
ScienceDirect
IFAC-PapersOnLine 48-3 (2015) 806–809

Available online at www.sciencedirect.com

2405-8963 © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2015.06.182

Alexander A. Lazarev et al. / IFAC-PapersOnLine 48-3 (2015) 806–809

© 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Minimization of maximum lateness with
equal processing times for single machine �

Alexander A. Lazarev ∗ Dmitry I. Arkhipov ∗∗

∗ Institute of Control Sciences of RAS, Moscow, Russian Federation;
Lomonosov Moscow State University, Moscow, Russian Federation;
Moscow Institute of Physics and Technology, Dolgoprudny, Russian

Federation;
National Research University Higher School of Economics,Moscow,

Russian Federation(e-mail: jobmath@mail.ru.
∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:

miptrafter@gmail.com).

Abstract: The following case of the classical NP-hard scheduling problem is considered. There
is a set of jobs N with identical processing times p = const. All jobs have to be processed
on a single machine. The objective function is minimization of maximum lateness. We analyze
algorithms for the makespan problem, presented by Garey et al. (1981) and Simons (1978) and
represent two polynomial algorithms to solve the problem and to construct the Pareto set with
respect to criteria Lmax and Cmax. The complexity of presented algorithms equals O(Q ·n log n)
and O(n2 log n), where 10−Q is the accuracy of the input-output parameters.

Keywords: scheduling, unit-time jobs, polynomial algorithms, dynamic programming

1. INTRODUCTION

1.1 Formulation of the main problem

The following problem of scheduling theory is considered.
There is a set of jobs N and a single machine to process
jobs from this set. For each job j ∈ N , a release date rj
and a due date dj are given. The processing time p is the
same for all jobs of the set N . We define a schedule π
as an execution sequence K1(π),K2(π), . . . ,Kn(π), where
K1(π)∪K2(π)∪ . . .∪Kn(π) ≡ N . The equality Ki(π) = j
means that job j ∈ N is processed under the ordinal
number i under the schedule π. The execution of the job
Ki(π) = j starts at time Ri(π) = max(Ci−1(π), rKi(π))
and finishes at time Ri(π)+p = Cj(π), where Cj(π) is the
completion time of the job j ∈ N . Let us denote lateness
as Lj(π) = Cj(π) − dj . The maximum completion time
and maximum lateness are denoted as Cmax and Lmax

respectively. Let us call the schedule π allowable for the
set N if all jobs under the schedule π executed without
preemptions and intersections. We denote the set of all
allowable schedules as Π. The goal is to find allowable
schedule π ∈ Π, which satisfies the following optimization
criteria:

min
π∈Π

max
j∈N

Lj(π).

This problem 1|rj , pj = p|Lmax is a special case of
classical NP-hard scheduling problem 1|rj |Lmax. Now, let
us consider some approaches to obtain the solution in
polynomial time.

� Supported by RFBR-RZD grant 13-08-13190

2. DICHOTOMY METHOD

A simple way to obtain the solution is the dichotomy
(trisection search) method. In the first step, we find
boundary values on the objective function Lmax. Each job
j ∈ N holds:

dj + Lj = Cj ≥ rj + p.

Hence, a lower bound LB0 on the optimal value Lmax is
as follows:

LB0 = min
j∈N

{rj − dj}+ p

An upper bound UB0 can be estimated as:

UB0 = Lmax(πC),

where πC is an optimal schedule for the problem 1|rj , p =
const|Cmax. The fastest algorithm for solving this problem
was presented by Garey et al. (1981). Let us use this
algorithm to construct πC in O(n log n) operations.

After finding the bounds LB and UB we use dichotomy
method to find a solution of the problem as follows. In the
first step we divide the interval [LB0, UB0] on three parts.
Then, we set deadlines for all j ∈ N :

d1j = dj +
2

3
LB0 +

1

3
UB0,

d2j = dj +
1

3
LB0 +

2

3
UB0.

Then we use algorithm presented by Garey et al. (1981) to
construct the optimal schedules π1

C and π2
C for the prob-

lems 1|rj , d1j , p = const|Cmax and 1|rj , d2j , p = const|Cmax

respectively. If the schedule π1
C exists, set:{

LB1 := LB0

UB1 :=
2LB0 + 1UB0

3

Proceedigs of the 15th IFAC Symposium on
Information Control Problems in Manufacturing
May 11-13, 2015. Ottawa, Canada

Copyright © 2015 IFAC 839

Minimization of maximum lateness with
equal processing times for single machine �

Alexander A. Lazarev ∗ Dmitry I. Arkhipov ∗∗

∗ Institute of Control Sciences of RAS, Moscow, Russian Federation;
Lomonosov Moscow State University, Moscow, Russian Federation;
Moscow Institute of Physics and Technology, Dolgoprudny, Russian

Federation;
National Research University Higher School of Economics,Moscow,

Russian Federation(e-mail: jobmath@mail.ru.
∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:

miptrafter@gmail.com).

Abstract: The following case of the classical NP-hard scheduling problem is considered. There
is a set of jobs N with identical processing times p = const. All jobs have to be processed
on a single machine. The objective function is minimization of maximum lateness. We analyze
algorithms for the makespan problem, presented by Garey et al. (1981) and Simons (1978) and
represent two polynomial algorithms to solve the problem and to construct the Pareto set with
respect to criteria Lmax and Cmax. The complexity of presented algorithms equals O(Q ·n log n)
and O(n2 log n), where 10−Q is the accuracy of the input-output parameters.

