hard both in the general case
and in special metric and Euclidean settings [1, 2]. There is 2-approximation
polynomial time algorithm for the metric subclass of Min-k-SCCP [1]. For
Euclidean Max-k-SCCP asymptotically correct algorithm was developed.

We extend result obtained for Euclidean Min-2-SCCP on the plane to cases
of arbitrary fixed value of parameter k and d-dimensional space.

Theorem 1. Min-k-SCCP in Rd has PTAS finding (1 + 1
c
)-approximation

solution in O(2knd+1(k log n)O(
√
dc)

d−1

) time.
Provided that d = 2, time complexity of the proposed PTAS for the Min-k-

SCCP equals the complexity of PTAS proposed in [2] for the Euclidean Min-2-
SCCP and it differs from it by the constant factor 2kkO(c).

The authors were supported by the Russian Scientific Foundation (project
no. 14-11-00109).
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We study a dynamic model that describes the process of transition of a
controlled object from the initial state x0 ∈ Rn at the time t0 in the terminal
state x(t1) = x∗

1 at t1. For example, a group of people united by a common
goal to implement a joint project can act as a object of control. The dynamics
of the process is described by a controlled system of linear equations

d

dt
x(t) = D(t)x(t) +B(t)u(t), t0 ≤ t ≤ t1, x(t0) = x0, (1)

x(t1) = x∗
1 ∈ X1 ⊆ Rn, u(·) ∈ U, (2)

U = {u(·) ∈ Lr2[t0, t1] | ‖u(·)‖2Lr
2
≤ C},

where x∗
1 is a component of the solution to the problem of multicriteria equilib-

rium:
〈λ∗, f(x∗

1)〉 ∈Min{〈λ∗, f(x1)〉 | x1 ∈ X1}, (3)

〈λ− λ∗, f(x∗
1)− λ∗〉 ≤ 0, λ ≥ 0. (4)

Here f(x1) = (f1(x1), f2(x1), ..., fm(x1)) is a vector criterion; fi(x1), i = 1, 2, ..., m,
are convex scalar functions. The boundary value problem (3), (4) is a two-person
game with Nash equilibrium. The solution of (1)-(4) is the set (λ∗;x∗

1, x
∗(·), u∗(·)).

Specifically, we are looking for a control u∗(·) ∈ U such that the right end of the
trajectory x∗(·) coincides with the component x∗

1 of boundary value problem
solution.

For the problem (1)-(4) we introduce a function analogous to the Lagrange
function in convex programming problems:

L(λ, ψ(t);x1, x(t), u(t)) =

= 〈λ, f(x1)− 1

2
λ〉+

∫ t1

t0

〈ψ(t), D(t)x(t) +B(t)u(t)− d

dt
x(t)〉dt, (5)

which is defined for all (λ, ψ(·)) ∈ Rm+ × Ψn2 [t0, t1], (x1, x(·), u(·)) ∈ X1 ×
ACn[t0, t1] ×U. Related approaches were considered in [1-2]. It is shown that
the saddle point of the function (5) is a solution of (1)-(4).

To solve the problem, we use the dual extraproximal method [3]:

λ̄k = argmin

{
1

2
|λ− λk|2 − α〈λ, f(xk1)−

1

2
λ〉 | λ ≥ 0

}
,
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ψ̄k(t) = ψk(t) + α

(
D(t)xk(t) +B(t)uk(t)− d

dt
xk(t)

)
,

(xk+1
1 , xk+1(·), uk+1(·)) = argmin

{
1

2
|x1 − xk1 |2 + α〈λ̄k, f(x1)− 1

2
λ̄k〉

+
1

2
‖x(t)− xk(t)‖2 + 1

2
‖u(t)− uk(t)‖2

+ α

∫ t1

t0

〈ψ̄k(t), D(t)x(t) +B(t)u(t)− d

dt
x(t)〉dt

}
,

λk+1 = argmin

{
1

2
|λ− λk|2 − α〈λ, f(xk+1

1 )− 1

2
λ〉 | λ ≥ 0

}
,

ψk+1(t) = ψk(t) + α

(
D(t)xk+1(t) +B(t)uk+1(t)− d

dt
xk+1(t)

)
, α > 0.

The theorem on the convergence of the saddle-point method to the solution
of the problem was proved.

The authors were supported by the Russian Foundation for Basic Research
(project no. 15-01-06045-a), and the Program for Support of Leading Scientific
Schools (project no. NSh-4640.2014.1.)
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The Transport-Informational Model for Ecological Systems (”TIMES”) [1-
3] is a three-dimensional grid model designed to calculate the concentration of
pollutants in wind field. The model calculates pollutants spread from several
sources, that favorably distinguishes it from others earlier advanced models.
The program complex ”TIMES” offers a number of capabilities for simulation
of technogenic nature processes for atmospheric monitoring of cities and large
industrial objects to users. In the code all the 3 components of wind field
have been taken into account, thus the wind field model represents a 3D one.
Taking into account, that the particles method describes 3D advective processes,
one can, for example, describe sedimentation in wind field and in gravity field.
Description of admixtures spread over high and extensive mountain ranges and
behind them has become possible. Deposition data is outputted into a separated
file. A pollutant deposition from the ground layer for a period is calculated as
total pollutant quantity, penetrated through the lower border of the ground
layer for the period. The task for sources, located at any height, including ones
above the mixing layer height, has been solved. An admixture spread in different
atmosphere layers occurs according to different laws. In the mixing layer the
admixture gets smeared along height quickly enough. Above the mixing layer (in
the free atmosphere) the admixture spreads for long distances along wind, not
getting smeared practically. The admixture penetration from the atmosphere
boundary layer into the free atmosphere is determined by the turbulent diffusion
coefficient vertical profile at present. The turbulent diffusion coefficient in the
mixing layer is accepted in limits up to 160 m/s2 and depends on height, and in
the free atmosphere it is accepted as big as 1 m/s2. The mixing layer height can
vary in space and time. Processes, caused by differences of anemometric and
geostrophic winds, can be described by two models. First, as an exponential
dependence of the wind speed vector on altitude, and, secondly, by the Ekhman’s
equations system.

The purpose of development of the mathematical model for the forecast of
contaminants spread in atmosphere is the creation of support means at decisions
acceptance on the environment preservation in scales of a city or industrial
building up, which can be combined with geoinformation systems of monitoring
(GIS).
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The package ”TIMES” provides the solution of the contaminants spread
process equations system in wind field and its graphic display. Presence of chem-
ical reactions and other physical-chemical processes were taken into account at
the contaminants spread diffusion-convectional model (transport model) con-
struction. The initial data for mathematical modeling are the data, received
from meteostations, located inside the calculation area. The wind speed, the
mixing layer top border height and other physical values are determined at the
meteostations.

Apart the wind speeds field and vertical and horizontal turbulence factors
are determined. The typical height of the mixing layer, within the limits of
which there is intensive pollution transport, varies from 250 m to 2 km.

As far as the package has modular architecture, the impurities spread pro-
cess physical model change is possible, that will certainly affect the general
character of the received picture of space and time distribution.

The authors were supported by the Russian Foundation for Basic Research
(Grant RFFI No 14-01-00145).
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We consider the following geometric problem from robust network design:
given a straight-line drawing of a graph G = (V,E) on the plane, find the set L of
straight lines of minimum cardinality such that each edge of E is intersected by
some line from L. This setting arises naturally for design of computer networks
facing geographically localized attacks [1] where the network is of the form of
planar graph while network failures are modeled as straight lines: graph edges
which given straight line intersects considered broken. IfG is complete bipartite,
we come to known NP-hard minimum polyhedral separability problem [2,5]. In
this work we analyze problem inapproximability: we prove that its integrality
gap, i.e. the ratio of optima for the problem integer programming formulation
and its LP-relaxation, exceeds any given constant which in some way extends
MAX-SNP-hardness results of [3]. Our problem could be stated in the form of
known HITTING SET problem as follows:

Problem. Given a set X0 and a familyR0 of its nonempty subsets, find C ⊂ X0

which intersects each R ∈ R0 of minimum cardinality, where X0 is the set of
straight lines passing (nearly) through two distinct points from V while each
set from R0 coincides with the set of lines from X0 intersecting given edge of
E.

Set X0 = {x1, . . . , xn} and R0 = {R1, . . . , R|E|} for n = 2|V |(|V | − 1). Let
X = [xij ] be {0, 1}-matrix such that xij = 1 iff xj ∈ Ri. Our problem has a
form of integer linear program:

min (en, u) (1)

Xu ≥ e|E|, u ∈ R
n
+ ∩ Z

n (2)

where em = (1, . . . , 1)T ∈ Rm for m ∈ N and (·, ·) denotes scalar product.

Consider also the following LP-relaxation:

min (en, u) (3)

Xu ≥ e|E|, u ≥ 0. (4)
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D e f i n i t i o n. Let k∗ and k∗f be the optima for (1) − (2) and (3) − (4)
respectively. We call by integrality gap the supremum of ratio k∗/k∗f over all
instances of the Problem.

Let w(·) be inverse of Ackermann function. Using results of [4] and applying
technique from [5] we come to the following

Theorem. Integrality gap for the Problem is Ω(w(f(|E|))) where f is some
monotonically increasing function.

This can be considered as an extension of MAX-SNP-hardness results from
[3] which claim the absence of PTAS for the Problem in a sense that it is unlikely
to approximate the Problem in polynomial time within better than a constant
factor at least based on (version of) relaxation (3)− (4). Note that those exam-
ple graphs which provide claimed lower bound are in fact 2-colorable. Perhaps
k-colorable graphs will give widely implied Ω(log |V |) lower bound.

The author was supported by the Russian Scientific Foundation (project no. 14-
11-00109).
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According to [1] franchisee revenue can be modeled according to the follow-
ing formula:

π = αef + βeF + ε,

ef — franchisees individual efforts (outlet management etc);
eF — franchisors individual efforts (franchisee selection, franchise brand man-
agement, general marketing strategy for franchise network, franchisee training
etc);
ε — a random variable with mean 0;
α, β — multiplicators that show productivity of respective efforts.

There are two problems with this model:
– It supposes no cooperation between franchisee and franchisor;
– Effectiveness of franchisors efforts does not depend on franchisee effectiveness.

Let us try to modify this model in order to eliminate these problems:

π = mP̄ +MΠ̄ + ε, (1)

m — franchisees individual entrepreneurial abilities (as an independent busi-
nessman);

M — franchisees managerial abilities (as a manager of franchise sales point);

P̄ — average income of an independent businessman (working in the same
region and with the same product as the franchise network). Independent busi-
nessman will get this income even without franchisors intellectual capital;

Π̄ — average additional effect obtained by the franchisee thanks to fran-
chisors intellectual property (franchisors brand value);

Obviously, Π̄ = π̄ − P̄ , where π̄ — the average income of the franchisee.

The formula (1) clearly shows that:
– The franchisee income depends not only on franchisors brand value , but also
on franchisees ability to use this brand potential;

– Franchisors are interested in selecting franchisees with high abilities as
both independent and franchise managers (which is supported by empirical data
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[2]);

– Franchisees with higher value ofM (than average) may get a lower royalty
rate (as their higher income is based mostly on their managerial abilities) which
leads to non-linear range of royalty rates (this is also supported by empirical
data);

– Franchisor may choose to invest either in franchisee selection or training
(in order to increase m and M) or in his intellectual property (in order to
increase brand value Π̄).

His decision will depend on relative effectiveness of these investments: if

dm

dr
P +

dM

dr
Π > mP +M

dΠ

dr
,

r — resources invested, then franchisor should invest into franchisee selection
and training, otherwise he should invest in his brand value. Empirical data show
that for mature networks franchisors generally invest into franchisee selection
and training [3].

So the proposed model gives an adequate representation of the franchisee
income from economical and mathematical points of view.
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Every mathematical model is just an approximation of the real-life processes
and phenomena. In our previous papers [1, 2] we introduced the notion of ter-
minal units. Moreover, we established relationships between different sets of
units that may cause inadequacies in the DEA models (terminal units, different
sets of anchor units, exterior units) [3-5]. It was also proved that only terminal
units form necessary and sufficient set of units that were introduced in the DEA
literature in order to smooth the efficient frontier.

In this paper, the approach is proposed for smoothing the frontier in the
DEA models, which is based on using the set of terminal units as a starting
point.

Our theoretical results are verified by computational experiments using real-
life data sets and also illustrated by graphical examples.

The authors were supported by the Russian Foundation for Basic Research
(project no. 14-07-00472).
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The barrier discharge is a discharge between two electrodes of which at least
one is coated with dielectric to prevent the conduction current flowing from the
discharge zone to its surface. This type of discharge develops either as a surface
or as a volume one. A volume barrier discharge develops in a gas layer between
the dielectric-coated electrodes. A surface barrier discharge (SDBD) between
two electrodes having different widths and separated by a dielectric develops
immediately along the dielectric surface. The electrode of smaller width, to
which the voltage is applied and near whose edge the discharge develops, will
be called a high-voltage, or working, electrode. The potential of the other elec-
trode will be assumed to be zero.
Intense analysis of a boundary-layer and separation flow control using surface
dielectric barrier discharge (SDBD) actuators continues during last ten years
[1-3]. SDBD has a complex structure and evolves as a streamer and/or diffusive
discharge depending on applied voltage polarity and its waveform. It consists
of a set of tens microdischarges repeating each half cycle of alternating applied
voltage. Numerical modeling of this bulk of microdischarges is extremely time-
consuming problem. Because of this complexity, the main gap in theoretical and
numerical predictions of SDBD aerodynamic performance is a lack of adequate
physical and numerical modeling of its evolution in air.
In the report the analysis of various numerical approaches of modeling of this
difficult phenomenon is given. Results of modeling and comparison with exper-
imental data are given.
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The optimal control problem is considered in Banach space of measures.
The study of measure dynamics has continued since the appearance of the basic
works of L. Schwartz, who introduced the notions of the generalized function or
distribution and considered differential equations in distributions or measures.
These equations are often used for the description of various nature processes,
for example, stochastic processes, processes of mathematical physics or quantum
mechanics and others. Physical laws are often formulated concerning density of
distribution (weight, charge, etc). To consider the dynamics of the distributed
and concentrated objects, equations for measures are required. The problem of
optimum control for such processes is of great importance.

In this work, the general principles of solving optimal control problem for a
measure dynamics are presented. The general form of the equation of a proba-
bility measure dynamics is obtained. Necessary and sufficient conditions for the
optimality of the probability measure dynamics are deduced. On the basis of
these principles feedback control has been suggested for satisfying the state con-
straint in the form of equalities or inequality. Various applications of the theory
to specific optimization problems in mathematical physics are considered. In
particular, optimal control problems of heat conductivity with the state con-
straints as equality and ineqality are considered. Feedback is constructed by
using bilinear control and integral transformation. Numerical solution is pro-
posed on the basis of the method of moments. The efficiency of the proposed
solution is confirmed by a numerical experiment.

The reported study was partially supported by the Russian Foundation for
Basic Research (project no. 13-01-12452 ofi m2).
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The use of exact penalty functions in decomposition schemes in variables
to solve block optimization problems allows to overcome some problems related
with implicit description of the feasible region in the master problem. How to
find proper penalty coefficients is discussed here. Let consider a problem

f∗ = min {f0(x) : x ∈ C} , (1)

where C = {x : fi(x) ≤ 0, i = 1, ..., m, x ∈ Rn}, fi : Rn → R is convex function
with finite values for all values of variables , i = 0, ..., m.

Let Fλ(x) = f0(x)+λh
+(x), where h(x) = max{fi(x), i = 1, ..., m}, h+(x) =

max{0, h(x)},

F ∗
λ = min{Fλ(x) : x ∈ Rn}. (2)

Fλ(x) is an exact penalty function, if the solutions of problems (1) and (2)
coincide.

Lemma 1. Let C be a closed set, values of penalty coefficients are fixed,
ε > 0, and a sequence of points xk, k = 1, 2, ... converging to a solution x̃ of the
problem (2) be given. Let a rule P establishing a correspondence between xk and
a point zk = P (xk), zk ∈ C, k = 1, 2, ... be given, and the following inequalities
are fulfilled

Fλ(xk) ≥ f0(zk) + ε‖xk − zk‖, if the point xk /∈ C (3)

Then x̃ ∈ C.
For a given point x /∈ C and the rule P : Rn → C let we denote λP (x, ε) =

max(0, (f0(z)+ε‖x−z‖−f0(x))/h+(x)), where z = P (x), λP (ε) = sup{λP (x, ε), x /∈
C}.

Let some converging algorithm A be used to solve the problem (2). For
the exact penalty coefficients are not known in advance, their values will be
specified (increased) in the course of the algorithm. Let λk be a value of the
coefficient λ at the iteration k. For k = 1 the value λ1 > 0 is given. The
algorithm A uses the value λk to find the point xk at the iteration k. If in the
point xk the inequality (3) is fulfilled at λ = λk, let put λk+1 = λk, otherwise
λk+1 = λP (xk, ε) +R, where R > 0 is a fixed given parameter.
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Relations (3) are fulfilled, if λ > λP (ε), and the number of corrections for
the coefficients λk will be finite, if λP (ε) <∞.