Keywords: scheduling, unit-time jobs, polynomial algorithms, dynamic programming

1. INTRODUCTION

1.1 Formulation of the main problem

The following problem of scheduling theory is considered.
There is a set of jobs N and a single machine to process
jobs from this set. For each job j ∈ N , a release date rj
and a due date dj are given. The processing time p is the
same for all jobs of the set N . We define a schedule π
as an execution sequence K1(π),K2(π), . . . ,Kn(π), where
K1(π)∪K2(π)∪ . . .∪Kn(π) ≡ N . The equality Ki(π) = j
means that job j ∈ N is processed under the ordinal
number i under the schedule π. The execution of the job
Ki(π) = j starts at time Ri(π) = max(Ci−1(π), rKi(π))
and finishes at time Ri(π)+p = Cj(π), where Cj(π) is the
completion time of the job j ∈ N . Let us denote lateness
as Lj(π) = Cj(π) − dj . The maximum completion time
and maximum lateness are denoted as Cmax and Lmax

respectively. Let us call the schedule π allowable for the
set N if all jobs under the schedule π executed without
preemptions and intersections. We denote the set of all
allowable schedules as Π. The goal is to find allowable
schedule π ∈ Π, which satisfies the following optimization
criteria:

min
π∈Π

max
j∈N

Lj(π).

This problem 1|rj , pj = p|Lmax is a special case of
classical NP-hard scheduling problem 1|rj |Lmax. Now, let
us consider some approaches to obtain the solution in
polynomial time.

� Supported by RFBR-RZD grant 13-08-13190

2. DICHOTOMY METHOD

A simple way to obtain the solution is the dichotomy
(trisection search) method. In the first step, we find
boundary values on the objective function Lmax. Each job
j ∈ N holds:

dj + Lj = Cj ≥ rj + p.

Hence, a lower bound LB0 on the optimal value Lmax is
as follows:

LB0 = min
j∈N

{rj − dj}+ p

An upper bound UB0 can be estimated as:

UB0 = Lmax(πC),

where πC is an optimal schedule for the problem 1|rj , p =
const|Cmax. The fastest algorithm for solving this problem
was presented by Garey et al. (1981). Let us use this
algorithm to construct πC in O(n log n) operations.

After finding the bounds LB and UB we use dichotomy
method to find a solution of the problem as follows. In the
first step we divide the interval [LB0, UB0] on three parts.
Then, we set deadlines for all j ∈ N :

d1j = dj +
2

3
LB0 +

1

3
UB0,

d2j = dj +
1

3
LB0 +

2

3
UB0.

Then we use algorithm presented by Garey et al. (1981) to
construct the optimal schedules π1

C and π2
C for the prob-

lems 1|rj , d1j , p = const|Cmax and 1|rj , d2j , p = const|Cmax

respectively. If the schedule π1
C exists, set:{

LB1 := LB0

UB1 :=
2LB0 + 1UB0

3

Proceedigs of the 15th IFAC Symposium on
Information Control Problems in Manufacturing
May 11-13, 2015. Ottawa, Canada

Copyright © 2015 IFAC 839

Minimization of maximum lateness with
equal processing times for single machine �

Alexander A. Lazarev ∗ Dmitry I. Arkhipov ∗∗

∗ Institute of Control Sciences of RAS, Moscow, Russian Federation;
Lomonosov Moscow State University, Moscow, Russian Federation;
Moscow Institute of Physics and Technology, Dolgoprudny, Russian

Federation;
National Research University Higher School of Economics,Moscow,

Russian Federation(e-mail: jobmath@mail.ru.
∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:

miptrafter@gmail.com).

Abstract: The following case of the classical NP-hard scheduling problem is considered. There
is a set of jobs N with identical processing times p = const. All jobs have to be processed
on a single machine. The objective function is minimization of maximum lateness. We analyze
algorithms for the makespan problem, presented by Garey et al. (1981) and Simons (1978) and
represent two polynomial algorithms to solve the problem and to construct the Pareto set with
respect to criteria Lmax and Cmax. The complexity of presented algorithms equals O(Q ·n log n)
and O(n2 log n), where 10−Q is the accuracy of the input-output parameters.

Keywords: scheduling, unit-time jobs, polynomial algorithms, dynamic programming

1. INTRODUCTION

1.1 Formulation of the main problem

The following problem of scheduling theory is considered.
There is a set of jobs N and a single machine to process
jobs from this set. For each job j ∈ N , a release date rj
and a due date dj are given. The processing time p is the
same for all jobs of the set N . We define a schedule π
as an execution sequence K1(π),K2(π), . . . ,Kn(π), where
K1(π)∪K2(π)∪ . . .∪Kn(π) ≡ N . The equality Ki(π) = j
means that job j ∈ N is processed under the ordinal
number i under the schedule π. The execution of the job
Ki(π) = j starts at time Ri(π) = max(Ci−1(π), rKi(π))
and finishes at time Ri(π)+p = Cj(π), where Cj(π) is the
completion time of the job j ∈ N . Let us denote lateness
as Lj(π) = Cj(π) − dj . The maximum completion time
and maximum lateness are denoted as Cmax and Lmax

respectively. Let us call the schedule π allowable for the
set N if all jobs under the schedule π executed without
preemptions and intersections. We denote the set of all
allowable schedules as Π. The goal is to find allowable
schedule π ∈ Π, which satisfies the following optimization
criteria:

min
π∈Π

max
j∈N

Lj(π).

This problem 1|rj , pj = p|Lmax is a special case of
classical NP-hard scheduling problem 1|rj |Lmax. Now, let
us consider some approaches to obtain the solution in
polynomial time.

� Supported by RFBR-RZD grant 13-08-13190

2. DICHOTOMY METHOD

A simple way to obtain the solution is the dichotomy
(trisection search) method. In the first step, we find
boundary values on the objective function Lmax. Each job
j ∈ N holds:

dj + Lj = Cj ≥ rj + p.

Hence, a lower bound LB0 on the optimal value Lmax is
as follows:

LB0 = min
j∈N

{rj − dj}+ p

An upper bound UB0 can be estimated as:

UB0 = Lmax(πC),

where πC is an optimal schedule for the problem 1|rj , p =
const|Cmax. The fastest algorithm for solving this problem
was presented by Garey et al. (1981). Let us use this
algorithm to construct πC in O(n log n) operations.

After finding the bounds LB and UB we use dichotomy
method to find a solution of the problem as follows. In the
first step we divide the interval [LB0, UB0] on three parts.
Then, we set deadlines for all j ∈ N :

d1j = dj +
2

3
LB0 +

1

3
UB0,

d2j = dj +
1

3
LB0 +

2

3
UB0.

Then we use algorithm presented by Garey et al. (1981) to
construct the optimal schedules π1

C and π2
C for the prob-

lems 1|rj , d1j , p = const|Cmax and 1|rj , d2j , p = const|Cmax

respectively. If the schedule π1
C exists, set:{

LB1 := LB0

UB1 :=
2LB0 + 1UB0

3

Proceedigs of the 15th IFAC Symposium on
Information Control Problems in Manufacturing
May 11-13, 2015. Ottawa, Canada

Copyright © 2015 IFAC 839

Minimization of maximum lateness with
equal processing times for single machine �

Alexander A. Lazarev ∗ Dmitry I. Arkhipov ∗∗

∗ Institute of Control Sciences of RAS, Moscow, Russian Federation;
Lomonosov Moscow State University, Moscow, Russian Federation;
Moscow Institute of Physics and Technology, Dolgoprudny, Russian

Federation;
National Research University Higher School of Economics,Moscow,

Russian Federation(e-mail: jobmath@mail.ru.
∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:

miptrafter@gmail.com).

Abstract: The following case of the classical NP-hard scheduling problem is considered. There
is a set of jobs N with identical processing times p = const. All jobs have to be processed
on a single machine. The objective function is minimization of maximum lateness. We analyze
algorithms for the makespan problem, presented by Garey et al. (1981) and Simons (1978) and
represent two polynomial algorithms to solve the problem and to construct the Pareto set with
respect to criteria Lmax and Cmax. The complexity of presented algorithms equals O(Q ·n log n)
and O(n2 log n), where 10−Q is the accuracy of the input-output parameters.

Keywords: scheduling, unit-time jobs, polynomial algorithms, dynamic programming

1. INTRODUCTION

1.1 Formulation of the main problem

The following problem of scheduling theory is considered.
There is a set of jobs N and a single machine to process
jobs from this set. For each job j ∈ N , a release date rj
and a due date dj are given. The processing time p is the
same for all jobs of the set N . We define a schedule π
as an execution sequence K1(π),K2(π), . . . ,Kn(π), where
K1(π)∪K2(π)∪ . . .∪Kn(π) ≡ N . The equality Ki(π) = j
means that job j ∈ N is processed under the ordinal
number i under the schedule π. The execution of the job
Ki(π) = j starts at time Ri(π) = max(Ci−1(π), rKi(π))
and finishes at time Ri(π)+p = Cj(π), where Cj(π) is the
completion time of the job j ∈ N . Let us denote lateness
as Lj(π) = Cj(π) − dj . The maximum completion time
and maximum lateness are denoted as Cmax and Lmax

respectively. Let us call the schedule π allowable for the
set N if all jobs under the schedule π executed without
preemptions and intersections. We denote the set of all
allowable schedules as Π. The goal is to find allowable
schedule π ∈ Π, which satisfies the following optimization
criteria:

min
π∈Π

max
j∈N

Lj(π).

This problem 1|rj , pj = p|Lmax is a special case of
classical NP-hard scheduling problem 1|rj |Lmax. Now, let
us consider some approaches to obtain the solution in
polynomial time.

� Supported by RFBR-RZD grant 13-08-13190

2. DICHOTOMY METHOD

A simple way to obtain the solution is the dichotomy
(trisection search) method. In the first step, we find
boundary values on the objective function Lmax. Each job
j ∈ N holds:

dj + Lj = Cj ≥ rj + p.

Hence, a lower bound LB0 on the optimal value Lmax is
as follows:

LB0 = min
j∈N

{rj − dj}+ p

An upper bound UB0 can be estimated as:

UB0 = Lmax(πC),

where πC is an optimal schedule for the problem 1|rj , p =
const|Cmax. The fastest algorithm for solving this problem
was presented by Garey et al. (1981). Let us use this
algorithm to construct πC in O(n log n) operations.

After finding the bounds LB and UB we use dichotomy
method to find a solution of the problem as follows. In the
first step we divide the interval [LB0, UB0] on three parts.
Then, we set deadlines for all j ∈ N :

d1j = dj +
2

3
LB0 +

1

3
UB0,

d2j = dj +
1

3
LB0 +

2

3
UB0.

Then we use algorithm presented by Garey et al. (1981) to
construct the optimal schedules π1

C and π2
C for the prob-

lems 1|rj , d1j , p = const|Cmax and 1|rj , d2j , p = const|Cmax

respectively. If the schedule π1
C exists, set:{

LB1 := LB0

UB1 :=
2LB0 + 1UB0

3

Proceedigs of the 15th IFAC Symposium on
Information Control Problems in Manufacturing
May 11-13, 2015. Ottawa, Canada

Copyright © 2015 IFAC 839

 Alexander A. Lazarev et al. / IFAC-PapersOnLine 48-3 (2015) 806–809 807

Minimization of maximum lateness with
equal processing times for single machine �

Alexander A. Lazarev ∗ Dmitry I. Arkhipov ∗∗

∗ Institute of Control Sciences of RAS, Moscow, Russian Federation;
Lomonosov Moscow State University, Moscow, Russian Federation;
Moscow Institute of Physics and Technology, Dolgoprudny, Russian

Federation;
National Research University Higher School of Economics,Moscow,

Russian Federation(e-mail: jobmath@mail.ru.
∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:

miptrafter@gmail.com).