The use of penalty functions with too high values of penalty coefficients
leads to problems related to rounding errors, worsening of the convergence of
optimization algorithms. For this reason the value λP (ε) is an important char-
acteristics of the rule P .

For x /∈ C, y0 ∈ C we denote πC(x, y0) the point of intersection of a segment
[x, y0] with a border of the set C.

Theorem 1. Let a set C be bounded, a function f be Lipshitz continuous
on C, and a point y0 ∈ C, h(y0) < 0, P (x) = πC(x, y0) be given for x /∈ C.
Then λP (ε) <∞.

The rule P (x) = πC(x, y0) gives rather efficient procedures to specify the
penalty coefficient, but under unfortunate choice of the point y0 the values of
penalty coefficients may become rather large.

The ways to improve the rule P are considered. An analogous approach for
finding penalty coefficients of the function Φβ(x) = f0(x) +

∑m
i=1 βif

+
i (x), and

application in decomposition schemes in variables for block convex programming
problems are also discussed. The proposed approaches do not require complex
solutions of auxiliary problems. In the case when the functions of the initial
problem are not defined on the whole space of variables, it is proposed to use
convex extensions of functions.
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One of the directions of increase of efficiency of activity of the enterprise
is the solution of the problem of effective management of its production as-
sets which assumes investment of money into modernization of production and
replacement of old assets by the new. There are various approaches to the solu-
tion of this problem of replacement of the equipment; the choice of approach is
defined by concrete features of the technologies used in production. Relevance
of this task in relation to updating of park of computer and office equipment
is defined by its fast moral obsolescence that in big degree is connected with
prompt improvement of technical characteristics.

For the solution of a problem of updating and replacement of computer and
office equipment the approach based on work [1] is used. In this work elements
of the theory of wear and replacement of the equipment are stated.

The developed mathematical model allowed to construct algorithm of defini-
tion of sequence of the replaced equipment and on its basis to receive computable
estimates. On the basis of the considered model the automated information
system program for the accounting of computers at the enterprise is realized in
practice. The computer program allows to resolve different issues of the account
in a complex; it included the accounting of the equipment, the accounting of
demands of users and suppliers, the accounting of the equipment which is under
repair and many other things the developed system switched on the block of
support of making decision on replacement of equipment. The program is devel-
oped for the accounting of data on computers, accessories and office equipment,
helps with carrying out inventory, allows to consider repair and service, to form
budgets, to do demands to suppliers, to keep demands of users and to carry out
some other important functions.The created information system is realized in
the scientific organization; it can be applied at manufacturing enterprises.

The used approach is realized on a platform 1C:Enterprise 8.
The authors were supported by the Russian Foundation for Basic Research

(project no. 13-06-00389).
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Visualization of the Pareto frontier is used as a decision support in the case
of multi-objective problems [1]. It helps the decision maker to study the Pareto
frontier and the related objective tradeoffs. To implement such a technique
in the case of more than two objectives, approximating the Edgeworth-Pareto
Hull (EPH) of the feasible objective set is used. It helps to visualize the Pareto
frontier on-line by displaying various collections of bi-objective slices of the EPH.

Herein, nonlinear multi-objective problems with the block separable struc-
ture are studied. Namely, a two-level system is considered, which consists of the
lower level (subsystems) and of the upper level that is used for coordunating
the decisions. It is assumed that the objectives are related to the variables of
the upper level.

The EPH approximation method is based on the preliminary approximating
the EPH’s for the subsystems and on using the constructed approximations in
the process of approximating the EPH for the whole problem [2]. The approxi-
mation technique was applied in the framework of the search for smart decisions
of environmentally sound water management of the Volga River.

The authors were partially supported by the Russian Foundation for Basic
Research (projects no. 13-01-00235 and no. 13-01-00779).

References

1. A.V. Lotov, V.A. Bushenkov, G.K.Kamenev. Interactive Decision Maps. Ap-
proximation and Visualization of Pareto Frontier, Kluwer, Boston (2004).

2. A.V. Lotov. “Decomposition of the Edgeworth-Pareto Hull approximation
problem,” Computational Mathematics and Mathematical Physics, 55, No.
10 (2015).

119

Identification of linear dynamic systems on the
harmonic signal

Elena Madaeva1, Arsalan Mizhidon2

1 East Siberia State University of Technology and Management , Ulan-Ude,
Russia; elenamadaeva@gmail.com

2 East Siberia State University of Technology and Management , Ulan-Ude,
Russia; miarsdu@esstu.ru

One of the main stages implementing technology of mathematical modeling
is the creation and identification of mathematical model the investigated object.
Differentiate identification in the broadest sense - structural identification, in
the narrow sense - parametric identification, assuming that the known structure
and class of models describing real system.

In report are discuss an approach to the identification of linear stationary
dynamical systems on results measurements of phase coordinates the system
at the some interval time [1]. According to this approach, was developed a
method of identification the linear systems on the input sinusoidal signal [2].
Suppose that the output variables of the system are solutions the certain sta-
tionary linear dynamic non-homogeneous Cauchy problem. Identification of the
system following the approach is reduced to constructing and solving matrix
linear algebraic equation. Constructing the equation is found by comparison
of representation of solutions the Cauchy problem in the form of exponential
matrix series and of results measurements of phase coordinates by the input
sinusoidal signal.

For realization of the numerical experiments the software was made in the
language Fortran. The results of numerical experiments showed that identifi-
cation of system using approach allows on the exact solutions of the Cauchy
problem reconstruct the system.

The authors were supported by the Russian Foundation for Basic Research
and Republic of Buryatia (project no. 15-41-04020 r siberia a).
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Speech signal segmentation is one of the most important tasks in the field of
computer science and information systems for processing and speech recognition.
Segmentation of the speech signal is required for the feature extraction of the
speaker’s voice on certain segments of the speech signal and restore the shape
of the vocal tract by acoustic-based, which can be used in speech synthesis of
the input text and speech recognition [1].

In the studies, manual segmentation of speech can be used, but manual
speech segmentation slows down and it is almost impossible to accurately re-
produce the results of manual segmentation and it has many mistakes in speech
recognition.

In information systems of speech recognition for speech signal segmentation
is important:

1. the allocation of the basic elements (words, syllables, phonemes) of speech
recognition

2. segmentation accuracy has a great impact on the optimal speech recog-
nition

There are several basic types of automatic segmentation of the speech signal.
One of these is speech segmentation, provided that the sequence of phonemes of
the phrase, but the results are often unreliable, and the presence of transcription
is possible only at the learning stage of lexical patterns [2].

The other type does not use a priori information of the speech, with the
boundaries of speech segments are determined based on changes in the acoustic
characteristics of the speech signal. It is desirable to use only the general char-
acteristics of the speech signal with automatic segmentation , because usually
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at this stage there is no specific information about the content of the speech.

There is a ”blind” segmentation method for simple segmentation of speech
signal to pause and speech. This method is based on the magnitude and change
rate of certain acoustic characteristics which is the ratio of the signal level
transition through the zero (zero Cross Rate) and Spectral Transition Measure,
but experiments show that it is not enough for a reliable segmentation of these
values [3].

An income speech signal is recorded as a sequence of records of the yi.

Y = y0, y1, . . . , yi, . . . ;

where i = 0, 1, 2, . . .
The sequence of speech signal is divided into frames of 128 counts (respec-

tively (128*1000)/11025 11ms). The frame size allows to pinpoint the bound-
aries between syllables. With the following formula we determine the average

frame energy of a speech signal with length of 128 counts:

Ei =

∑i∗128+127
j=i∗128 y2i

128
, where i = 0, 1, 2, . . . (1)

The value obtained by the formula (1.1) presents the average energy in a short

span of time 11ms. Then we calculate the average energy of the short time of
three adjacent plots by the formula:

E∗
i =

Ei + Ei+1

2
;where i = 0, 1, 2, . . . (2)

Thus, we calculate the average energy for frames 2*128=256. Frames are

overlapping and shifting the adjacent intervals on 128 counts (Figure 1).

Figure 1. Splitting the speech signal into frames
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The basic tone of the Kazakh language less than 256 / 11025 = 0.023
sec. which corresponds to the fundamental frequency of the /0.023 = 75.5Hz.
Therefore, the energy of the frame of 256 countdown concludes the energy of
at least one period of the basic tone. Thus, from the sequence of speech signal
Y = y0, y1, , yi, ; i = 0, 1, 2, we calculate the sequence of plots of the average
energy in 192 counts E∗ = E∗

1 , E
∗
2 , , E

∗
i , .

Each syllable has a syllable peak, where the signal energy reaches the highest
values. Between the two syllabic peaks there is a point corresponding to the
border that separates the syllables [4].
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The problems of optimal control and motion stability of the technical sys-
tems modelled by the differential equations with multi-valued right parts play
an important role when studying questions of qualitative analysis and optimiza-
tion of dynamic systems [1–5]. Indicated problems are connected with decision-
making in the conditions of uncertainty. Among them is the problem of freight
movement by means of the aircraft when it is necessary to consider an uncer-
tainty factor. Fundamental results in the area of optimization of dynamics of
controlled systems are obtained in [6, 7] and in the other works. Existence and
stability of differential inclusions are considered in [1, 2, 4, 8] and in the other
works. Stability conditions and stabilization of the technical systems described
by the differential inclusions containing control in the right parts are considered
in [9, 10], where locally Lipschitz-continuous and regular Lyapunovs functions
are used for solving of stability problem.

In the present work we consider model of controlled object which moves
from the initial point in final with an achievement of the vertical direction.
The specified system is described by the system of differential equations with
multiple-valued right parts. The important aim of research is of stability of the
nominal motion determined by criterion of optimality. The use of multi-valued
right parts of the differential equations arises in view of resistance of the rarefied
environment. We consider also the modifications of models described in [3, 5].

Stability analysis of differential equations with a multivalued is carried out
by aid of results of works [1–4, 8–10]. The algorithm is developed for a control
system on object motion to the purpose in three-dimensional space providing
that the purpose moves randomly with a limited velocity on the plane. Algo-
rithm of optimal control finding is offered. The set of programs is realized in
the integrated mathematical environment is developed and series of computing
experiments are carried out. This set of programs contains modules for data
input, for a conclusion of results and for a graphic illustration of results. The
program calculates draft force, coordinates and velocities of the control object.

The proposed algorithms and set of programs can be used for choice of
suitable parameters of motion of the controlled object in the conditions of in-
complete information.
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Control problems abroad for elliptic equations arise in various fields of math-
ematical physics [1], and in particular, in the theory of elasticity [2]. The math-
ematical formulation of such problems, called optimization problems form is to
minimize in a bounded domain Ω of a functional F (Ω) on the solutions u(x, y)
of the boundary value problem for an elliptic equation.

In this part γ of the boundary ∂Ω is fixed, and the other part Γ (called free)
can be changed in some class. Typically, the optimization problem is considered
in the form of additional conditions, such as maintaining the area Ω. Existing
approaches to the proof of existence of the solution of such problems under
additional assumptions on the smoothness of the boundary Γ can be found in
[3, 4], but they usually do not provide specific algorithms for finding optimal
solutions.

In this report, we propose a numerical method for the solution of the fol-
lowing problem. As a region Ω we consider an ellipse with semi-long A and B,
which is located inside the elliptic hole with semi-elliptical length a and b. Cen-
ter of the outer ellipse may be shifted relative to the center hole by an amount d.
Internal borders γ holes do not change. The outer boundary Γ can vary so that
the area of the ellipse

S = πAB (1)

is constant. Required to find the shape of the outer boundaries of the plate,
the host deformation shift u(x, y) under the action of a distributed load with
density ρ(x, y), which provides the minimum value of the functional

F (Ω) =

∫∫

Ω

ρudx dy, (2)

characterizing the measure of the stiffness of the plate.
The dependence of u(x, y) on the parameters A, d and conditions (1) shall

be determined from the solution of the biharmonic equation

∆2u = ρ (3)

in Ω with boundary conditions

u|γ = ϕ(x, y); u|Γ = 0;

126



(
∆u− 1− ν

R

∂u

∂n

)∣∣∣∣
∂Ω

= 0.

Here ν – Poisson’s ratio, R – the radius of curvature of the boundary ∂Ω and
n – normal to the boundary.

Prescribed boundary conditions equivalent hinging internal border at an
altitude of u = ϕ(x, y) relative hinged at the height of u = 0 external border.

A problem with a change of variables reduces to the problem with fixed
boundaries and variable coefficients in the equation (3). Examples of calcula-
tions are presented.

This report is supported by Russian Foundation for Basic Research (project
No. 15-01-07833).
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We propose an analytical and numerical method of estimation of the limit
possibilities for one control system

ẋ(t) = Ax (t) +Bu (t) + f(t), x(t0) = x0, t ≥ t0. (1)

Here x is n-dimensional vector of state variables; u is r-dimensional control
vector; A and B are constant matrices of dimensions (n× n) and (n× r) corre-
spondingly; f(t) is n-dimensional bounded continuous vector function of distur-
bances. Admissible controls u(t) are piecewise continuous functions satisfying:
u′(t)Rju(t) ≤ 1, (j = 1, 2, . . . , p), t ∈ [ t0,∞) . Let u∗ (t) be admissible con-
trol such that at the trajectories of the system (1) the minimum of functional

J (u(·)) = max
t≥t0
‖x(t)‖2 (2)

is attained. It is required to estimate from below the optimal value of the
functional (2). In other words, it is required to find J̄ such that J̄ ≤ J (u∗(·)).

As the estimation of the functional limit (2) we take the optimal functional
value of the problem:






ẋ = Ax+Bu+ f(t), x(t0) = x0,
u′(t)Rju(t) ≤ 1, (j = 1, 2, ..., p), t ∈ [t0, t1] ,

‖x(t)‖2 ≤ ‖x(t1)‖2 ∀ t ≤ t1,
J2(u(·)) = ‖x (t1)‖2 → min .

The authors were partially supported by the Russian Foundation for Basic
Research and Republic of Buryatia (project no. 15-41-04020 r siberia a) and
East Siberia State University of Technology and Management (Grant ”Young
scientists ESSTU”).
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The equations describing the triple integrator are

ẋ = y, ẏ = z, ż = u, (1)

where control law is defined by

u = −sign(S(x, y, z)). (2)

The system state X is defined as X = (x, y, z), where x is the position, y
is the velocity, z is the acceleration. For time-optimal control, the objective
is to minimize the time required to transfer the system from an initial state
X0 = (x0, y0, z0) ∈ Ω0(x, y, z) to a final state Xf = (0, 0, 0). Here Ω0 ∈ R3 is
attraction domain of Xf .

Time-Optimal control surface for the system given by (1)-(2) with no dis-
turbances and no unmodeled dynamics is [1] as follows:

SoptU = x+
z3

3U2
+ u2

(yz
U

+ U− 1
2 (u2y +

z2

2U
)
3
2

)
, (3)

u2 = y +
z|z|
2U

(4)

We consider the same control problem, when the velocity and the acceler-
ation are bounded( |y| < B, |z| < A, A,B > 0). In this case, the proposed
control law (2) with (3) does not guarantee the transfer the system from a suf-
ficiently large neighbourhood of point Xf to point Xf . This occurs because
velocity or acceleration reaches restrictions.

To solve this problem we can calculate new attraction domain Ω ∈ R3 of
Xf for old control or construct new surface SU (x, y, z). we choose the second
case.

If there is no restriction on the velocity (B = +∞), the surface is easily
modified to solve the problem. In this case, the surface is SoptU (x, y,−Aln(1 −
z/A)sign(z)). We stretch the piece of the surface SoptU along the axis Oz .

If there is restriction on the velocity (B < +∞) we can not move with a
speed greater than a predetermined limit and can not influence the position x.
So system (1) is equal

ẏ = z, ż = u(y, z), |y| < B, |z| < A (5)
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and the objective is to minimize the time required to transfer the system
(5) from an initial state (y0, z0) ∈ Ω∗(y, z) to a final state X−

f = (−B, 0)
or X+

f = (+B, 0). The sign depends on the initial conditions. This prob-
lem can solve using the control law uy = −sign(SB(y,−Aln(1− z/A)sign(z))),
SB(y, ẑ) = y ± B + ẑ|ẑ|/2. May be show that, the attraction domain for this
case is defined as Ω(y, z) = {(y, z) : y ∈ [−B,B];min(−A,−

√
(B − y)/2) < z <

max(A,
√

(B + y)/2)}.
So, The solution of the problem consists of two parts:

1. first, the system comes to the surface SB(y, z) = 0,

2. second, the surface SoptU (x, y,−Aln(1− z/A)sign(z)) = 0.

The attraction domain of point Xf is determined by the equation

Ω(X) = {(x, y, z) : x ∈ R;

y ∈ [−B,B]; min(−A,−
√
B − y

2
) < z < max(A,

√
B + y

2
)} (6)

.

This work was supported by Russian Foundation for Basic Research, grant
No. 13-01-00347 and the Department of Power Engineering, Mechanical Engi-
neering, Mechanics, and Control Process of Russian Academy of Sciences (Pro-
gram no. 1 “Scientific foundations of robotics and mechatronics”).
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About market capitalization of low competitive
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Results of research of one model of production considering current assets
deficit, instability of the sales channel of production and restriction of trade
infrastructure (restriction from above on amount of one-timely implementable
batch) are presented [1-4]. Motivation of research is attempt to analyze prob-
lems of functioning of low competitive macroeconomic structures in the condi-
tions of unstable demand. The model allows to analyze production indicators
dynamics as a result of the fluctuation in demand on production which can be
caused, including, the competition to the import analogs. The model is for-
malized in the form of the Bellman equation for which a closed-form solution
is found [2,3]. In terms of model the stochastic process of inventory change is
described, its ergodicity is proved and final probability distribution is found.
By analyzing the stochastic process expressions for the average production load
and the average inventory are found [4]. The system of model equations related
the model variables to official statistical parameters is derived. The model is
identified using statistical data of the FIAT GROUP (FCA, Italy) and KAMAZ
(Russia). By the method of a comparative statics the analysis of influence of a
loan interest rate on a market capitalization of a company and the production
loading level is carried out.

Changes of the interest rate on the credits and the fluctuations in demand
both influence on market capitalization of the company and a position of the
company in the market. The developed model allows to estimate dynamics
of capitalization of the company proceeding from dynamics of revolving funds.
Fig. 1 provides dynamics of the relation of market capitalization to cost of sales
value for the FCA company (Fiat Chrysler Automobiles, Italy) for 2011-2014
received on the basis of statistical data (dashed line) and calculations for model
(firm line) (on graphics the size of this indicator in relation to 2011 is showed).
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Fig. 1

The authors were supported by the Russian Foundation for Basic Research
(project no. 14-07-00075).
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The paper presents a method of identification for a dynamic model of eco-
nomic growth with social stratification. The model is a modification of a model
presented in [1]. Here for describe an economic model for a stratum it is used
the Uzawa-Lucas model [2-4] on the data of Russian economic statistics by ap-
plication of high performance computations on multi-processors systems [5-7].

An optimal control problem for a typical household of a stratum dynasty
can be formulated by the following way:

∞∫

0

e−ρt(lnc+ φln
n

m
+ ψlnN)dt −→ max

u,c,n
, (1)

ḣ = B(1− u)h, (2)

Ṅ = (n−Mµ(h))N, (3)

k̇ = Ahγak
α(uh)1−α − (n−Mµ(h) + δ)k − c− qnh, (4)

Here the control variables are a part of time for job u(t), per capita consump-
tion c(t), and the number of children defined by fertility n(t). State variables
are the physical capital k(t), the human capital h(t), the size of dynasty N(t),
mortality m(t) = Mµ(h), µ′(h) < 0, µ(0) = µ+ > µ(∞) = µ− > 0. Parameters
are the discount rate ρ > 0, the utility weights φ and ψ, the intensity of school-
ing B > 0, the depreciation rate of physical capital δ > 0, the technological level
A > 0, the exponent γ ≥ 0, the output elasticity of physical capital 0 < α < 1
in production, the cost of child rearing q > 0.

GDP for the whole economy, the population and the value the average hu-
man capital are determined as sum of all strata S.

Ya =
S∑

i=1

yiNi, (5)
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Na =

S∑

i=1

Ni, (6)

ha =
S∑

i=1

hiNi/Na, (7)

The author of the work was supported by the Russian Foundation of Basic

Research (project no. 13-07-01020).
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The paper is denoted to the investigation of the schemes of investing in in-
novative projects. The work started to build a dynamic model of economy based
on venture capital [1]. Seven economic agents are allocated: large producers,
small producers, Government, venture capitalists, banking system, households,
and trade intermediates. It is supposed that small enterprises exist by the ven-
ture capital. A dynamic model of a lifecycle during an investment period of
such a firms is given [2].

The optimal control problem for a small firm can be formulated in the
following way:

k(T ) −→ max
y,w

, (1)

ṁ = −µm+ I,

k̇ = −βk + bI,

Πy := (p1 − seµtv − ap)y = w + pbI, (2)

(3) k(0) = bm(0) = Λ,

y ∈ [0, m],

W (T ) :=

T∫

0

w

p
dt+ γk(T ) > αΛ. (3)

Where k – is a capital of a firm, m – its capacity (maximum output per
unit of time), y – its real output, µ and β – rates of disposal for capacity and
capital respectively, β > µ. Parameters p and p1 – prices for the products of
large producers and innovative firms respectively. Λ is an amount of initial
investments, I – own investments, w – payments for the initial investments.
Investor’s expected minimal rate of return is α > 1, the interest of the investor
in the capital of the firm is γ ∈ [0, 1]. T – is a duration of the investment period,
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parameters a and b are ratio of direct costs and incremental capital intensity,
which shows an amount of a product consumed per creation a unit of capacity.
v – nominal labor input, λ = eµtv – real labor input.

In this problem y and w are the control parameters. They are linked by
the restriction (2), which defines the profit function Πy of a firm. W (T ) - is
a total payment for the investments, inequality (3) defines a specific scheme of
payments. The optimal control problems, corresponding to different patterns
of investment and payments are solved. In the first scheme it is assumed the
withdrawal period of the capital during which the investor receives everything
he is supposed to, in the second it is assumed that a part of the income the
investor receives as a fixed share in the capital of the company at the end of the
investment period.

In the given model the following statements are true.

Statement 1. In the absence of bank credits it is optimal for small firms
to make payments for the investments at the end of a period.

Statement 2. (1) gains its maximum on the same optimal control as a
total discounted profit does, so it can be replaced by

T∫

0

Πye
−δtdt −→ max

y,w

.

The authors were supported by the Russian Foundation of Basic Research
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Let us formulate for the sake of simplicity a 3-player polymatrix game (hexa-
matrix game) with mixed strategies as follows [1,2]:

F1(x, y, z) , 〈x,A1y + A2z〉 ↑ max
x
, x ∈ Sm,

F2(x, y, z) , 〈y,B1x+B2z〉 ↑ max
y
, y ∈ Sn,

F3(x, y, z) , 〈z, C1x+ C2y〉 ↑ max
z
, z ∈ Sl,





where Sp = {u = (u1, . . . , up)
T ∈ IRp

∣∣ ui ≥ 0,

p∑

i=1

ui = 1}, p = m,n, l.

The triple (x∗, y∗, z∗) ∈ Sm × Sn × Sl satisfying the inequalities

v∗1 = v1(x
∗, y∗, z∗) , F1(x

∗, y∗, z∗) ≥ F1(x, y
∗, z∗) ∀x ∈ Sm,

v∗2 = v2(x
∗, y∗, z∗) , F2(x

∗, y∗, z∗) ≥ F2(x
∗, y, z∗) ∀y ∈ Sn,

v∗3 = v3(x
∗, y∗, z∗) , F3(x

∗, y∗, z∗) ≥ F3(x
∗, y∗, z) ∀z ∈ Sl,






be called a Nash equilibrium point in the game Γ3 = Γ(A,B,C)
(A = (A1, A2), B = (B1, B2), C = (C1, C2)). Herewith, the strategies x∗,
y∗, and z∗ be called the equilibrium strategies. The numbers v∗1 , v

∗
2 , and v

∗
3 be

called the payoffs of players 1, 2, and 3, respectively, at the equilibrium point
(x∗, y∗, z∗).

Further consider the optimization problem (σ , (x, y, z, α, β, γ)):

Φ(σ) , 〈x,A1y + A2z〉+ 〈y,B1x+B2z〉+ 〈z, C1x+ C2y〉
−α− β − γ ↑ max

σ
, σ ∈ D , {(x, y, z, α, β, γ) ∈ IRm+n+l+3 |

| x ∈ Sm, y ∈ Sn, z ∈ Sl, A1y + A2z ≤ αem,
B1x+B2z ≤ βen, C1x+C2y ≤ γel},





(P)

where ep = (1, 1, ..., 1) ∈ IRp, p = m,n, l.
Theorem 1. [2] A point (x∗, y∗, z∗) is a Nash equilibrium point in the

hexamatrix game Γ(A,B,C) = Γ3 if and only if it is a part of a global solution
σ∗ , (x∗, y∗, z∗, α∗, β∗, γ∗) ∈ IRm+n+l+3 of Problem (P). At the same time, the
numbers α∗, β∗, and γ∗ are the payoffs of the first, the second, and the third
players, respectively, in the game Γ3: α∗ = v1(x

∗, y∗, z∗), β∗ = v2(x
∗, y∗, z∗),

γ∗ = v3(x
∗, y∗, z∗). In addition, an optimal value V(P) of Problem (P) is equal

to zero: V(P) = Φ(σ∗) = 0.
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In order to solve Problem (P), we will use an approach based on Global
Search Theory [3]. According to this theory the Global Search consists of two
principal stages: 1) a local search, which takes into account the structure of
the problem under scrutiny; 2) the procedures based on Global Optimality
Conditions (GOC) [3], which allow to improve the point provided by the local
search method, in other words, to escape a local pit.

The Local Search Method for problem with a bilinear structure applies the
idea of consecutive solving partial linear programs with respect to different
groups of variables: (x, β), (y, γ) and (z, α). The similar idea has previously
demonstrated its efficiency in bimatrix games and bilinear programming prob-
lems [4]. In spite of coupled constraints in Problem (P) the convergence theorem
of 3-stage Local Search Method to a critical point was proved. Each critical
point is a partly global solution to Problem (P) with respect to any pair of
variables.

The Global Search procedures (GSM) for Problem (P) are based on Global
Optimality Conditions for nonconvex problems with d.c. objective functions
[3,4], because of the objective function of Problem (P) can be represented as
a difference of two convex functions with the help of the property of a scalar
product.

The efficiency of methods developed for hexamatrix games is demonstrated
by the results of computational solving of the test problems. Our future work
will be direct to the elaborating of local and global search methods for polyma-
trix games with more than 3 players.

This research was supported by the Russian Science Foundation (project
No. 15-11-20015).
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The hydrodynamic three-dimensional global climatic model which consists
of blocks of the atmospheric general circulation model, model of the thermoha-
line large-scale circulation of the ocean, model of the sea ice evolution is realized
[1-3]. Before rather strongly aggregated heat-moisture-balance model of the at-
mosphere for temperature and humidity of a surface layer was used as model of
the atmosphere [4]. The atmospheric general circulation model is significantly
more detailed, and it also allows to describe more adequately processes in the
atmosphere [5-7].

Functioning of coupled climatic model is considered in the mode of the sea-
sonal cycle of solar radiation. Zero normal flow is required at all rigid surfaces.
On the borders of the continents are also zero normal components of heat and
salts fluxes. The ocean is forced by the surface friction wind stress. Heat and
salts fluxes are equal to zero at the ocean bottom, and on the surface are deter-
mined by the interaction with the atmosphere. Thermodynamic sea ice model
dynamic equations are solved for the fraction of the ocean surface covered by
sea ice and the average height of sea ice. Growth and melting ice in the model
depend only on the difference between the flow of heat from the atmosphere to
sea ice and heat flow of ice into the ocean. A diagnostic equation is used for
the ice surface temperature. All models are linked by exchange of momentum,
heat and moisture. Real world configuration of continents and ocean depths
distribution are used. Equations in spherical coordinates are solved by numer-
ical finite-difference method. The depth of the ocean is represented as 8 levels
logarithmic scale up to 5000 m. Initial state of the climate system is character-
ized by constant temperatures of the ocean, the atmosphere and ocean currents
speeds of zero. Numerical experiments show that the model goes to the steady
state for a period of about 2000 years.

Procedure of the coupled calculations organization of the ocean model and
atmospheric general circulation model is considered. Synchronization of a num-
ber of parameters in both models is necessary for their collaboration. In this
regard procedure of two-dimensional interpolation of the data defined on grids
of ocean model and atmosphere model and back is developed [8]. Feature of this
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task is discrepancy of grids and configurations of continents in models. At the
initial stage of initial data synchronization model is the ocean and atmospheric
models for the time before the match day of the year. The next step in the
model of the atmosphere is the time loop, total value in one day. After the
completion of this phase all climate characteristics are averaged per day and
are transferred to the calculated parameters in a model of the ocean. Further,
in the ocean model is step at a time (one day) and passed the calculated param-
eters in the model atmosphere for the resumption of the account in the loop.
Long-term calculations for more than 400 years for coupled model that showed
its stable work are carried out. Results of calculations and comparison with
observation data are discussed.

The distribution of mean global atmosphere temperature depending on time
in the stationary mode demonstrated existence of interannual variability of at-
mosphere temperature. Distribution of a difference of ocean surface temper-
atures from observations and from thermohaline circulation ocean model for
January is presented. Noticeable deviations of temperature are observed in the
field of close Antarctica. Apparently, it is connected with inaccuracies at cal-
culation of sea ice distribution in model. Geographical distribution of January
ocean surface temperature at joint calculations shows in general zonal uniform
structure of isolines with noticeable deviations from zonality near continents
that will be coordinated with observation data. The calculated field of January
surface atmosphere temperatures possesses strong variability over continents.

The author was supported by the Russian Foundation for Basic Research
(projects no. 14-07-00037, 14-01-00308).
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The Internet Acquiring, or acceptance of payment cards via the Internet, is
the service that is wide spread all over the world. Now it is impossible to imagine
goods or service that cannot be got on the Internet, having made payment by
any plastic card. Despite the difficult economic situation, the Internet Acquiring
develops dynamically during the last years, the cumulative returns on the results
of 2014 is more than 400 billion rubles.

The main players in the market of the Internet Acquiring among banks are
the following: Alfa-Bank, VTB24, Rosbank (processing center UCS), Sberbank,
Bank of Moscow, Promsvyazbank, Bank Russian Standard. More than 90% of
all market of the Internet Acquiring in Russia fall to their share.

However, the Internet Acquiring, as any other business, assumes a certain
set of risks that may include:
— financial losses in case of bankruptcy of the merchant and receiving claims
from its clients acquiring goods and services which were not fully rendered to
the merchant;
— financial losses because of roguish operations from a consequence of dishon-
esty or negligence of the merchant and its employees;
— financial losses from penalties of the international payment systems connected
with sale of the merchant of illegal types of goods or services.

For reasons given above, it is very important for banks to evaluate the
efficiency of merchants. In our paper, we propose to evaluate the activities
of merchants with the help of DEA models. Our computational experiments
showed that the proposed approach is very promising.
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Stabilization of motion of a wheeled robot governed by the nonlinear differ-
ential equations (the so-called kinematic, or simple-car, model)

ẋc = v cos θ, ẏc = v sin θ, θ̇ = v tan δ/L, (1)

along a straight target path is considered. In (1), xc, yc are coordinates of the
target point located in the middle of the rear axle, θ is the orientation angle, L
is the wheelbase distance, and δ is the turning angle of the front wheels. Motion
of the robot is controlled by turning the front wheels, whereas the forward speed
v is assumed to be an arbitrary (perhaps, unknown) function of time v ≡ v(t).
Owing to the equation u = tan δ/L relating the angle δ with the curvature
u of the trajectory described by the target point, we may consider u as the
control. Further, without loss of generality, we may assume that the target
path coincides with the x-axis of the coordinate frame. Then, yc is the distance
to the target path.

If |θ| < π/2, we may take xc to be the new independent variable instead
of time. Denoting it as ξ, introducing the notation z1 = yc and z2 = tan θ,
and replacing differentiation with respect to time in (1) by differentiation with
respect to ξ (denoted by the prime), we obtain [1]

z′1 = z2, z
′
2 = (1 + z22)

3/2u. (2)

Closing system (1) by the feedback u = −σ(z)/(1+ z22)3/2, where σ(z) = c1z1+
c2z2 is a linear function with positive coefficients, we obtain the linear system
the zero solution of which is globally asymptotically stable.

Since the turning angle δ of the front wheels is constrained by an angle
δ̄ < π/2, the control is also constrained, |u| ≤ ū = tan δ̄/L. To ensure the
fulfillment of the control constraint, we apply saturation function satū(·) to the
linearizing feedback,

u = −satū[σ(z)/(1 + z22)
3/2], (3)

which results in a hybrid system that is linear in the region where σ(z) ≤
ū(1 + z22)

3/2 and nonlinear in the saturation region. It is proved in [1] that
condition |θ| < π/2 is fulfilled for any trajectory if it is fulfilled at the initial
point and that system (2) closed by feedback (3) is asymptotically stable for any
control resource ū and any positive coefficients c1 and c2. The values of these
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coefficients, however, greatly affect performance of the stabilization process,
which brings us at the problem of finding the coefficients that ensure the best
(in some sense) performance of the closed-loop system.