Abstract: The following case of the classical NP-hard scheduling problem is considered. There
is a set of jobs N with identical processing times p = const. All jobs have to be processed
on a single machine. The objective function is minimization of maximum lateness. We analyze
algorithms for the makespan problem, presented by Garey et al. (1981) and Simons (1978) and
represent two polynomial algorithms to solve the problem and to construct the Pareto set with
respect to criteria Lmax and Cmax. The complexity of presented algorithms equals O(Q ·n log n)
and O(n2 log n), where 10−Q is the accuracy of the input-output parameters.

Keywords: scheduling, unit-time jobs, polynomial algorithms, dynamic programming

1. INTRODUCTION

1.1 Formulation of the main problem

The following problem of scheduling theory is considered.
There is a set of jobs N and a single machine to process
jobs from this set. For each job j ∈ N , a release date rj
and a due date dj are given. The processing time p is the
same for all jobs of the set N . We define a schedule π
as an execution sequence K1(π),K2(π), . . . ,Kn(π), where
K1(π)∪K2(π)∪ . . .∪Kn(π) ≡ N . The equality Ki(π) = j
means that job j ∈ N is processed under the ordinal
number i under the schedule π. The execution of the job
Ki(π) = j starts at time Ri(π) = max(Ci−1(π), rKi(π))
and finishes at time Ri(π)+p = Cj(π), where Cj(π) is the
completion time of the job j ∈ N . Let us denote lateness
as Lj(π) = Cj(π) − dj . The maximum completion time
and maximum lateness are denoted as Cmax and Lmax

respectively. Let us call the schedule π allowable for the
set N if all jobs under the schedule π executed without
preemptions and intersections. We denote the set of all
allowable schedules as Π. The goal is to find allowable
schedule π ∈ Π, which satisfies the following optimization
criteria:

min
π∈Π

max
j∈N

Lj(π).

This problem 1|rj , pj = p|Lmax is a special case of
classical NP-hard scheduling problem 1|rj |Lmax. Now, let
us consider some approaches to obtain the solution in
polynomial time.

� Supported by RFBR-RZD grant 13-08-13190

2. DICHOTOMY METHOD

A simple way to obtain the solution is the dichotomy
(trisection search) method. In the first step, we find
boundary values on the objective function Lmax. Each job
j ∈ N holds:

dj + Lj = Cj ≥ rj + p.

Hence, a lower bound LB0 on the optimal value Lmax is
as follows:

LB0 = min
j∈N

{rj − dj}+ p

An upper bound UB0 can be estimated as:

UB0 = Lmax(πC),

where πC is an optimal schedule for the problem 1|rj , p =
const|Cmax. The fastest algorithm for solving this problem
was presented by Garey et al. (1981). Let us use this
algorithm to construct πC in O(n log n) operations.

After finding the bounds LB and UB we use dichotomy
method to find a solution of the problem as follows. In the
first step we divide the interval [LB0, UB0] on three parts.
Then, we set deadlines for all j ∈ N :

d1j = dj +
2

3
LB0 +

1

3
UB0,

d2j = dj +
1

3
LB0 +

2

3
UB0.

Then we use algorithm presented by Garey et al. (1981) to
construct the optimal schedules π1

C and π2
C for the prob-

lems 1|rj , d1j , p = const|Cmax and 1|rj , d2j , p = const|Cmax

respectively. If the schedule π1
C exists, set:{

LB1 := LB0

UB1 :=
2LB0 + 1UB0

3

Proceedigs of the 15th IFAC Symposium on
Information Control Problems in Manufacturing
May 11-13, 2015. Ottawa, Canada

Copyright © 2015 IFAC 839

Minimization of maximum lateness with
equal processing times for single machine �

Alexander A. Lazarev ∗ Dmitry I. Arkhipov ∗∗

∗ Institute of Control Sciences of RAS, Moscow, Russian Federation;
Lomonosov Moscow State University, Moscow, Russian Federation;
Moscow Institute of Physics and Technology, Dolgoprudny, Russian

Federation;
National Research University Higher School of Economics,Moscow,

Russian Federation(e-mail: jobmath@mail.ru.
∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:

miptrafter@gmail.com).

Abstract: The following case of the classical NP-hard scheduling problem is considered. There
is a set of jobs N with identical processing times p = const. All jobs have to be processed
on a single machine. The objective function is minimization of maximum lateness. We analyze
algorithms for the makespan problem, presented by Garey et al. (1981) and Simons (1978) and
represent two polynomial algorithms to solve the problem and to construct the Pareto set with
respect to criteria Lmax and Cmax. The complexity of presented algorithms equals O(Q ·n log n)
and O(n2 log n), where 10−Q is the accuracy of the input-output parameters.

Keywords: scheduling, unit-time jobs, polynomial algorithms, dynamic programming

1. INTRODUCTION

1.1 Formulation of the main problem

The following problem of scheduling theory is considered.
There is a set of jobs N and a single machine to process
jobs from this set. For each job j ∈ N , a release date rj
and a due date dj are given. The processing time p is the
same for all jobs of the set N . We define a schedule π
as an execution sequence K1(π),K2(π), . . . ,Kn(π), where
K1(π)∪K2(π)∪ . . .∪Kn(π) ≡ N . The equality Ki(π) = j
means that job j ∈ N is processed under the ordinal
number i under the schedule π. The execution of the job
Ki(π) = j starts at time Ri(π) = max(Ci−1(π), rKi(π))
and finishes at time Ri(π)+p = Cj(π), where Cj(π) is the
completion time of the job j ∈ N . Let us denote lateness
as Lj(π) = Cj(π) − dj . The maximum completion time
and maximum lateness are denoted as Cmax and Lmax

respectively. Let us call the schedule π allowable for the
set N if all jobs under the schedule π executed without
preemptions and intersections. We denote the set of all
allowable schedules as Π. The goal is to find allowable
schedule π ∈ Π, which satisfies the following optimization
criteria:

min
π∈Π

max
j∈N

Lj(π).

This problem 1|rj , pj = p|Lmax is a special case of
classical NP-hard scheduling problem 1|rj |Lmax. Now, let
us consider some approaches to obtain the solution in
polynomial time.