The particular case of this problem where the feedback depends on only one
coefficient (the case we arrive at by taking σ(z) = λ2z1 + 2λz2, λ > 0) was
studied in [2] (in this case, the corresponding linear system has one repeated
pole). The desired value of the coefficient was defined to be the greatest value
of λ for which the phase plane is divided into two half-planes such that any
trajectory of the closed-loop system belongs to one of these half-planes (i.e.,
the phase portrait of the nonlinear system (2), (3) is topologically equivalent to
that of the linear system with a stable node at the origin).

In this work, the general, two-parameter, case is studied. Like in the pre-
vious one-parameter case, we seek for values of the feedback coefficients that
ensure the greatest exponential convergence while keeping the phase portrait
of the closed-loop system topologically equivalent to that of the linear system.
These requirements are shown to be satisfied for a one-parametric family of
pairs of the coefficients. By selecting from this family two different pairs of the
coefficients for the initial and final stages of the stabilization, one arrives at a
hybrid robust control law that is optimal in terms of overshooting. The con-
trol reaches saturation (u = ±ū) at the initial stage of motion until the system
comes to an invariant set, where the control turns to be continuous and the
system is linear.
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The existing methodology of gathering statistical data about migration in
Russian Federation consider only legal migrants, therefore, it is vital to develop
a methodology for modelling of migration flows and population with regard to
illegal migration.

In this regard, the task of creating mathematical models which are able to
predict migration indicators in relation to different socio-economic factors is set.
In this case, it is taken into account the impact of migration on the size and
structure of the population. The implementation of these models in a dynamic
modeling programing environment like PowerSim will allow to make forecasts
on the basis of not only statistical data on migration, but also to analyze the
flows of illegal migration on the basis of expert assessments in the retrospective
period.

The change in the number of illegal migrants residing on the territory of
the European part of Russia and Moscow region described by the differential
equations (1), (2).

d(eIPop)

dt
= eB ∗ eIPop+ ldeIMig − eD ∗ eIPop− eIPop ∗ ec, (1)

when t = t0, eIPop = eIPop0

d(mIPop)

dt
= mB ∗mIPop+ ldmIMig −mD ∗mIPop−mIPop ∗mc, (2)

when t = t0,mIPop = mIPop0,

where eIPop, mIPop – the number of illegal migrants residing on the terri-
tory of the European part of Russia and the Moscow region; erIPop0, mIPop0
– initial conditions for the number of illegal migrants residing on the territory of
the European part of Russia and the Moscow region; ldeIMig, ldmIMig – flows
of illegal migrants from Central Asia to the European part of the Russian Fed-
eration and the Moscow region; eB, mB – fertility rates in The European part
of Russia and the Moscow region; eD, mD – mortality rates in the European
part of the Russian Federation and the Moscow region; ec, mc – coefficients of
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legalization of migrants on the territory of the European part of Russia and the
Moscow region.

Fig. 1

In a more general version of modeling migration flows model parameters are
selected based on officially published statistical data or expert estimates. It uses
a built-in dynamic modeling PowerSimStudio genetic optimization algorithms.
Multicriteria problem of minimization deviation of the calculated migration data
and official statistics or expert estimates are solved.

References

1. L.F. Petrov, A.V. Stepanov Predictive modeling of migration flows. Envi-
ronmental Economics No. 5, VINITI, Moscow, 2014 – p. 111-126, ISSN
1994-8336

146



Model of the Russian banking system in view of
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We present a relatively simple and plausible description of modern banking
system applicable in the intertemporal equilibrium framework. This description
cannot be replaced by simple relations based, for example, on money multipli-
ers. The rational expectations model of banking system based on econometric
analysis of banks’ demand for liquidity depending on balances and turnovers of
aggregated assets and liabilities is presented. Some econometric relations are
used as restrictions while others are explained by the model. The model suc-
cessfully reproduces the reaction of banking system on unexpected shocks such
as large-scale sale of assets and world financial crisis.

The authors were supported by the Russian Scientific Fund, research project
No 14-11-00432.
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We consider the following nonregular optimal control problem

J(x, u) =

∫ t2

t1

f(t, x(t), u(t))dt→ extr (1)

subject to

ẋ− ϕ(t, x(t), u(t)) = 0, (2)

M1x(t1) +M2x(t2) = 0,

where f : R × Rn × Rr → R, ϕ : R × Rn × Rr → Rm, M1, M2 are l × n
matrices, x ∈ C2n[t1, t2], u ∈ V ⊆ Rr, V – some set and f, ϕ – sufficiently
smooth mappings.

The system of equations (2) can be replaced by the following operator equa-
tion

G(x, u) = 0Y , (3)

where G(x, u)(·) = ẋ(·)− ϕ(·, x(·), x(·)), G : X × V → Y ,
X = {x(·) ∈ KC1n[t1, t2] :M1x(t1) +M2x(t2) = 0} and Y = KCn[t1, t2]. Denote
by L(t, x, ẋ, u) = λ(t)(ẋ− ϕ(t, x, u)) + λ0f(t, x, u), λ(t) = (λ1(t), . . . , λn(t))

T ,
u ∈ KC[t1, t2] piece wise continuous function and by (x∗(t), u∗(t)) optimal so-
lution for (1)–(2). Let T = [t1, t2], T

′ the set T without discontinuous points
of optimal control u∗(t). Denote by H(t, x, u, λ) = λϕ(t, x, u) − λ0f(t, x, u) –
Pontryagin function. Then maximum principle may be formulate as follows:
there exists λ∗

0 ≥ 0 and λ∗(t) such that

max
u∈V

(λ∗ϕ(t, x∗, u)− λ∗
0f(t, x

∗, u)) = λ∗ϕ(t, x∗, u∗)− λ∗
0f(t, x

∗, u) (4)

for t ∈ T ′. Moreover, if
ImG′(x∗, u∗) = Y (5)

then λ∗
0 = 1.
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But in singular (nonregular, degenerate) case when ImG′(x∗, u∗) 6= Y we
cannot guarantee that λ∗

0 = 1, it may be λ∗
0 = 0!

Example. Consider the problem

J(x, u) =

∫ π
2

−π
2

(x2
1 + x2

2 + u2 + u)dt→ min (6)

subject to

G(x, u) =

(
ẋ1 − x2 + x2

1 − 1
2
x2
2 + u2

ẋ2 + x1 + x2
1 − 1

2
x2
2 + u2 + ux2

)
= 0,
= 0,

(7)

x1(−π2 ) + x1(
π
2
) = 0, x2(−π2 ) + x2(

π
2
) = 0, where u ∈ Vε = {u ∈ R : ‖u‖ ≤ ε}

and ε > 0 sufficiently small. Here X = KC12 [−π2 , π2 ], Y = KC2[−π2 , π2 ].
Optimal solution of (6)–(7) is x∗(t) = 0, u∗(t) = 0. However λ∗

0 does not
equal 1. Indeed, if λ∗

0 = 1 then it must be

−u− u2 + λ∗
1(t)u

2 + λ∗
2(t)u

2 ≤ 0, ∀u∈Vε

for sufficiently small ε and that is not true. For our example ImG′(x∗, u∗) 6=
KC2[−π2 , π2 ] i.e. regularity condition fails. But at the same time the mappings
G(x, u) are p - regular at the point (x∗, u∗) and we represent here p-th order
maximum principle where coefficient λ∗

0 = 1.

The authors were supported by the Russian Foundation for Basic Research
(project no. 14-07-00805) and by the Leading Scientific Schools Grant no.
4640.2014.1
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Described model occurred from the ideas claimed in [1], but the previous
form of mathematical description did not actually found itself useful. This
model of economic system’s core shows the very within of its functioning apart
from the processes of its management and social relations emerging from pro-
duction division problem.

The main idea is to divide industrial process functioning from its manage-
ment. Neuman’s model was took as a basis. Industrial process j ∈ J of rate
xij(t) is characterised by a set of values (aij , bij , cij , dij , τij), where aij is a quan-
tity of commodities produced i ∈ I and bij – consumed current assets quantity
per unit of production rate xij(t), cij – unit of fixed assets contribution to the
production rate, dij – fixed assets production rate loss in result of functioning
within one step, τij – number of steps from the moment t backwards, when for
the current production i ∈ I commodity was used.

Let fi(t) – be a commodity i ∈ I quantity produced on step t = 0, 1, . . . , T .
Let also ǫj(I), θj(I), γj(I) – subsets of a set of all commodities, which form
process’ j fixed and current assets and services, pij(t) – produced commodity
proportion of division, ηj(t) – industrial capacity utilization.

Also suppose given industrial system is acting within a society with a par-
ticular set of labour specializations k ∈ K. Let Lk(t) be a labour fund, e.g.
labour amount of specialization k ∈ K available on step (t), qjk(t) – labour
fund Lk(t) proportion of division between functioning industrial processes, rjk
– labour amount of specialization k needed by process j on a single step.

D e f i n i t i o n 1. A multiset (aij , bij , cij , dij , τij , ǫj(I), θj(I), γj(I), rjk)
∀i ∈ I,∀j ∈ J,∀k ∈ K is called a technological basis of the economic system.
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Then the core of economic system of a given technological basis can be
described as following:

fi(t) =
∑

j∈J
aijxj(t),∀i ∈ I ;

xj(t) = min




ηj(t− τij) min
i∈ǫj(I)

F ǫij(t− τij);

min
i∈θj(I)

F θij(t− τij);
min
i∈γj(I)

bijpij(t− τij)fj(t− τij);

min
k∈ϕj(K)

1

rjk
qjk(t− τLjk)Lk(t− τLjk);




,∀j ∈ J ;

F ǫij(T ) =

T∑

t=0

(cijpij(t)fi(t)− dijxj(t)) ,∀j ∈ J, i ∈ ǫj(I);

F θij(T ) =
T∑

t=0

(
1

bij
pij(t)fi(t)− xj(t)

)
,∀j ∈ J, i ∈ θj(I);

∑

j∈J
pij ≤ 1,∀i ∈ I ;

∑

j∈J
qjk ≤ 1, ∀k ∈ K.

This model can be used to test and compare different economic management
ideas from the directive control with setting proportions pij(t) and qjk(t) and
capacity utilization ηj(t) directly to the capitalistic management where these
parameters are determined through quite a complex set of rules and equations.
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The article describes the robotic platform designed to protect the techno-
logical objects, as well as a human-operator on the low-frequency effects from
the base. At the same time put back robotic task at any random actions on the
part of the mobile base is necessary to construct such a law controlling the drive
mechanism, in which the object (platform) is fixed in an inertial coordinate sys-
tem. Considered electromechanical actuator [1]. As the feedback sensors used
accelerometers mounted on the object and the ground, and the relative move-
ment of the sensor [2]. Drive including a two-phase stepper motor with active
unsalient-pole rotor. Adopted as the reference angle position where the axis of
the rotor pole coincides with the axis of phase 1. The equations of stress and
torque are of the form

J

p
· θ̈ +MH = p · ψm · (i1cosθ − i2sinθ) ; (1)

r1 · i1 + L · i̇1 + ψm · θ̇ · cos θ = u1; (2)

r2 · i2 + L · i̇2 − ψm · θ̇ · sin θ = u2; (3)

θ̈ = ω; (4)

where MH — load torque, J — the moment of inertia of the engine, i1, r1,
u1 —the current, resisting, and tension of the 1st phase of the engine, i2, r2,
u2 — the 2nd phase of the engine, θ — the angle between the axis of the vector-
poles and n. . , p — number of pole pairs, ψm — maximum flux linkage excited
rotor, L — the coefficient of mutual induction, ω — the angular velocity.

Further, in the equations (1–4), passed the angle θ close to zero (in this case
cos θ ≈ 1, as well sin θ ≈ 0), and then they are reduced to a form characteristic
of the equations describing the system in the state space in vector-matrix form

{
Y = AX+Bu+DY

υ̇ = CX
(5)
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where X =
[
x1 x2 x3 x4

]T
— the state vector, Y =

[
0 0 0 1

]T
—

a vector of disturbances, A =




− r1
L

0 0 −ψm
L

0 − r2
L

0 0
0 0 0 1
1
Jeq

0 0 0


, D =




0
0
0

− p
J
·MH


,

B =




1
L
1
L

0
0


 — the coefficient matrix of the system, u =

[
u1 u2 0 0

]T
—

the vector of input signals, C =
[
0 0 0 Seq

]T
— row vector of coefficients.

Control is sought in the form u = K ·X, that minimizes [3] J = supω ‖y‖22
To do this in the second equation of the system (5) introduced control u

used to limit the magnitude of the control, as otherwise, you can get arbitrarily
small values J using sufficiently large u.

As you know

J = ‖H(s)‖2∞ ,

where H(S) = ((C∆ +B1∆K)(sz −A∆ +BK))−1D — the transfer function of
a closed system with indignation ω to the output y, i.e., minimization of J is
equivalent to H∞–optimization [4].

The inequality of the form

QAT∆ + A∆Q+QCT∆C∆Q−B∆S
−1BT∆ +

1

y2
D∆D

T
∆ ≤ 0,

It has a positive-definite solution Q > 0, if such a decision is the Riccati
equation, obtained by replacing the inequality to equality. According to this
decision, restored the corresponding stabilizing controller

K = Y Q−1 = −S−1BT∆Q
−1.

As a result of the mathematical modeling are the resulting matrixes A, B
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and C.

A =




−13, 3 0 0 −0, 0012
0 −13, 3 0 0
0 0 0 1

8, 9 · 103 0 0 0


 , B =




2, 38
2, 38
0
0


 , C =

[
0 0 0 2, 936

]

And the following values of weighting coefficients: Q =

[
1 0
0 1

]
, r = 10−6.

Thus, the synthesized optimal stabilizing control, the feedback coefficient matrix
has the form

K =
[
0, 0984 0 0, 0001 0, 0001

]
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The problem of constructing of a hill diagram for the hydro turbine wheels
on the power test results of the model turbine is considered. The hill diagram
is the basic document for selection of full-scale hydraulic turbine parameters
(turbine wheel diameter, rotating frequency, etc.) that ensure the most effi-
cient perfomance of the turbine at all modes of its operation in a particular
hydropower station.

The basis of the proposed approach is the approximation methods for mul-
tidimensional functions at scattered data. The methods are modifications and
generalizations of Hardys multiquadrics, thin plate and Dm-splines. These
splines are an effective tool for the reconstruction of a function depending on
three variables by its values known at irregularly (chaotically) located points of
space. The definitions for interpolating and smoothing splines are given. The
algorithmic problems related to their construction are also discussed. Note that
such splines have much in common with the RBF-splines.

The software package for mathematical modeling of hill diagrams for the
Fransis and Kaplan turbines was created. An example of modeling for real data
on the basis of the program complex is given.

The second author was supported by the Russian Foundation for Basic Re-
search (project no. 15-07-07530).
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1. Discrete version

Let an initial sequence {Pi}, i = 1, n, be the input of raw materials to the
stock of the volume V and a smoothed sequence {xi}, i = 1, n, be the output
of raw materials to be manufactured.

The problem of optimal smoothing (the optimization of streamlining man-
ufacturing operations) can be stated and solved [1] as a problem of convex
programming: find a vector X0 = (x0

1, x
0
2, . . . , x

0
n) ∈ D minimizing the func-

tion F (X) =
∑n
i=1 f(xi), where f(xi) is a continuous convex function, and the

feasible set

D =

{
X ∈ Rn : Aj ≤

j∑

i=1

xi ≤ Bj , j = 1, n− 1,

n∑

i=1

xi = P

}

is a special set of Rn with lower (Aj) and upper (Bj) constraints.

Statement 1. A vector X0 = (x0
1, x

0
2, . . . , x

0
n) ∈ D minimizes the function

F (X) iff every pair of its components x0
k and x0

j (k > j) verifies one of the
following conditions:

A) x0
k = x0

j ;

B) x0
k > x0

j , and there exists such a number m ∈ {j, j + 1, . . . k − 1} that∑i=m
i=1 x0

i = Bm;

C) x0
k < x0

j , and there exists such a number l ∈ {j, j + 1, . . . k − 1} that∑i=l
i=1 x

0
i = Al.

Statement 2. Let µi = Bi − iBn
n

and νi = iBn
n
− An, i = 1, n− 1.

If µi ≥ 0, νi ≥ 0, i = 1, n− 1, then all the components of optimal vector are
equal to Bn

n
;

if µk = minµi < 0, then the components of optimal vector satisfy the con-
dition

∑i=k
i=1 x

0
i = Bk;

if νl = min νi < 0, then the components of optimal vector satisfy the condi-
tion

∑i=l
i=1 x

0
i = Al.