� Supported by RFBR-RZD grant 13-08-13190

2. DICHOTOMY METHOD

A simple way to obtain the solution is the dichotomy
(trisection search) method. In the first step, we find
boundary values on the objective function Lmax. Each job
j ∈ N holds:

dj + Lj = Cj ≥ rj + p.

Hence, a lower bound LB0 on the optimal value Lmax is
as follows:

LB0 = min
j∈N

{rj − dj}+ p

An upper bound UB0 can be estimated as:

UB0 = Lmax(πC),

where πC is an optimal schedule for the problem 1|rj , p =
const|Cmax. The fastest algorithm for solving this problem
was presented by Garey et al. (1981). Let us use this
algorithm to construct πC in O(n log n) operations.

After finding the bounds LB and UB we use dichotomy
method to find a solution of the problem as follows. In the
first step we divide the interval [LB0, UB0] on three parts.
Then, we set deadlines for all j ∈ N :

d1j = dj +
2

3
LB0 +

1

3
UB0,

d2j = dj +
1

3
LB0 +

2

3
UB0.

Then we use algorithm presented by Garey et al. (1981) to
construct the optimal schedules π1

C and π2
C for the prob-

lems 1|rj , d1j , p = const|Cmax and 1|rj , d2j , p = const|Cmax

respectively. If the schedule π1
C exists, set:{

LB1 := LB0

UB1 :=
2LB0 + 1UB0

3

Proceedigs of the 15th IFAC Symposium on
Information Control Problems in Manufacturing
May 11-13, 2015. Ottawa, Canada

Copyright © 2015 IFAC 839

Minimization of maximum lateness with
equal processing times for single machine �

Alexander A. Lazarev ∗ Dmitry I. Arkhipov ∗∗

∗ Institute of Control Sciences of RAS, Moscow, Russian Federation;
Lomonosov Moscow State University, Moscow, Russian Federation;
Moscow Institute of Physics and Technology, Dolgoprudny, Russian

Federation;
National Research University Higher School of Economics,Moscow,

Russian Federation(e-mail: jobmath@mail.ru.
∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:

miptrafter@gmail.com).

Abstract: The following case of the classical NP-hard scheduling problem is considered. There
is a set of jobs N with identical processing times p = const. All jobs have to be processed
on a single machine. The objective function is minimization of maximum lateness. We analyze
algorithms for the makespan problem, presented by Garey et al. (1981) and Simons (1978) and
represent two polynomial algorithms to solve the problem and to construct the Pareto set with
respect to criteria Lmax and Cmax. The complexity of presented algorithms equals O(Q ·n log n)
and O(n2 log n), where 10−Q is the accuracy of the input-output parameters.

Keywords: scheduling, unit-time jobs, polynomial algorithms, dynamic programming

1. INTRODUCTION

1.1 Formulation of the main problem

The following problem of scheduling theory is considered.
There is a set of jobs N and a single machine to process
jobs from this set. For each job j ∈ N , a release date rj
and a due date dj are given. The processing time p is the
same for all jobs of the set N . We define a schedule π
as an execution sequence K1(π),K2(π), . . . ,Kn(π), where
K1(π)∪K2(π)∪ . . .∪Kn(π) ≡ N . The equality Ki(π) = j
means that job j ∈ N is processed under the ordinal
number i under the schedule π. The execution of the job
Ki(π) = j starts at time Ri(π) = max(Ci−1(π), rKi(π))
and finishes at time Ri(π)+p = Cj(π), where Cj(π) is the
completion time of the job j ∈ N . Let us denote lateness
as Lj(π) = Cj(π) − dj . The maximum completion time
and maximum lateness are denoted as Cmax and Lmax

respectively. Let us call the schedule π allowable for the
set N if all jobs under the schedule π executed without
preemptions and intersections. We denote the set of all
allowable schedules as Π. The goal is to find allowable
schedule π ∈ Π, which satisfies the following optimization
criteria:

min
π∈Π

max
j∈N

Lj(π).

This problem 1|rj , pj = p|Lmax is a special case of
classical NP-hard scheduling problem 1|rj |Lmax. Now, let
us consider some approaches to obtain the solution in
polynomial time.

� Supported by RFBR-RZD grant 13-08-13190

2. DICHOTOMY METHOD

A simple way to obtain the solution is the dichotomy
(trisection search) method. In the first step, we find
boundary values on the objective function Lmax. Each job
j ∈ N holds:

dj + Lj = Cj ≥ rj + p.

Hence, a lower bound LB0 on the optimal value Lmax is
as follows:

LB0 = min
j∈N

{rj − dj}+ p

An upper bound UB0 can be estimated as:

UB0 = Lmax(πC),

where πC is an optimal schedule for the problem 1|rj , p =
const|Cmax. The fastest algorithm for solving this problem
was presented by Garey et al. (1981). Let us use this
algorithm to construct πC in O(n log n) operations.

After finding the bounds LB and UB we use dichotomy
method to find a solution of the problem as follows. In the
first step we divide the interval [LB0, UB0] on three parts.
Then, we set deadlines for all j ∈ N :

d1j = dj +
2

3
LB0 +

1

3
UB0,

d2j = dj +
1

3
LB0 +

2

3
UB0.

Then we use algorithm presented by Garey et al. (1981) to
construct the optimal schedules π1

C and π2
C for the prob-

lems 1|rj , d1j , p = const|Cmax and 1|rj , d2j , p = const|Cmax

respectively. If the schedule π1
C exists, set:{

LB1 := LB0

UB1 :=
2LB0 + 1UB0

3

Proceedigs of the 15th IFAC Symposium on
Information Control Problems in Manufacturing
May 11-13, 2015. Ottawa, Canada

Copyright © 2015 IFAC 839

Minimization of maximum lateness with
equal processing times for single machine �

Alexander A. Lazarev ∗ Dmitry I. Arkhipov ∗∗

∗ Institute of Control Sciences of RAS, Moscow, Russian Federation;
Lomonosov Moscow State University, Moscow, Russian Federation;
Moscow Institute of Physics and Technology, Dolgoprudny, Russian

Federation;
National Research University Higher School of Economics,Moscow,

Russian Federation(e-mail: jobmath@mail.ru.
∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:

miptrafter@gmail.com).