2. Continuous version
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Let p(t), 0 ≤ t ≤ T , be continuous nonnegative function, representing the
speed of delivery of raw materials to the stock of the volume V , u(t), 0 ≤ t ≤ T ,
be piecewise continuous function representing the speed of manufacturing of
raw materials, then the quantity x(t) of raw materials in the stock will satisfy
the following equation

x(t) = x(0) +

∫ t

0

p(τ )dτ −
∫ t

0

u(τ )dτ, 0 ≤ t ≤ T. (1)

The integral amount of raw materials P (t) = x(0) +
∫ t
0
p(τ )dτ and the integral

amount of manufactured raw materials v(t) =
∫ t
0
u(τ )dτ have to satisfy the

restrictions

A(t) ≤ v(t) =
∫ t

0

u(τ )dτ ≤ B(t), 0 ≤ t ≤ T,
∫ T

0

u(τ )dτ = P. (2)

A piecewise continuous function u0(τ ), 0 ≤ τ ≤ T , satisfying the inequality (2)

and minimizing the functional F [u] =
∫ T
0
u2(τ )dτ is called optimal control.

Statement 3. Let u0(τ ), 0 ≤ τ ≤ T , be the optimal control.

a) If u0(t− 0) < u0(t+ 0), then v0(t) =
∫ t
0
u0(τ )dτ = B(t);

b) if u0(t− 0) > u0(t+ 0), then v0(t) =
∫ t
0
u0(τ )dτ = A(t).

Statement 4. Let µ(t) = B(t)−ct√
(1+c2)(t2+B2(t))

, ν(t) = ct−A(t)√
(1+c2)(t2+A2(t))

, 0 ≤
t ≤ T , where c = P/T .

If µ(t) ≥ 0, ν(t) ≥ 0, then u0(τ ) ≡ c, 0 ≤ t ≤ T , will be optimal control;

if µ(t) = minµ(t) < 0, then v0(t) = B(t);

if ν(t) = min ν(t) < 0, then v0(t) = A(t).
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Optimization control problems are analyzed as a rule by necessary condi-
tions of optimality. It can be the stationary condition, Euler equation, the
variational inequality, the maximum principle, etc. These conditions include
the first derivative of the state functional. So the optimal control theory has
serious relations with the differentiation theory.

The differentiation is an operation of the local linearization. It supposes
that the nonlinear phenomenon has become weakly apparent in a small enough
set. Then the regular enough nonlinear object can be approximated by a linear
one. Note that the derivative is used for the definition of the tangent. If
the local structure of the nonlinear object is analyzed by means of its linear
approximation, we use the differentiation. It is true for the optimization control
theory too. The differentiation relates with the local structure of the object.
Two functions (functionals, operators) that are equal in a neighbourhood of a
point have the same derivative in this point. So the derivative characterizes the
local structure of the class of objects, but not a concrete object. These objects
are equivalent in some way. This equivalence class is the germ of functions
(functionals, operators) in this point. Then the differentiation relates with the
germs theory naturally enough.

Thus the differentiation transforms the germ of operators to a linear opera-
tor, which is its derivative in the given point. This map can be interpreted as a
functor. It transforms the category, which has germs of operators as morphisms,
to the category, which has linear operators as morphisms. So our problem al-
lows an interpretation in the categories theory We consider classic and extended
operator derivatives.
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Inverse problems for two dimensional parabolic
equations with infinite horizon

Ilyas Shakenov1

1 Al-Farabi Kazakh National University, Almaty, Kazakhstan
ilias.shakenov@gmail.com

Practical problems often lead to difficulty that we call inverse problems. For
example, if you need to know the temperature of soil at the depth of several
meters while it is possible to measure the temperature only on the surface. In
this type of problems there is a lot of information (over-determination) on one
side of the boundary but no any data at the other side. We consider one of such
problems with the following mathematical problem definition.

We have a two-dimensional heat conduction equation and initial boundary
problem. The right boundary state function is unknown and has a meaning of
heat flow. To determine this value we can use additional information at the left
side. To solve the problem numerically we cannot use infinite time interval, so
we replace the original problem with its finite approximation, where the final
time becomes larger and larger.

We convert this problem to optimization by standard method. We use a
familiar method to solve the problem by constructing an iterative process. At
first we find Gato derivative of the functional. Then we have constructed a
computational algorithm, we can do a lot of experiments accompanied with
graphs and tables.

Additionally we give an outline of the future works to improve and develop
this research, which we believe has a great applicability and concerns about new
unknown effects in inverse problem theory.
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In the paper parametric inverse problems of atmospheric optics are consid-
ered. To solve these problems we applied algorithm ”the method of dependent
tests for transport theory problems” of Monte Carlo methods. The problems
reduced to linear system of equations for parameters and solved by optimiza-
tions methods. The numerical solution of the optical depth of the extinction
specified. The approximation error is no more than 5-10 percent, which is quite
satisfactory for Monte Carlo methods.

Estimation of derivatives of Ik by Monte Carlo methods with respect to
parameter τ (is optical depth) to estimate this parameter with the methods
mentioned in the proceeding.

This parameter τ (rn, rk, λ) =
∫
σ(rn+ωkl, λ)dl is called ”the optical depth”,

where (ωk)l = ( (rk−rn)
|rk−rn| )l is called ”the optical length from rn to rk”, ωk is unit

length vector.
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Lattices of tringulations of linear polyhedral cones
and their f-vectors
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The problem of connections of the structures of polyhedral and symplicial
complexes is discussed. This problem naturally appeared in control theory and
optimization.

Consider a polyhedral cone K, i.e. the set of all solutions to a homogenous
system of linear inequalities over the field of rational numbers

d∑

j=1

aijxj ≥ 0 (i = 1, . . . ,m). (1)

The set KI = {x = (x1, . . . , xd) ∈ K :
∑d
j=1 aijxj = 0, i ∈ I}, where

I ⊆ {1, . . . ,m}, is called I-face of K. If KI 6= K then KI is called the proper
face of K. The set of all proper faces is called the boundary of K. It is known
that the set of all faces of K ordered by inclusion is the lattice of K denoted by
Γ(K) (with maximal face K).

Let B = (bik) be (d × n)-matrix with columns bj (j = 1, . . . , n) and
Γ(B(J)) = ∆(J), where J ⊆ {1, . . . , n}.

Denote by B∠ =
{∑n

j=1 bjyj : yj ≥ 0
}
the set of all nonnegative linear com-

binations of its columns and suppose that B∠ is coincide with the set of solutions
to system (1). Analogously, let A∠ be the set of all nonnegative linear combi-
nations of rows of A. To determine the structure of ∆(J) it’s enought to know
non-zero elements of matrix (cij) = C = AB. Let Γ(C) = (γij), where γij = 1
if cij = 0 and γij = 0 otherwise. We call a {0, 1}m×n matrix d-realizable
iff there exist matrices A ∈ Zm×d and B ∈ Zd×n such that AB = C. For
k = 0, . . . , d we denote by ∆k =

⋃t
τ=1∆k(Sτ ) the set of k-dimensional faces of

simplicial complex ∆. Assume that fk(∆) = |∆k|, f(∆) = (f0(∆), . . . , fd(∆))
and f(λ,∆) = 1 +

∑d
k=1 fk−1(∆)λk. Represent the polynomial f(λ,∆) as

f(λ,∆) =
∑
k∈Z+

γk(∆)λk(1 + λ)d−k. The integer sequence γ = (γ0, γ1, . . . )

is called (d, n)-realized if γk = γk(∆) for k = 0, . . . , d and γk = 0 for k > d.

The triangulation of K with knots from B is the set T (B) = {S1, . . . , St}
such that Sτ (τ = 1, . . . , t) satisfy the following conditions:

1) Sτ ⊆ {1, . . . , n}, 2) |Sτ | = r = rankB(Sτ ), 3) B
∠ =

t⋃
τ=1

B∠(Sτ ),
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4) B∠(Sτ ) ∩ B∠(Sσ) = B∠(Sτ ∩ Sσ).
A criterion for the realizability of f -vector of the triangulation was given

last year [2].
Since the strutures of A∠ and B∠ are anti-isomorhic. This allows to determ

f -vector of regular triangulations. The main tool here is eigen-values of A ·AT .
Using γk instead of fk allows us to estimate the power of n as function of d.
This is illustrated by the following table.

rank Hd,n Gsd,n
2 0 ≤ γ2 ≤ γ1 ≤ n− 3 g = (1, γ1 − γ2);

0 ≤ g1 = γ1 − γ2 ≤ n− 3
3 0 ≤ γ3 ≤ γ1 ≤ n− 4 g = (1, γ1 − γ3);

γ3 ≤ γ2 ≤ (γ1)〈1〉 0 ≤ g1 = γ1 − γ3 ≤ n− 3

4 0 ≤ γ4 ≤ γ3 ≤ γ2 ≤ (γ1)〈1〉 g = (1, g1, g2); 0 ≤ g1 ≤ n− 5

γ4 ≤ γ1 ≤ n− 5 0 ≤ g2 ≤ g
〈1〉
1

γ2 − γ3 ≤ (γ1 − γ4)〈1〉 h = (1, 1 + g1, 1 + g1 + g2, 1 + g1, 1)

5 0 ≤ γ5 ≤ γ4 ≤ γ3 ≤ γ
〈2〉
2 g = (1, g1, g2)

0 ≤ γ2 ≤ γ
〈1〉
1 0 ≤ g1 ≤ n− 6

γ5 ≤ γ1; γ4 ≤ γ2 0 ≤ g2 ≤ g
〈1〉
1

(γ2 − γ4) ≤ (γ1 − γ5)〈1〉 h = (1, 1 + g1, 1 + g1 + g2,

γ3 − γ4 ≤ (γ2 − γ5)〈2〉 1 + g1 + g2, 1 + g1, 1)
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A Method of Meeting Paths for Piecewise Linear
Exchange Model
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The exchange model with piecewise linear separable concave utility functions
of participants is considered. The consideration extends an original approach
to the equilibrium problem in a linear exchange model and its variations. The
conceptual base of this approach is the scheme of polyhedral complementarity.
It has no analogs and made it possible to obtain the finite algorithms for some
variations of the exchange model [1]. The consideration is based on the new
notion of consumption structure. Two sets of the price vectors can be associated
for each structure : a preference zone as a set of prices by which the participants
prefer the connections of the structure, and a balance zone as a set of prices
by which the budget conditions and balances of goods are possible when the
connections of the structure are respected, but the participants preferences are
ignored. In this way a point-to-set mapping is obtained.The fixed points of
this mapping , and only they, give the equilibrium price vectors of the model.
The mapping has some monotonicity property and should be characterized as a
decreasing mapping. For the fixed point searching in the case of linear exchange
model and production-exchange model [2] the method of meeting paths was
proposed. The presenting consideration deals with its generalization on the
piecewise linear exchange model.

The author was supported by the Russian Foundation for Basic Research
(project no. 12-01-00667-a)
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Let G is usual graph without loops and multiple edges with the vertex set
V and edge set E, b = (bu, u ∈ V ) – vector with integer positive components.
Subgraph H ⊆ G is called b-matching if dH(u) ≤ bu for all vertices u ∈ V . The
b-matching is called a matching if bu = 1 for all u ∈ V . Let RE is the space
of column vectors that axes are in one-to-one correspondence with an edge set
E. For each b-matching H define its incidence vector as (0, 1)-vector xH ∈ RE
with the components xHe = 1, if e ∈ EH and xHe = 0 otherwise. The b-matching
polytope is the convex hull all b-matching incidence vector, i.e

P (G, b) = conv{xH ∈ RE | for all H ⊂ G that is b-matching}.

We consider the set of symmetries of the polytope P (G, b). We define the
symmetry of P (G, b) as the affine nondegenerate transformation ϕ : RE → RE

such that ϕ(P (G, b)) ≡ {ϕ(x)|x ∈ P (G, b)} = P (G, b). It is clear that the set of
symmetries is a group with respect to composition of transformations.

The interest to the symmetries of the polytopes is due to the following.
Every symmetry translates face of the polytope to the face of the same dimen-
sion. In particular this fact allows to ”duplicate” the inequalities that generate
facets of a polytope (see [1]). In [2] the algorithm for reducing the dimension
of the independence system problem that is based on symmetries of polytope
is proposed. Another important useage of the symmetries of the polytope is
the possibility of ”adjustment” of the linear objective function on a polytope.
Let ϕ(x) = Ax + h (A is a square non-singular matrix of order |E|, h ∈ RE)
is the symmetry of P (G, b). If a vector x̄ is optimal solution of the problem
max{cTAx|x ∈ P (G, b)} then a vector x∗ = Ax̄ + h is optimal solution of the
problem max{cTx|x ∈ P (G, b)}.

In this report the properties of the group of symmetries of P (G, b) are dis-
cussed. The modification of the graph G is obtained. The automorphism group
of this modification is isomorphic to the group of symmetries of the b-matching
polytope. A special case of this result is isomorphic of the group of all lin-
ear symmetry of matching polytope and automorphism group of the original
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graph G (see [3]).
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Consider the convex programming (CP) problem

min{f0(x) | x ∈ X}, (1)

where X = {x | f(x) ≤ 0}, f(x) = [f1(x), . . . , fm(x)], fi(x) are convex func-
tions defined on Rn (i = 0, 1, . . . ,m). The CP problems with contradictory
constraints (X = ∅) often arise in mathematical modeling of complex real-life
systems. The correction of similar improper [1] problems is understood as a
transformation of an inconsistent model into a model that belongs to a family
of feasible problems.

Let Xξ = {x | f(x) ≤ ξ}, E = {ξ ∈ Rm+ | Xξ 6= ∅} and ξ̄ = argmin{‖ξ‖ |
ξ ∈ E}. Along with (1) we consider the problem

min{f0(x) | x ∈ Xξ̄}. (2)

If X 6= ∅, then ξ̄ = 0, and problem (2) coincides with problem (1). Otherwise,
(2) is an example of possible optimal correction for improper problem (1).

For the solving of the problem (2) we apply the residual method [2] for the
regularization of ill-posed models. This method consists in solving of a sequence
of problems

min{‖x‖2 | x ∈ X ∩Mδ}, (3)

where Mδ = {x | f0(x) ≤ δ}, δ ∈ R1. If the problem (1) is solvable and f∗ is
the optimal value of (1), then the problem (3) has a unique optimal point x∗

δ

for any δ ≥ f∗ and sequence x∗
δ converges to the normal solution of the problem

(1) as δ → f∗.
If the set X is empty, then we replace the restrictions of the problem (3) by

a penalty function, for examples by the quadratic penalty function

Fδ(x, r) = ‖x‖2 + ρ‖f+(x)‖2 + ρ0(f0(x)− δ)+
2

, r = [ρ, ρ0] > 0.

The function Fδ(x, r) is strongly convex with respect to x in Rm; hence
problem min

x
Fδ(x, r) has a unique solution for any r ∈ R2, r > 0 and δ ∈ R1,

including the case X = ∅ in contrast to problem (3). Therefore, the function
Fδ(x, r) can by used for the analysis of improper CP problems.
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The practical application of the method (3) for the approximation of im-
proper CP problems is connected with the necessity to implement the condition
δ → f̄ , where f̄ is the optimal value of the problem (2). We present here
an algorithm to find a sequence of δk that converges to the solution of (2) as
k →∞.

Let εk > 0, εk > εk+1, lim
k→∞

εk = 0 be given and bounds δ0, C be known,

where δ0 < f̄ − ε0, C ≥ ‖x̄0‖2, x̄0 = argmin{f0(x) | x ∈ Xξ̄}. Assuming
δk < f̄ − εk, let us find

δk+1 = δk + (f0(x̃k)− δk − εk)+, k = 0, 1, . . . , (4)

where x̃k = argmin
x
F̃k(x), F̃k(x) = F̃δk (x, rk, εk) = ‖x‖2 + ρk‖f+(x)‖2 +

ρ0k(f0(x)− δk − εk)+, rk = [ρk, ρ
0
k] > 0, ρ0k(εk − εk+1) > C.

Theorem. Suppose that problem (2) is solvable and parameters εk, ρk, ρ
0
k

are chosen such that εk → 0, ρk →∞, ρ0k →∞, ρ0kρ
−1
k →∞ as k →∞. Then,

lim
k→∞

δk = f̄ in method (4) and any limit point of the sequence {x̃k} solves the

problem (2). If lim
k→∞

(ρ0k)
2ρ−1
k = 0 holds, then lim x̃k = x̄0.

The author was supported by the Russian Scientific Foundation, grant
no. 14-11-00109.
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A typical optimal control problem is considered:

Φ(u) = ϕ(x(t1)) +

∫

T

F (x(t), u(t), t)dt→ min, u ∈ V, (P)

ẋ = f(x, u, t), x(t0) = x0,

V = {u(·) ∈ PC(T ) : u(t) ∈ U, t ∈ T }.
We assume that ϕ(x) is a convex, continuously differentiable function.