Abstract: The following case of the classical NP-hard scheduling problem is considered. There
is a set of jobs N with identical processing times p = const. All jobs have to be processed
on a single machine. The objective function is minimization of maximum lateness. We analyze
algorithms for the makespan problem, presented by Garey et al. (1981) and Simons (1978) and
represent two polynomial algorithms to solve the problem and to construct the Pareto set with
respect to criteria Lmax and Cmax. The complexity of presented algorithms equals O(Q ·n log n)
and O(n2 log n), where 10−Q is the accuracy of the input-output parameters.

Keywords: scheduling, unit-time jobs, polynomial algorithms, dynamic programming

1. INTRODUCTION

1.1 Formulation of the main problem

The following problem of scheduling theory is considered.
There is a set of jobs N and a single machine to process
jobs from this set. For each job j ∈ N , a release date rj
and a due date dj are given. The processing time p is the
same for all jobs of the set N . We define a schedule π
as an execution sequence K1(π),K2(π), . . . ,Kn(π), where
K1(π)∪K2(π)∪ . . .∪Kn(π) ≡ N . The equality Ki(π) = j
means that job j ∈ N is processed under the ordinal
number i under the schedule π. The execution of the job
Ki(π) = j starts at time Ri(π) = max(Ci−1(π), rKi(π))
and finishes at time Ri(π)+p = Cj(π), where Cj(π) is the
completion time of the job j ∈ N . Let us denote lateness
as Lj(π) = Cj(π) − dj . The maximum completion time
and maximum lateness are denoted as Cmax and Lmax

respectively. Let us call the schedule π allowable for the
set N if all jobs under the schedule π executed without
preemptions and intersections. We denote the set of all
allowable schedules as Π. The goal is to find allowable
schedule π ∈ Π, which satisfies the following optimization
criteria:

min
π∈Π

max
j∈N

Lj(π).

This problem 1|rj , pj = p|Lmax is a special case of
classical NP-hard scheduling problem 1|rj |Lmax. Now, let
us consider some approaches to obtain the solution in
polynomial time.

� Supported by RFBR-RZD grant 13-08-13190

2. DICHOTOMY METHOD

A simple way to obtain the solution is the dichotomy
(trisection search) method. In the first step, we find
boundary values on the objective function Lmax. Each job
j ∈ N holds:

dj + Lj = Cj ≥ rj + p.

Hence, a lower bound LB0 on the optimal value Lmax is
as follows:

LB0 = min
j∈N

{rj − dj}+ p

An upper bound UB0 can be estimated as:

UB0 = Lmax(πC),

where πC is an optimal schedule for the problem 1|rj , p =
const|Cmax. The fastest algorithm for solving this problem
was presented by Garey et al. (1981). Let us use this
algorithm to construct πC in O(n log n) operations.

After finding the bounds LB and UB we use dichotomy
method to find a solution of the problem as follows. In the
first step we divide the interval [LB0, UB0] on three parts.
Then, we set deadlines for all j ∈ N :

d1j = dj +
2

3
LB0 +

1

3
UB0,

d2j = dj +
1

3
LB0 +

2

3
UB0.

Then we use algorithm presented by Garey et al. (1981) to
construct the optimal schedules π1

C and π2
C for the prob-

lems 1|rj , d1j , p = const|Cmax and 1|rj , d2j , p = const|Cmax

respectively. If the schedule π1
C exists, set:{

LB1 := LB0

UB1 :=
2LB0 + 1UB0

3

Proceedigs of the 15th IFAC Symposium on
Information Control Problems in Manufacturing
May 11-13, 2015. Ottawa, Canada

Copyright © 2015 IFAC 839

Fig. 1. An example of the use of three times dichotomy.

If the schedule π1
C does not exist and the schedule π2

C
exists, let us set:

LB1 :=
2LB0 + 1UB0

3

UB1 :=
1LB0 + 2UB0

3
Otherwise, we set:{

LB1 :=
1LB0 + 2UB0

3
UB1 := UB0

This procedure repeated until the difference UB − LB is
not larger than 10−Q – the accuracy of the input-output
parameters. An example of the dichotomy method usage
illustrated in figure 1.

The number of steps is equal to

log3((UB0 − LB0) · 10Q).
In each step the two schedules π1

C , π
2
C are constructed.

Hence, the total complexity equals:

log3((UB0 − LB0) · 10Q) · 2O(n log n) = O(Q · n log n).

3. THE AUXILIARY PROBLEM

3.1 Formulation of auxiliary problem and algorithm

Let us consider the second approach. We have to formulate
an auxiliary problem to construct the second algorithm.
We consider the same set of jobs N = {1, . . . , n} and a
bound on the maximum lateness y. The goal is to construct
a schedule with respect to ctiteria:

min
π∈Π

max
j∈N

Cj(π)|Lmax(π) < y.

For each set of due dates d1, . . . , dn and the bound on the
lateness y deadlines Dj can be calculated by the following
formula:

Dj = dj + y.

The auxiliary problem is the same as problem 1|rj , p =
const|Cmax, but with one exception: the completion time
Cj of the job j may not exceed the deadline Dj :

Cj < Dj .

An allowable schedule satisfying this restriction is called
feasible. To construct the solution of the auxiliary prob-
lem, we consider the approach presented by Simons (1978).
Next, we briefly recall the main idea and the important
notations from this paper.