Let u, v ∈ V . Nonstandard formula for the functional increment in the
problem (P) is presented:

∆vΦ(u) = −
∫

T

∆v(t)H(ψ(t, u), x(t, v), u(t), t)dt+ η.

Here H(ψ,x, u, t) is the Pontryagin function, ψ(t, u), x(t, v) are solutions of
conjugate and phase systems with respect to corresponding controls u(t), v(t),
and η is a residue with respect to phase increment ∆x(t) = = x(t, v)− x(t, u).

Theorem. Let u ∈ V and following conditions are true:
1)

u(t) = argmax
w∈U

H(ψ(t, u), x(t, v), w, t) ∀t ∈ T, v ∈ V ;

2) the function g(x, t) = H(ψ(t, u), x, u(t), t) is concave with respect to x.

Then the control u(t) is optimal in the problem (P).

Procedures and examples of effective application of this result are given.
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Consider the problem

(P) :
f0(x) := g0(x)− h0(x) ↓ min

x
, , x ∈ S,

fi(x) := gi(x)− hi(x), i ∈ I = {1, . . . ,m},

}
(1)

where the functions gi(·), hi(·), i ∈ {0} ∪ I are convex on IRn, and the set S is
convex in IRn [1–6]. Along with Problem (P) we address two following auxiliary
problems

(Pη) : Fη(x) ↓ min
x
, x ∈ S, (2)

(L) : L(x, λ) ↓ min
x
, x ∈ S, (3)

where

Fη(x) = max{f0(x)− η, fi(x), i ∈ I}, (4)

L(x, λ) = f0(x) +
m∑

i=1

λifi(x). (5)

For problems (Pη)–(2) and (L)–(3) we establish, first, the relations with
Problem (P)–(1).

For that purpose we used the following results [2–4].

Proposition 1. Suppose that a feasible point z is a solution to Problem (P),
z ∈ Sol(P). Then, the point z is a solution to the following auxiliary problem
(Pη) with η = ζ , f0(z).

Proposition 2. If the pair (z, λ) ∈ S×Rm+ is a saddle point of the Lagrange
function L(x,µ) on the set S × Rm+ , then the point z is a global solution to
Problem (P).

Proposition 3. Suppose z ∈ D, z is a KKT-point, but it is not a global
solution to Problem (P). Then, there does not exist a Lagrange multiplier λ ∈
M(z) such that (z, λ) ∈ Sdl(L).

Second, we develop new apparatus of Global Optimality Conditions (GOC)
[6–8], which is connected with the classical Optimization Theory and the pre-
vious corresponding results for canonical nonconvex optimization problems as
convex maximization, revers-convex optimization, d.c. minimization and opti-
mization with d.s. constraints.
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These new tools allow us not only to escape critical points in examples
considered, but to estimate the adequacy of Problems (Pη) and (L) with respect
to the original problem (P)–(1).

The authors were supported by the Russian Science Foundation (project
no. 15-11-20015).

References

1. J. Nocedal, S.J. Wright Numerical Optimization, Springer, New York (2006).

2. J.-B. Hiriart-Urruty “Generalized Differentiability, Duality and optimization
for Problems dealing with Difference of Convex Functions,” in: Convexity and
Duality in Optimization. Lecture Notes in Economics and Mathem. Systems,
256, Berlin, Springer-Verlag, 1985, pp. 37–69.
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In economic research, especially at the macro level, as the main purpose of
the social development is often considered the maximization of consumption.
This meant that the growth of consumption, the main cause of which is the
expansion of productive accumulation, causes increasing of the protection of
the population from the negative effects of environment. The validity of this
assumption is confirmed by the results of comparing the average duration and
standard of living in the countries of the world community and in each country
over a sufficiently long period of its development. Life expectancy grows ap-
proximately logarithmically with incising standards of living, measured by per
capita expenditure on food, health care, education, culture, improvement of san-
itary and hygienic conditions of life and other areas determining the structure
of personal consumption.

However, in modern conditions social development also is characterized by
increasing the risks of new man-made and socio-political hazards for the health
and human life. These include, in particular, the risks of industrial accidents,
man-made and natural disasters, unlawful acts, including terrorist acts, etc.
These risks are generally classified as external. To reduce it society is forced
to spend some funds that could be directed to increasing accumulation or con-
sumption. Thus, the distribution of national income should be divided on the
three components according to the following relationship:

y(t) = u(t) + c(t) + z(t) (1)

where t - the index of the year; y(t) - national income produced in year t;
u(t) accumulation in year t; c(t) - personal consumption in year t (standard of
living); z(t) - costs on protective measures against external risks in year t.

In such a situation as a purpose of social process instead of the maximization
of consumption can be considered the minimization of the overall risk of life
R0(c(t), z(t)) or the maximization of life expectancy Tav(c(t), z(t)) depending
on the personal consumption and costs on social safety.

To describe the indicators R0(c(t), z(t)) and Tav(c(t), z(t)) can be used the
following expressions:

R0(c(t), z(t)) = R1(c(t)) +R2(z(t)) (2)
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Tav(c(t), z(t)) =
Tmax

R1(c(t)) +R2(z(t))
(3)

where Tmax maximum average optimal life expectancy (eg, 100 years); R1(c(t))
- average individual risk of death in year t for internal reasons (sickness, acci-
dents in home, etc.), delivered in dependence on the level of personal consump-
tion, for example, according to the following expression:

R1(c(t)) = α0e
−α1z(t) (4)

R2(z(t)) average risk of death due to external reasons depending on the costs
on security:

R2(z(t)) = β0e
−β1z(t) (5)

The coefficients α0, α1, β0, β1 can be evaluated according to the official
statistics of the levels of these processes in the countries of the international
community, or in a particular country for a number of years.

In view of the above expressions enlarged (single-sector) model of optimal
socio-economic development in a range (0, tk) can be represented by the follow-
ing differential equation:

y(t) = B
δy(t)

δt
+ c(t) + z(t) (6)

where B - the capital intensity of national income, with criteria such as the
following:

min
∑

t

R0(c(t), z(t)) (7)

under constraints, reflecting no increase of risks R0(t) ≥ R0(t+1), consumption
growth C(t+ 1) ≥ C(t) and nonnegative arguments y, u, c, z.

Note that the problem (6), (7) corresponds to the task of optimal operating
with a free boundary and a fixed time tk. Its solution can be found using the
Pontryagin maximum principle with Lagrangian numerical methods.

This paper is preapered under the grant of Plekhanov RUE ”The method-
ology of comparative analysis of modes of reproduction in regions of Russian
Federation in conditions of turbulent economy ”
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The increase of life expectancy is one key priorities stipulated he concept of
long-term socioeconomic development of the Russian Federation for the period
up to 2020. Nowadays the current life expectancy in Russia is lower than in most
developed countries. For instance, in 2013 in Western Europe this indicator was
80,54 years, in comparison to 70,76 years in our country.

It hardly can be explained by shortage of funding, because in a number of
countries with a similar level of investments allocated to health care, the life
expectancy is 4,88 years longer than in Russia. The increase of life expectancy
along with recourse deficit requires prioritization of the measurements dedicated
to health care modernization. The optimum recourse allocation is impossible
without adequate indicators of health losses resulted from different causes of
death.

The optimum recourse allocation means the goal-oriented recourse distribu-
tion between the regions of the Russian Federation in accordance with the level
of health loss from specific causes of illness or death in these areas. Recently
global burden of disease indicators have been widely applied to get estimates
of health losses. However, the calculations of global burden of disease requires
huge amounts of information on age-specific morbidity and mortality rates, that
makes its implementation in Russia quite complex [2]. As a result, indicators
of the global burden of disease are not widely used in the Russian Federation,
despite the fact that in 2007 the method of DALE calculation was adapted for
our country in order to analyze the regional health system effectiveness.

An alternative method for determination of health losses can be a compar-
ative analysis of the age distributions on mortality from a particular disease.

The comparison of the age distribution on mortality in a particular area with
the ”standard” distribution determines the loss, expressed as years of life lost
due to premature mortality. In order to test the method, there were calculated
estimates of health loss due to cardiovascular diseases and cancer. The reduction
in mortality due to these causes is especially important for Russia, as these
diseases annually cause more than 70% from the total number of deaths.

As a result of analysis of age-specific mortality rates in 40 European coun-
tries, there were identified the countries with the lowest death risk.

In the comparison of mortality risks at different ages were constructed math-
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ematical relationships risk of death by age in Russia and some European coun-
tries. To determine the standard distribution of deaths were classified 40 coun-
tries in Europe in terms of mortality from cardiovascular diseases and cancer
and identified the countries in which the lowest level of risk [1]. Comparing
the levels of risk in lead European countries and Russian Federation, it was de-
termined that the losses from premature mortality from cardiovascular diseases
and cancer in our country can be expressed by formulas (1) and (2) respectively:

Based on the results of simulation, we can conclude that the average loss in
the form of premature mortality is 10.34 years from cardiovascular diseases and
2.98 years from cancer. That means that today the problem of premature death
from cardiovascular diseases has more areas for development than mortality from
cancer due to the fact that the gap in the level of losses is greater.

Lcardio(xcardio) = 2, 39 ∗ lnxcardio + 3, 99 (1)

Lcancer(xcancer) = 20, 02 ∗ x0,19
cancer − 17, 321 ∗ x0,2047

cancer (2)

Lcardio, Lcancer - loss from premature mortality from cardiovascular diseases
and cancer respectively.

xcardio, xcancer - risk of death from cardiovascular diseases and cancer re-
spectively.

Based on the results of simulation, we can conclude that the average loss in
the form of premature mortality is 10.34 years from cardiovascular diseases and
2.98 years from cancer. That means that today the problem of premature death
from cardiovascular diseases has more areas for development than mortality from
cancer due to the fact that the gap in the level of losses is greater. The propose
approach to the determination of losses due to premature mortality can be
used to justify the investment attractiveness of projects aimed at fundamental
reforms in health care. The fundamental reforms include programs that will
reduce the mortality risk from a particular cause.

This work was supported by the grant provided by “Russian Foundation for
Humanities” (RFH), project number 15-02-00412a “Risk assessment and risk
management related to loss of life and health of the population in emergency
situations with radiation leakage”.
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On complexity of one variety of the packing problem
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We consider one of a variety of packing problem, in which the elements of the
rows and columns of a square matrix, given by natural numbers a certain way
unite (merges, packing) in blocks fixed size. A practical formulations of prob-
lems, in which used packing of elements of a matrix of demands (commodity),
subject to distribution in a network, are provided in [1, 2].

Given matrix A = ||aij ||n×n and number ω, which is define size of block
(container). Values aij , ω ∈ N, i, j = 1, n, N – the set of natural numbers
with zero. Let aii = 0, i = 1, n, and for aij 6= 0, may be performed aij < ω,
aij ≥ ω, i, j = 1, n. There are matrix X = ||xij ||n×n, which will be transformed,
initially X = A. The transformation of a matrix is that, of its elements (decision
variable) xik, xkj , xij 6= 0, k 6= i 6= j, may be iteratively performed the following
operations:

xik ← xik + xij , xkj ← xkj + xij , cij ← k, yk ← yk + xij , xij ← 0. (1)

In (1) are accepted the notation: k – column index, through which converts
(merger) the xij ; cij – elements of help matrix of the merge C = ||cij ||n×n; yk
– elements of vector of sum values of a merged elements Y = ||yk||, k = 1, n.

It is required a minimize function:

n∑

i=1

n∑

j=1

⌈xij/ω⌉, (2)

where ⌈·⌉ – ceiling function, ⌈·⌉ : x→ ⌈x⌉, ⌈x⌉ = min{n ∈ N |n ≥ x}. Since for
∀ i = 1, n the must be performed equality

∑n
j=1 xij−

∑n
j=1 aij = yi,

∑n
j=1 xji−∑n

j=1 aji = yi, write the balance conditions in the form

n∑

j=1

xij −
n∑

j=1

aij =
n∑

j=1

xji −
n∑

j=1

aji, i = 1, n. (3)

Constraints on the variables values xij and yi are defined as follows:

xij ≤ ⌈aij/ω⌉ω,∀i, j = 1, n, (4)

yi =

n∑

j=1

xij −
n∑

j=1

aij ≤ hi, i = 1, n. (5)
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In formulas accepted notation: xij = xij +
∑
rs∈Ωij

xrs, if xij has not merges

with the other elements, xij = 0 otherwise; Ωij – the set of index rs elements
xrs ∈ {x∗

ij}, which are have been merged with the element xij . The set Ωij may
be empty, and is determined from the help matrix C by using algorithms given
in [3]; hi ∈ N – defined bound; i, j = 1, n.

The problem (2)-(5) is NP-hard. The proof is based on a polynomial trans-
formation of the known [4] NP-complete minimum-cost integer multicommodity
flow problem (MC IMCF) to a problem (2)-(5).

Theorem. Problem MC IMCF polynomially transformed to the problem
(2)-(5).

The key idea the proof consist in the formulation of the problem (2)-(5) in
the form of MC IMCF and individual problem MC IMCF on a complete oriented
network, when the indexes of all commodity are replaced on the numbers of
nodes of origin s and destination t, and these coincide with numbers arcs in the
complete network (i.e. for each commodity st exist the arc ij and s = i, t =
j). In the individual problem MC IMCF also entered additional conditions on
decision variables and the arc capacity, which ensure correctness of operations
(1).
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Nondifferentiable optimization problems arise in many fields of applications
and especially when dealing with integer programs. One of the most successful
approach to solving integer programs is the so-called Lagrangian relaxation
method or Lagrangian heuristic [2]. The main issue when applying the method
is that in order to find a lower bound of the objective function one should solve
the nondifferentiable Lagrangian dual problem, which is to maximize a concave
piecewise-linear Lagrangian dual function. For that purpose one often uses
subgradient algorithms that are extremely efficient in the case when a special
heuristic step-rule is used.

In this abstract we propose a parallel heuristic subgradient algorithm for
maximizing the Lagrangian dual function derived from the well-known relax-
ation of the p-median problem. Recall that the p-median problem is one of the
basic problems in combinatorial optimization and location theory. It consists
in locating p facilities that can be placed at a set I = {1, . . . ,m} of potential
sites in order to satisfy the demand of a set J = {1, . . . , n} of clients such that
the sum of distances from each client to the nearest facility is minimal. Note
that the distance between client j ∈ J and potential site i ∈ I is denoted as
dij > 0. This combinatorial optimization problem can easily be formulated as
an integer program by introducing two sets of binary variables. For each i ∈ I
let yi takes the value 1 if the facility at site i is open, and 0 otherwise, and for
each pair i ∈ I , j ∈ J let xij is equal to 1 if client j is served by facility at i,
and 0 otherwise. Thus the p-median problem is

min
(x,y)

∑

i∈I

∑

j∈J
dijxij

∑

i∈I
xij = 1 j ∈ J,

xij ≤ yi i ∈ I, j ∈ J,
∑

i∈I
yi = p,

yi ∈ {0, 1} i ∈ I,
xij ∈ {0, 1} i ∈ I, j ∈ J.
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One of the most popular type of Lagrangian relaxation for this problem is
obtained by relaxing the first constraints. In order to get the best lower bound of
the objective value one has to maximize the following Lagrangian dual function

L(λ) =
∑

i∈T (λ)

ρi(λ) +
∑

i∈I
λi,

where ρi(λ) ,
∑

j∈J min{0, dij − λj} and T (λ) is a set of first p location sites
i ∈ I with minimum values of ρi(λ).

To maximize the function L(λ) we develop a parallel version of the subgra-
dient algorithm [1], that follows the Master-Slave parallel scheme and imple-
mented by means of the message passing interface and OpenMP. We present
some computational results for large-scale problem instances of the p-median
problem obtained by running the parallel algorithm on the computer cluster
”Akademik Matrosov” of the Irkutsk Supercomputing Center.

The authors were supported by the Russian Science Foundation (project
no.15-11-20015).
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In this article the logistic transport system for solving the problem of ho-
mogeneous goods delivery (PHPD, Problem homogeneous product delivery),
produced by the petrochemical company, to different customers, including the
following subproblems:

1. Inventory management.
2. Warehousing.
3. Creation of the rational routes for the delivery of the product, produced

by the petrochemical company, by the car vehicles to the different customers
subject to the following conditions: 3.1. There are one or several depots for
the vehicles. 3.2. Every route starts and ends at the depot. 3.3. A fleet of
vehicles is heterogeneous. 3.4. The time windows are considered. The service
of each customer must start within the associated time window. Moreover,
in case of early arrival at the location of customer, the vehicle generally is
allowed to wait until the service may start. 3.5. Delivery period of days is
considered, where days is the number of days, during which delivery of the
containers with reagent must be carried out. 3.6. The possibility that customers
return some commodities is contemplated. 3.7. The split delivery is considered:
each customer can be visited more than one vehicle. 3.8. The mass of containers
with product, loading in vehicle, doesnt exceed the capacity of the vehicle. 3.9.
The penalty of the route, which doesnt correspond to the rational packing of
containers with product in vehicles during the delivery of the containers with
product to the different customers on this route. 3.10. The demand of customers
in reagent must be satisfied.

4. Packing of the containers with finished products in vehicles.
The aim of solving the problem of inventory management is to choose an

effective strategy to minimize maintenance costs, execution of order, taking
into account the cost associated with pending deliveries. To this end, inventory
control system is proposed, including different models (deterministic, proba-
bilistic, simulation), which are used depending on the initial information. The
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population based ant colony optimization algorithm for solving the problem
of creation of the rational routes for the delivery of the containers with pro-
duced product by the car vehicles to the different customers subject to the
mentioned above constraints and evolutionary algorithm (1+1)-EA3D for solv-
ing the packing problem of the containers with produced product in the vehicles
with packing plan subject to the technological constraints are developed. Some
numerical experiments on random generated data, taking into account such re-
strictions as vehicle capacity, time windows, split delivery, delivery period, multi
depot and so on, and tested examples, taken from International OR-library tests
(http://people.brunel.ac.uk/ mastjjb/jeb/info.html), are resulted.

The results of the population based ant colony optimization algorithm were
compared with the results of the genetic algorithm [1] and of the tabu search
algorithm [1]. The proposed algorithm showed the best values of the objective
function on four test examples. The results of the evolutionary algorithms were
compared with the results obtained in [2, 3]. The proposed algorithms showed
the best results for two examples. The developed algorithms for solving PHPD
were combined into the logistic transport system as an optimization kernel of
the system.

The authors were supported by the Russian Foundation for Basic Research
(project no. 13-07-00579).
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We consider a model of a perfect competitive market for a homogeneous
good with a network structure without cycles. Local markets are connected by
transmitting lines with limited capacities and given cost functions for capacity
increments. Let a graph with a set of nodes N and a set of edges L ⊆ N ×
N correspond to the market. Each node i is characterized by demand and
supply functions Di(p), Si(p) related to consumption utility and production
cost functions:

Ui(q) =

q∫

0

D−1
i (v)dv, Si(p) = Argmax

v
(pv − ci(v))

Each edge (i, j) ∈ L is described by construction cost function Eij(qij) including
fixed cost cijf and convex variable cost cijv (|qij |). Under given transmission
capasities and production volumes, the total social welfare is determined as
follows:

W =
∑

i∈N


Ui


vi +

∑

l∈σ−1(i)

qli − qiσ(i)


− ci(vi)−Eiσ(i)(qiσ(i))


 ,

where σ(i) is the proceding node for node i in the network tree. We consider
the total welfare optimization problem and provide a method that determines
optimal investments for tree-type networks.

Proposition 1. Under any fixed flows of the good between the lockal markets
(qiσ(i), i ∈ N) the optimal production volume at node i is vi = S(p̃i), where p̃i
meets equation ∆Si(p̃i) = −

∑
l∈σ−1(i)

qli + qiσ(i).

In order to find optimal transmission capacities, we introduce the following
notations:

W i(pi) — maximal total welfare at node i and all subsequent nodes under
a given price at node i and optimal flows between the nodes;

∆Si(pi) = Si(pi)−Di(pi) — net supply-demand balance at node i;
∆SJ (pj) = ∆Sj(pj) +

∑
{i|i∈σ−1(j)} qij(pj) — the same value with account

of optimal flows of the good in the submarket corresponding to the node j.
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A method for determination of optimal transmission capacities is as follows.
Stage 1. Consider the setN1 of final nodes (such that σ−1(i) = ∅). For every

node i from this set the optimal welfare under price pi isW
i(pi) = Ui (Di(pi))−

ci(Si(pi)).
Stage k. Consider the set Nk of k-level nodes ( such that σ−1(i) ⊆ N1∪ . . .∪

Nk−1). Let pj be a fixed price at node j ∈ Nk. At the previous stages, for every
node i from the sets N1, . . . , Nk−1 we determined the optimal value W i(pi)
of the total welfare, functions ∆Si(pi) and the optimal flows qlσ(l)(pσ(l)) in the
submarket corresponding to the node depending on the price pi. For every node
i ∈ σ−1(j) let q∗ij(pj), p

∗
i (pj) denote the solution of the system

{
∆Sl(pi) = qij ,

pj − pi = E′
ij(qij).

Consider also the price p0i proceeding from equation ∆Sl(pi) = 0.
Proposition 2. For every i ∈ σ−1(j), the optimal price pi(pj) and the

optimal flow qij(pj) that maximize the total social welfare meet the following
system:

(pi, qij)(pj) =

{
(p∗i , q

∗
ij)(pj) if W

i (p∗i (pj)) + pjq
∗
ij − Eij

(
q∗ij(pj)

)
> W i(p0i ),

(p0i , 0) otherwise.

The proofs base on the Welfare Theorem for the competitive market (Arrow
and Debreu, 1956).

The research was supported by RFBR, project No. 14/01/91163 GFEN a.
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Consider the following linear control system [2]:

ẋ(t) = A(t)x(t) + b(u(t), t)
◦∀ t ∈ T = [t0, t1], x(t0) = x0, (1)

u(·) ∈ U = {u(·) ∈ Lr∞(T ) | u(t) ∈ U ◦∀ t ∈ T }, (2)

where A(·) is (n × n)-matrix function with continuous elements t 7→ aij(t),
i, j = 1, 2, . . . , n on T := [t0, t1], and U is a compact set. Assume also that
vector function (u, t) 7→ b(u, t) is continuous with respect to variables u ∈ IRr
and t ∈ T . Further, let us denote absolutely continuous solution x(·, u) of
system (1)–(2).

We study the following convex optimal control (OC) problem form the nu-
merical solution point of view:

(CP) : I(u) = ϕ1(x(t1, u)) +

∫

T

ϕ(x(t, u), t) dt ↓ min
u
, u(·) ∈ U , (3)

where functions x 7→ ϕ1(x) : IR
n → IR and (x, t) 7→ ϕ(x, t) are convex functions.

Note that problem (CP) is auxiliary problem for solving the following non-
convex optimal control problem (see [3,4]):

(P) : J(u) = F1(x(t1, u)) +

∫

T

F (x(t, u), t) dt ↓ min
u
, u(·) ∈ U , (4)

with d.c. functions x 7→ F1(x) : IR
n → IR and (x, t) 7→ F (x, t) (A.D. Alexan-

drov’s functions, see [3]), which can be represented as a difference of two convex
functions with respect to variable x (for all t ∈ T ):

F1(x) = g1(x)− h1(x), F (x, t) = g(x, t)− h(x, t) ∀x ∈ Ω ⊂ IRn, t ∈ T.

Here x 7→ g1(x), x 7→ h1(x), x 7→ g(x, t), and x 7→ h(x, t) are convex functions
with respect to variable x for all t ∈ T . Note that in auxiliary problem (CP )
functions x 7→ ϕ1(x) and (x, t) 7→ ϕ(x, t) are partially linearized as follows
(x ∈ IRn, t ∈ T ):

ϕ1(x) = g1(x)− 〈∇h1(y(t1)), x〉, ϕ(x, t) = g(x, t)− 〈∇h(y(t), t), x(t)〉,
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where y(t), t ∈ T is a given vector function. Because of nonconvexity of problem
(P), which is created by objective functional J(·), it might possess a number
processes, satisfying the Pontryagin maximum principle (PMP) [1], which are
rather far from a global solution.

On the basis of the global optimality conditions [3] we previously proposed
the method global search method for problem (P) [4,5], which combines a local
search search procedure and the procedure for improving process, satisfying
PMP [1]. In the same time, in these procedures it is necessary to solve some
convex (linearized) problems of the form (CP) on each iteration of the developed
global search method.

In order to improve efficiency and velocity numerical solving of auxiliary
convex problems, we propose the new method for solving problem (CP) that uses
the Pontryagin maximum principle and ideas of mathematical programming
method. Numerical experiment is performed on series of test problems with
quadratic objective functional.

The work is supported by the Russian Science Foundation (project no. 15-
11-20015).
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In the proposed paper, the interval arithmetic is used with nonstandard
subtraction and division, as well as centered form of intervals representation
[1,2].

In applied interval analysis the system of linear algebraic equations is called
solvable if it has a solution, and valid if it has a nonnegative solution [3].

For the interval linear systems, there are additional definitions: the term
”weak” is linked to the performance of the specified property for ”some” of the
system from a given set, and the term ”strong” is linked with the implementation
of the specified property for all systems from this family. The introduction of
strong and weak properties has its own reasons.

For example, we want to find out whether the some point system of algebraic
equations is solvable , but we do not know the exact data about the system (data
obtained from some measurements, subjects to rounding errors, etc.). Instead,
we know only that it satisfies the conditions. Then, our system is solvable
unless it is known that the system is strongly solvable. Conversely, the system
is unsolvable, unless it is known that the system is weakly solvable. In case of
feasibility is the same reasoning.

In this article, to facilitate computational difficulties in the handling of inter-
val values, the problem of parametric synthesis control of object with inaccurate
data in parameters is reduced to the solution of the algebraic system of inter-
val equations, therefore there is a need to study the solvability of the resulting
system.

The property of strong solvability of interval equations system is examined:

{P ·K |P ∈ P} ⊆ H.

Let us call a vector K ∈ Rn, a strong solution of the system if it satisfies
the point system P ·K = H, for any P ∈ P and H ∈ H.

The proof of this assertion is held by the scheme proposed in [4]. The
result shows that the system of interval linear equations, which reduced to the
problem of parametric synthesis of control is solvable (in this case, it has a
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strong solvability).
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Let P = {p1, ..., pm} be a set of m weighed points within an axis-paralel
rectangle R. Denote the weights of the points by {w1, ..., wm}, respectively. Let
Q1, ..., Qn be another axis-paralel rectangles which are smaller than R (both
in width and in height). The goal is to place Q1, ..., Qn within R without
intersections among themselves such that the maximal sum of the weights of
the points of P that are contained inQi, i = 1, . . . , n is minimal. One application
of this problem aries in the context of obnoxious facilities location [1].

In the report the problem with rectilinear metric and when n = 2 is con-
sidered. It is proved that for search of the optimum of the problem sufficient
to consider a discrete subset of admissible solutions. The algorithm for con-
structing the subset is developed. Results of computing experiment in compar-
ison of efficiency of the algorithm and the solving of the problem by means of
mixed-integer linear programming model and package IBM ILOG CPLEX are
represented.

The authors were supported by the Russian Foundation for Basic Research
(project no. 13-01-00862).
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Consider the generalized set packing problem (GSPP):

max{cx | Ax ≤ b, x ∈ {0, 1}n}.

Here A = ||aij || is a boolean m × n matrix; c = (c1, ..., cn); b = (b1, ..., bm);
x = (x1, ..., xn)

T is a vector of the boolean variables. All cj ≥ 1, bi ≥ 1 are
integer.

We investigate the class G(n, p,B) of the GSPP, where all the elements
of the matrix A are independent random variables, notably P{aij = 1} = p,
P{aij = 0} = 1 − p, where p ∈ (0, 1), and bi = B, i = 1, ..., m. Denote
by E|D(n, p,B)| the mathematical expectation of the cardinality of feasible
solutions set for the problems from the class G(n, p,B). For every integer k ≥ 1
and fixed n ≥ 2k + 1, p and B ≤ k we have obtained some condition on the
parameter m, at which E|D(n, p,B)| does not exceed value O(nk+1). Earlier
similar results were obtained for a class of the set packing problem (B = 1) [1].

Using the approach from [1] and the presented result the polynomial upper
bounds on the average number of iterations for some known integer linear pro-
gramming algorithms for solving of problems from class G(n, p,B) may be find.

The authors were supported by the Russian Foundation for Basic Research
(project no. 13-01-00862).
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A class of nonlinear functional-differential equations, including equations
with deviating argument of various types with time-lag and advance, as well as
combine both of these elements (see. e.g., [1, 2]) is considered.

The proposed technology for solving boundary value problems is based on
the Ritz method and spline collocation approaches. To solve the problem the
system trajectories are discretized on the grid with a constant step and it is
formulated the generalized residual functional, including both weighted residuals
of the original differential equation and residuals of boundary conditions. To
evaluate the derivatives of the system trajectories we use a technique of ”spline-
differentiation”, based on two methods of spline approximation: using cubic
splines and using a special type of splines, which second derivatives at the edges
are controlled by the optimized parameters.

To solve the finite-dimensional optimization problems, in general non-convex
and ravine, it is implemented a set of algorithms of local optimization (BFGS
quasi-Newton method, two versions of the Powell method, the Barzilai-Borwein
method, variant of trust regions method, stochastic search techniques in sub-
spaces of dimension 3, 4 and 5) and global optimization algorithms (randommul-
tistart, curvilinear search technique, the tunneling method, ”parabola” method
and others).

The proposed technology includes the algorithm of increase the accuracy of
approximations by increasing the number of points of the sampling grid (see.
e.g., [3]), the algorithms of the functional derivative estimation by finite differ-
ences schemes with accuracy degrees from one to six, methodology for improving
the accuracy of the spline-differentiation.

The report examines a small collection of test problems, created by the
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traditional techniques ([4]), and the results of computational experiments are
carried out for all the problems generated from the collection.

The authors were supported by the Russian Foundation for Basic Research
(project no. 15-37-20265).

References

1. L.A. Beklaryan. “The optimal control problem for systems with deviating
argument and its relationship with finitely generated group of homeomor-
phisms of R, generated by the deflection function,” DAN SSSR, Vol. 317, 16,
1289–1294 (1991).

2. A.L. Beklaryan. “On the existence of solutions of the first boundary value
problem for elliptic equations on unbounded domains,” International Journal
of Pure and Applied Mathematics, Vol. 88, 4, 499–522 (2013).

3. Gornov A.Y. Computing technologies for solving optimal control problems,
Nauka, Novosibirsk (2009).

4. Gornov A.Y., Zarodnyuk T.S., Madzhara T.I., Daneyeva A.V., Veyalko
I.A. “A collection of test multiextremal optimal control problems,” Optimiza-
tion, Simulation and Control, Springer Optimization and Its Applications, 76,
257–274 (2013).

190



On some variant of simplex-like algorithm for solving
linear semi-definite programming problem

Vitaly Zhadan1,2

1 Dorodnicyn Computing Centre of RAS, Moscow, Russia; zhadan@ccas.ru
2 Moscow Institute of Physics and Technology (State University), Moscow,

Russia

Consider the linear semi-definite programming problem

min C •X, Ai •X = bi, 1 ≤ i ≤ m, X � 0, (1)

where C, X and Ai, 1 ≤ i ≤ m, are symmetric matrices of order n, the inequality
X � 0 indicates that X must be a semi-definite matrix. The operator • denotes
the Frobenius inner product between two matrices.

Many methods have been proposed for solving (1), and overwhelming ma-
jority of them belongs to the class of interior point techniques. Nevertheless,
there are some simplex-like algorithms (see, for example, [1]). In this paper we
also consider some variant of simplex-like algorithm for solving (1). The algo-
rithm is based on some approach for solving the system of optimality conditions
for (1)

X • V = 0, Ai •X = bi, V = C −
m∑

i=1

uiAi,

where X � 0, V � 0, 1 ≤ i ≤ m. These conditions can be rewritten in vector
form, using direct sums of columns of all matrices.

Let FP be the feasible set in (1), and let E(FP) be the subset of extreme
points of FP . Starting from the extreme point X0, algorithm generates the
sequence of points {Xk} ⊂ E(FP), which converges to the solution of (1). Two
cases are considered separately. The first one is the case where the number
of equations m is a “triangle” number. The second one is the case where this
congruence is not fulfilled.

The author was supported by the Russian Foundation for Basic Research
(project no. 15-01-08259), and by the Leading Scientific Schools Grant no. 4640.2014.1
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In recent years problems of optimal control of thermal processes, in which the
substance under study undergoes phase transitions, have become increasingly
important. A key feature of these problems is that they involve a moving
interface between two phases (liquid and solid). The law of motion of the
interface is unknown in advance and is to be determined. It is on this interface
that heat release or absorption associated with phase transitions occurs. The
mathematical model of such problems is based on a nonstationary two-phase
initial-boundary value problem of the Stefan type.

Problems of this class are usually solved numerically using gradient methods
to minimize the cost functional. It is extremely important to use the exact
value of the gradient of the functional. One approach that can determine the
exact value of the gradient is the generalized Fast Automatic Differentiation
Technique.

This paper evaluates the effectiveness of the Fast Automatic Differentia-
tion Technique to compute the gradient of the cost function in optimal control
problems of thermal processes with phase transitions.