The algorithm works as follows. While the completion
times of all jobs are not larger than its deadlines, schedule
jobs according to algorithm, presented by Schrage (1970).
If for any job X ∈ N the inequality

CX ≥ DX

holds then, execute the special procedure CRISIS(X).
This procedure finds the job A, which is already scheduled
with the latest completion time, but for which

DA > DX

Fig. 2. Job X experiences crisis.

Schrage’s Algorithm
1. Find earliest release time:

t = min
j∈N

rj .

2. Find a non-processed job, which released at the
moment t:
i = arg min

j:rj≤t
Dj .

3. Process job i, add it to π and remove it from N :
Ci = t+ p;
π := {π, i};
N := N \ {i};

3. If N �= ∅ then:
set the time t = max(Ci,min

j∈N
ri) and go to step 2.

4. Else:
return(π).

holds. This job is called Pull(X), the time moment when
its execution starts is denoted as tA,X and all jobs which
are already scheduled after Pull(X) and X constitute the
restricted set (r.s.) S(A,X] (see fig. 2). The set of jobs,
which belong to S(A,X] and not belong to any restricted
subset of S(A,X] is denoted as S(A,X]. The procedure
CRISIS(X) reschedule a set of jobs {A} ∪ S(A,X]. The
procedure fails when Pull(X) for a crisis job X does
not exist. After a successful execution of the procedure
CRISIS(X), Schrage’s algorithm (see Schrage (1970)) is
used to schedule the jobs. Such a scheduling repeats until
any call of procedure CRISIS() fails or all jobs from the
set N have been successfully scheduled.

3.2 Procedures for auxiliary algorithm

This algorithm consists of the following procedures: the
algorithm presented by Schrage (1970) as well as the pro-
cedures CRISIS(X) and INV ASION(S(C,W], rS(C,W])
presented by Simons (1978).

3.3 Algorithm for auxiliary problem

The solution of auxiliary problem 1|rj , p = const,Dj |Cmax,
presented in Simons (1978) is as follows. Find the schedule
π by means of Schrage’s algorithm, and use then the
auxiliary algorithm.

Theorem 1. After the execution of the auxiliary algorithm,
an optimal set with respect to the criterion Cmax is
constructed, provided that the schedule π is constructed
by Schrage’s algorithm.

Proof. The proof of this theorem is given in Simons
(1978).

Theorem 2. Let S(A,X] be a restricted set. If a feasi-
ble schedule exists, then assertions 1-4 hold for all fea-
sible schedules. Each time a procedure CRISIS() or
INV ASION() is about to schedule S(A,X] assertions 1-3
hold:

INCOM 2015
May 11-13, 2015. Ottawa, Canada

840

808 Alexander A. Lazarev et al. / IFAC-PapersOnLine 48-3 (2015) 806–809

CRISIS(X)
1. Assume that X belongs to a minimal r.s. S′. If X

does not belongs to any restricted set, then S′ ≡ N .
Backtrack over the first level jobs of S′ looking for
Pull(X). Let A = Pull(X) and define S(A,X] to be
a restricted set. If no Pull(X) exists, report failure
and halt.

2. Count the number of jobs of S(A,X] in each first level
interval of S(A,X]. Increase the count of the initial
first level interval by 1.

3. Remove the jobs S(a, x] from the schedule.
4. i := 1.
5. While the required number of jobs of S(A,X] have not

been scheduled in the ith first level interval, schedule
the jobs of S(A,X] using the naive algorithm. (If i =
1, the first level interval begins at rS(A,X]; otherwise,
the interval begins at the time at which the preceding
r.s. is completed).
a) If some job Z has a crisis, call CRISIS(Z).
b) If some job Y invades the following r.s. S(C,W],

set rS(C,W] to be the time at which Y is com-
pleted and call INV ASION(S(C,W], rS(C,W]).

6. If all the jobs of S(A,X] have been scheduled then
return;
otherwise i := i+ 1.

7. Go to step 5.

INV ASION(S(C,W], rS(C,W])
1. Count the number of jobs of S(A,X] in each first level

interval of S(A,X].
2. Steps 2-6 are identical to steps 3-7 of the CRISIS

subroutine.

AUXILIARY ALGORITHM
1. While N has not been completely checked under π,

check all jobs j ∈ N holds Cj(π) < Dj ;
otherwise halt (N has been successfully scheduled).
a) If some job X has a crisis, call CRISIS(X).
b) Else return(π).

1. The first job of S(A,X] is always scheduled to begin
in (tA,X , tA,X + p),

2. Only jobs in S(A,X] can be scheduled totally in
(tA,X , Dx).

3. S(A,X] can not be scheduled to begin before rS(A,X].
When the program returns from a procedure call the
following assertion holds:

4. S(A,X] can not be completed any earlier than the
time at which it is currently scheduled to be com-
pleted.

Proof. The proof of this theorem is given in Simons
(1978).

4. MAIN PROBLEM SOLUTION

Now let us consider the main problem 1|rj , p = const|Lj .
We present an algorithm to obtain the Pareto set of
schedules with respect to criteria Lmax and Cmax. First,
we introduce a procedure CHECK(π,N, y) which is as
follows.

Lemma 1. Let π and π′ be the schedules, constructed
by the auxiliary algorithm for the bounds y and y′,
respectively. and

π∗ = CHECK(π,N, y).

CHECK(π,N, y)
1. Set the bound y.
2. Set deadlines Di = di + y.
3. If all jobs from N have been scheduled, go to step 7.
4. While t is not in the interval [rS(A,X], dx) for any

restricted set S(A,X] from the schedule π, execute
the jobs under π∗ according to Schrage’s algorithm.

5. Otherwise, execute under π only the jobs from the set
S(A,X], and then go to step 3.

6. If in steps 4-5 any job Y experiences a crisis, run
CRISIS(Y).

7. return(π∗).

Fig. 3. Cases of the possible difference.

If y < y′, then

CHECK(π,N, y) = π′

holds.