The evaluation is made on an example of optimal control of the melting
process. This problem is formulated as follows: it is required to melt a given
portion of a metal sample with minimal input of heat. This problem is analyzed
here in a one-dimentional (radially symmetric) time-dependent setting. The
heat source is located along the axis of symmetry. We analyze the case of a
distributed source. The time distribution of the heat input by the heat source
is chosen as the control.

In the paper we formulate and justify the statement that the time required
to calculate the components of the gradient of the cost function using the above
method doesnt exceed the time required to calculate two values of this function.

This work was supported by the Russian Science Foundation, project no.
14-11-00782.
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The problem of finding of the irredundant set of the integrity constraints is
considered. These restrictions allow regulating business rules on the enterprise
where used relational database. The theoretical basis of the restrictions are
based on inclusions dependencies that this work got a generalization that allows
to use undefined value [1]. For these dependencies presents a set of axioms, the
reliability and completeness of axioms are presented and proved.

The aim of this work is to study the properties of the reference integrity
constraints. The system of axioms was developed within creating new mathe-
matical formalism and using known algorithms of relationships on the database
schemes. This system allows using undefined values. The its soundness and
completeness was proved.

D e f i n i t i o n 1. The tuple ta[X] from relation Ra[X] corresponds
to tb[X] from relation Ra[X] via sequence of members X (ta[X] 4 tb[X]), if
tb[Aj ] 6= Null ⇒ ta[Aj ] = tb[Aj ] or ta[Aj ] = Null; if tb[Aj ] = Null ⇒ ta[Aj ] =
Null, where Aj – single attribute from set X.

D e f i n i t i o n 2. Inclusion dependency σ = Ra[X] ( Rb[X] from main
relation Rb[X] to dependent relation Ra[X] via attributes X is exists, if for each
tuple ta[X] from Ra[X] it is exists tuple tb[X] from relation Rb[X].

In general case the axiom system for inclusion dependencies with potential
undefined values is presented as follow:
1) IND1 (reflexivity): X ⊆ [R]⇒ R[X] ( R[X]
2) IND2 (projection): R[Y ] ( S[Y ], X ⊆ Y ⇒ R[X] ( S[X]
3) IND3 (transitivity): R[X] ( S[X] and S[X] ( T [X]⇒ R[X] ( T [X].

The completeness and soundness of the axioms system are proved.
The author was supported by the RFBR (project no. 15-41-04436).
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Let consider the non-linear programming problem of the following type:

min
x
ϕ(x) (1)

under conditions
g(x) ≤ b, (2)

X = {x ∈ Rn| g(1)(x) ≤ b(1), x ≥ 0}. (3)

Where ϕ(x) – a scalar function of the vector x; g(x) = (g1(x), ..., gm(x)),
g1(x) = (g11(x), ..., g

1
m1

(x)) and gi(x), g
1
i (x) – scalar functions of the vector x;

b = (b1, ..., bm) and b1 = (b11, ..., b
1
m) .

Let ω – a random variable, which determines the nature, it is member of
the probability space, ϕ(x) = (x, ω), gi(x) = gi(x, ω), i = 1, ..., m – random
functions, b = b(ω) – random vector, and restrictions (3) are determinate. Dis-
crepancy [g(ω, x)−b(ω)]+, which may arise in conditions (2) we will compensate
by the correction vector y = y(ω, x), it is calculated via following equations:

g(ω, x)− b(ω) ≤ B(ω)y, y ≥ 0, (4)

y(g(ω,x)− b(ω)) = yB(ω)y. (5)

Penalty for implementation of the compensation plan y we will give as follow
function ψ(ω, x, y). In this case we get the following formulation of non-linear
two-stage problem of stochastic programming:

min
x
Mω{ϕ(ω, x) + min

y
ψ(ω, x, y)} (6)

under the conditions (4), (5), (3).
If the inequalities (4) to understand coordinatewise as associated inequality,

than condition (5) ia an analog of the classical complementary slackness con-
ditions: in each pair of coupled inequalities there is at least one equality. This
approach can be interpreted as an extension of the classical concept of dual
problem to the problem of stochastic programming. For the problem of math-
ematical programming in a deterministic setting, these issues were discussed in
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the works [1,2]. In paper [3] as an example, a model of production planning is
constructed, in which the foreign market value of resources coincides with in-
ternal objectively determined resource estimates. In paper [4] penalty function
for the implementation of the plan compensation y is presented in the form

ψ(ω, x, y) = y(g(ω,x)− b(ω)).

The difficulties associated with analysis of two-stage problems in general
is determined by the need to choose the best of the preliminary plan of the
original problem x, which would guarantee the existence of residual compensa-
tion for all implementations of parameters of uncertainty ω. Construction of
complementarity (4), (5) for the second stage in a new production of non-linear
two-stage problem of stochastic programming problems (6), (4), (5), (3), which
is presented in paper, is ensures the solvability of the problem for the positive
semidefinite matrix B = B(ω), if positive definition of matrix B = B(ω) than
it is a unique solution y = y(ω, x) in all implementations of ω and x.

The authors were supported by the Russian Foundation for
Basic Research (project no. 15-41-04436).

References

1. A.V. Zykina. “Generalized duality for problems of mathematical program-
ming,” Omsk scientific Bulletin, 44, No. 8, 59–62 2006).

2. A.V. Zykina. “Return additionality: formulation, methods, applications, ”
Scientific Bulletin of NSTU, 23, No. 2, 91–104 (2006).

3. A.V. Zykina. “Two-objective stochastic programming for portfolio securities,”
Journal of Computational Mathematics and Mathematical Physics, 48, No.
11, 1968–1978 (2008).

4. A.V. Zykina, O.N. Kaneva. “The problem of additionality for modeling deci-
sion making under conditions of incomplete information, Applied mathemat-
ics and fundamental Informatics, No. 2, 176–181 (2015).

195

Models and Approaches for Planning the ISS
Cosmonaut Training

Sergey Bronnikov1, Alexander Lazarev2, Aleksey Petrov3, Denis

Yadrentsev4

1 Rocket and Space Corporation Energia after S.P. Korolev, Korolev, Russia;
sbronnik@mail.ru

2 V.A. Trapeznikov Institute of Control Science of Russian Academy of
Sciences, Lomonosov Moscow State University, Moscow Institute of Physics
and Technology, International Laboratory of Decision Choice and Analysis,
National Research University Higher School of Economics, Moscow, Russia;

jobmath@mail.ru
3 V.A. Trapeznikov Institute of Control Science of Russian Academy of

Sciences, International Laboratory of Decision Choice and Analysis, National
Research University Higher School of Economics, Moscow, Russia;

petrovalexeyserg@gmail.com
4 YU. A. Gagarin Research & Test Cosmonaut Training Center, Star City,

Russia;
D.Yadrentsev@gctc.ru

Among all the problems that arise in cosmonautics, particular attention is
dedicated to the planning problems. For scheduling the operations during the
flight and for the trainings before, it is necessary to maximize the efficiency.

As it is formulated in Cosmonaut Training Center [1] the subject of activ-
ity of the cosmonaut is onboard system or complex (e. g. systems of manned
spacecraft, scientific experiments, flight operations). In general, three crew qual-
ification levels for each onboard system are defined; a user level, an operator
level and a specialist level. For a given flight program, a set of minimum quali-
fications for each onboard system is given (e.g. one specialist, one operator and
one user).

Each crew member, while being a specialist for some systems, will be an
operator or only a user for other systems. Consequently, the training program
for each crew member is individually tailored to his or her set of tasks and
pre-defined qualification levels.

Whole planning of the ISS cosmonaut training can be logically divided into
two stages: the problem of volume planing and the calendar planing.

Volume planing.

The data for the volume planing problem is a set of onboard complexes and
the required number of cosmonauts of different qualifications of each onboard
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complex. The objective is to distribute the training in qualifications of onboard
complexes between cosmonauts so that the total time of training was minimal.
It can be formulated in different ways [2]:

(max
k

τk −min
k
τk)→ min, k ∈ K, (1)

max
k

τk → min, k ∈ K, (2)

min
k
τk → max, k ∈ K. (3)

where K – set of cosmonauts, τk – total time of training of cosmonaut k.

For this problem, two algorithms are presented. The first one is a heuristic
which iteratively by onboard systems choose such qualification to train that
provide optimal objective value. The second one consists of a heuristic and
exact parts, and is based on the n-partition problem approach.

Calendar planning.

The next important step of the planing is a calendar scheduling. Once solved
the volume problem for each cosmonaut defined set of tasks which they should
do. The objective of calendar planing is not defined but now we use the next:
minimizing time of preparation of the first crew to start. Planing should com-
ply with resource constraints and deadlines of the preparation of other crews.
The problem is formulated as resource constrained project scheduling problem
(RCPSP) and integer programming problem.

The authors were supported by the Faculty of Economic Sciences HSE.
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A railway connection of two stations by a single railway track is usually found
on branch lines of railway network and is very common in various manufacturing
supply chains. One of the earliest research of single track scheduling problem is
the publication of Szpigel [5]. Since this work scheduling problems, where trains
are using a single railway track, remained the subject of intensive research. In
2011 Lusby et al. [2] published an article with a survey of publications on
railway scheduling methods and models with a section on single track scheduling
problems. A literature review on the single track railway scheduling problem can
be found in the Ph.D. thesis of Oliveira [3] which is concerned with application
of constraint programming method. Sotskov and Gholami [4] considered single
track scheduling problem with several stations and proposed heuristic algorithm.
The reduction of the two-station single track railway scheduling problem to the
single machine scheduling problem with setup-times can be found in recent work
of Gafarov et al. [1].

Our paper is concerned with a scheduling problem for two stations with a
single railway track with one siding. On single-track railway sidings or passing
loops are used to increase the capacity of the line. The problem involves two
stations which will be referred to as station A and station B. All trains are
split into two sets. The trains, constituting set N1, need to travel from station
A to station B. The trains, constituting set N2, need to travel from station B
to station A. All trains are available at the beginning of the planning horizon
and have an equal constant speed. The single track, connecting station A and
station B, has a siding – a short track at the side of the main railway line that
allows two trains to pass each other when they are moving in opposite directions.
Since the length of the siding is relatively small, it is assumed that trains pass
the siding instantly.

In the schedule it is necessary to specify for each train its departure time.
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If a train uses the siding, then its stay time in the siding is also part of the
schedule. The objective is to find a schedule that minimises the time needed to
complete all transportations. This objective function will be denoted Cmax and
will be referred to as the makespan.

In our paper we developed exact optimization algorithm by analysing the
structure of optimal schedule for the proposed model. The algorithm produces
a schedule that completes all transportations between two stations at minimal
time. We present algorithm to construct an optimal schedule in O(1) opera-
tions. Optimal schedule analyse allows the development of exact optimization
algorithms with other models and objective functions, i.e. results can be gen-
eralized and used in future work for a number of regular objective functions,
commonly used in scheduling.

This report is supported by the Russian Foundation for Basic Research
(projects 13-01-12108, 13-08-13190, 15-07-07489).
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COPERNICUS GOLD is a blockchain-based global transaction settle-
ment and accounting system.

Cutting-edge Blockchain technology (BT) combines a transaction recording,
digital signing and validating. This innovation allows for transfers without me-
diators to validate their execution. Open keys exchange for digital signing and
their third party verification are no longer needed. Besides recording transac-
tions Blockchain guarantees data integrity and reliability. Now the global finan-
cial system is a hierarchy of financial institutions, each performing separate tasks
at different process levels. As telecoms emerged, a SWIFT system appeared to
set standards of settlement and security transaction execution and validation.
The current global monetary system consists of Issuers – the US FRS
and other countries’ Central Banks issuing unbacked (fiat) national currencies,
SWIFT - international money transfer via banks correspondent accounts and
Commercial banks – payment effecting and accounting. Organized security

circulation is supported by Depositories and registrars - accounting of se-
curities, SWIFT and its analogues (Reuters Dealing, TARGET) – security and
currency trading, Exchanges - security/currency transaction recording in ac-
cordance within relevant regulations Brokers - retail clients’ access to stock
exchanges. The global financial system hardware support advanced but func-
tions and concepts stayed nearly the same. It is archaic and lags behind IT
development.

Banking system hierarchy makes international payments go through corre-
spondent accounts instead of direct customer-to-customer transfer. It results in
payment delay and shifts banking on retail clients turning a single major bank
bankruptcy a threat to all the system. The total cost of interbank set-

tlements for end users is quite high and includes: settlement fees, price
of financial (exchange difference) and systematic risks (financial crises), cost of
related services (payment cards; e-money with reference to national currencies,
etc.), cost of bureaucratic overregulation.

Copernicus Gold as a new stage in digital currency development.

Interbank settlements’ ineffectiveness forced searching for alternative solu-
tions, such as that of electronic not supervised by Central Banks: Among them
were Digital gold – isolated payment system with currency linked to gold and
backing guaranteed by issuer, Digital money - issuer guarantees its buying out,
and Unbacked digital money - local exchange system of cryptocurrencies and
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currencies. Digital gold failed to establish effective integration with financial
institutions and prompt virtual currency transactions. Disintegration leads to
high customer expenses in funds input and output, poor personal data protec-
tion and non-observance of international standards for anti-money laundering
and terrorism financing. Linking digital money to fiat currencies leads to en-
countering all pros and cons of the conventional banking system.

The aim to with the use of Blockchain aim to avoid bank risks led to emerg-
ing unbacked digital money/ cryptocurrencies (Bitcoin and its clones) emerging,
those with secured cryptography, decentralized transaction and issue accounting
mechanism, thus solving a number of fiat and digital currency-related issues.
They are : integrated algorithms control cryptocurrency issuing makeing it
bank-independent crises resistant, distributed ledger of transactions ensures re-
liability security and system collapse resistance, low cost, high speed and direct
transfer from user to user.

As cryptocurrencies are unable to replace current global system of interbank
settlements, there is an urgent need in creating a real and universal alternative
capable of incorporating blockchain into the traditional financial system and
national legal systems.

Copernicus Gold, a system using blockchain as a core in its unique soft-
ware is aimed at solving this problem. It combines technological advantages
of cryptocurrencies; conceptual benefits of digital gold;multiple currency support
with currency exchange inside the system; modern, reliable security technologies;

Moreover, these functions are followed up by an option to make

transactions with securities. Copernicus Gold is based on its own

blockchain modification and is free from functionality limitations im-

posed by Bitcoin. It includes payment and security transaction system, each
working on its own blockchain.

Copernicus Gold key features are:

• Blockchain combines settlement of transactions with verification thus re-
ducing the fees and raising the speed dramatically

• Security provided by blockchain is combined with a high level of financial
information protection - “cold storages”

Copernicus Gold allows transactions in both fiat currencies and in

the currency of the payment system that is 100% backed by gold.
This way Copernicus Gold incorporated all the advantages of digital gold.

Would there be enough gold for a global payment system?

Genoa and Bretton Woods currency system failures (when the issue of mon-
etary funds exceeded their gold backing.) are given as arguments against gold-
backed currency stability. From these it follows that global gold shortage pre-
vents a global backed currency usage for international finances. It’s not correct.
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The systems collapsed because of drastically growing obligations and incon-
gruity between gold backing and the issue volume.

In Copernicus Gold system, no gold deficit may emerge in principle.
Firstly, 100% gold backing of Copernicus Gold currency will be acknowledged
and confirmed by an independent and regular international audit. Secondly,
Copernicus Gold currency is not created by means of credit, and does not
therefore require a constant influx of liquidity.

In Copernicus Gold system gold backing will be increasing due to this
demand. Global gold market liquidity timely facilitates gold backing growth.
Moreover, if the demand for savings in backed currency grows, it will also lead
to the growth of gold price, which means less gold will ensuring larger amount
of savings. Fast Copernicus Gold system payment facilitates monetary funds
turnover.

In sum, backed currencies are viable and can develop without encountering
an issue of a gold backing deficit.

What was believed to be impossible, has become possible!

Friedrich Hayek, a Nobel Prize Winner in economics criticized the govern-
ment monopoly over the money issue saying any private company has a right
to issue money. The world shaken by crisis gradually recognizes the urgency of
these idea.

Bernard Lietard said that the current monetary ecosystem fails to cope with
today’s challenges. Financial markets forcing to decrease the bank-bloated gov-
ernment debts conflicts with money generation mechanism. It requires credits
and endless debt growth. A sole currency monopoly created by the debt fails to
make optimal decisions. Creating possibilities for new exchange funds we can
avoid economic obstacles.

An idea of private money is already being implemented. Bitcoin and other
cryptocurrencies are the start of a new era in economics. Their disadvantages
can be mitigated with Copernicus Gold gold backing.

It is believed that the gold as a currency backing way has died out due
to the Copernicus - Gresham’s law: ”bad money drives out good”.
This situation is impossible in Copernics system. The quantity of gold backing
isn’t fixed but changes in strict compliance with customer demands for buying
and selling the currency. Thus buying out backed currency by fiat currency is
impossible in principle.

Thus Copernicus Gold payment system has the potential to revive the
gold standard in international settlements.
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