Proof. Assume the contrary. We compare the schedules
CHECK(π,N, y) and π′ from t = 0 up to Cmax. Suppose,
that at the moment t the first difference was found. The
possible cases of the difference illustrated in figure 3, and
they are as follows:

1) Two different jobs start at the moment t.
This type of difference is impossible, because both
algorithms ensure that at the moment t only the job
with a minimal due date can start its execution.

2) There is an execution of the job X under the
schedule π∗ and an idleness under the schedule
π′ at the moment t.
The job X is not executed in the sequence π′ in spite
of rX ≤ t. Hence, X = Pull(Y) under the schedule π.
According to the time rS(X,Y] and Theorem 2 the jobs
from the set S(X,Y] cannot finish their execution in
the schedule π∗ before the time DY (π

′) because the
first of them starts at time tX,Y +p. Hence, some jobs
from S(X,Y] experience a crisis under the schedule
π∗. In the last call of CRISIS(Y ′), Y ′ ∈ S(X,Y]
we have CRISIS(Y ′) = X. Thus the job X cannot
starts at the moment t.

3) There is an execution of the job X under the
schedule π′ and an idleness under the schedule
π∗ at the moment t.
The idleness is related to some restricted set S(A, Y]
from the set of jobs in π. The schedule π′ is feasible
for the set of jobs N and the deadlines Di(π

∗) since
y < y′. According to Theorem 2, the jobs from the
set S(A, Y] can not start their execution under the

INCOM 2015
May 11-13, 2015. Ottawa, Canada

841

 Alexander A. Lazarev et al. / IFAC-PapersOnLine 48-3 (2015) 806–809 809

CRISIS(X)
1. Assume that X belongs to a minimal r.s. S′. If X

does not belongs to any restricted set, then S′ ≡ N .
Backtrack over the first level jobs of S′ looking for
Pull(X). Let A = Pull(X) and define S(A,X] to be
a restricted set. If no Pull(X) exists, report failure
and halt.

2. Count the number of jobs of S(A,X] in each first level
interval of S(A,X]. Increase the count of the initial
first level interval by 1.

3. Remove the jobs S(a, x] from the schedule.
4. i := 1.
5. While the required number of jobs of S(A,X] have not

been scheduled in the ith first level interval, schedule
the jobs of S(A,X] using the naive algorithm. (If i =
1, the first level interval begins at rS(A,X]; otherwise,
the interval begins at the time at which the preceding
r.s. is completed).
a) If some job Z has a crisis, call CRISIS(Z).
b) If some job Y invades the following r.s. S(C,W],

set rS(C,W] to be the time at which Y is com-
pleted and call INV ASION(S(C,W], rS(C,W]).

6. If all the jobs of S(A,X] have been scheduled then
return;
otherwise i := i+ 1.

7. Go to step 5.

INV ASION(S(C,W], rS(C,W])
1. Count the number of jobs of S(A,X] in each first level

interval of S(A,X].
2. Steps 2-6 are identical to steps 3-7 of the CRISIS

subroutine.

AUXILIARY ALGORITHM
1. While N has not been completely checked under π,

check all jobs j ∈ N holds Cj(π) < Dj ;
otherwise halt (N has been successfully scheduled).
a) If some job X has a crisis, call CRISIS(X).
b) Else return(π).

1. The first job of S(A,X] is always scheduled to begin
in (tA,X , tA,X + p),

2. Only jobs in S(A,X] can be scheduled totally in
(tA,X , Dx).

3. S(A,X] can not be scheduled to begin before rS(A,X].
When the program returns from a procedure call the
following assertion holds:

4. S(A,X] can not be completed any earlier than the
time at which it is currently scheduled to be com-
pleted.

Proof. The proof of this theorem is given in Simons
(1978).

4. MAIN PROBLEM SOLUTION

Now let us consider the main problem 1|rj , p = const|Lj .
We present an algorithm to obtain the Pareto set of
schedules with respect to criteria Lmax and Cmax. First,
we introduce a procedure CHECK(π,N, y) which is as
follows.

Lemma 1. Let π and π′ be the schedules, constructed
by the auxiliary algorithm for the bounds y and y′,
respectively. and

π∗ = CHECK(π,N, y).

CHECK(π,N, y)
1. Set the bound y.
2. Set deadlines Di = di + y.
3. If all jobs from N have been scheduled, go to step 7.
4. While t is not in the interval [rS(A,X], dx) for any

restricted set S(A,X] from the schedule π, execute
the jobs under π∗ according to Schrage’s algorithm.

5. Otherwise, execute under π only the jobs from the set
S(A,X], and then go to step 3.

6. If in steps 4-5 any job Y experiences a crisis, run
CRISIS(Y).

7. return(π∗).

Fig. 3. Cases of the possible difference.

If y < y′, then

CHECK(π,N, y) = π′

holds.

Proof. Assume the contrary. We compare the schedules
CHECK(π,N, y) and π′ from t = 0 up to Cmax. Suppose,
that at the moment t the first difference was found. The
possible cases of the difference illustrated in figure 3, and
they are as follows:

1) Two different jobs start at the moment t.
This type of difference is impossible, because both
algorithms ensure that at the moment t only the job
with a minimal due date can start its execution.

2) There is an execution of the job X under the
schedule π∗ and an idleness under the schedule
π′ at the moment t.
The job X is not executed in the sequence π′ in spite
of rX ≤ t. Hence, X = Pull(Y) under the schedule π.
According to the time rS(X,Y] and Theorem 2 the jobs
from the set S(X,Y] cannot finish their execution in
the schedule π∗ before the time DY (π

′) because the
first of them starts at time tX,Y +p. Hence, some jobs
from S(X,Y] experience a crisis under the schedule
π∗. In the last call of CRISIS(Y ′), Y ′ ∈ S(X,Y]
we have CRISIS(Y ′) = X. Thus the job X cannot
starts at the moment t.

3) There is an execution of the job X under the
schedule π′ and an idleness under the schedule
π∗ at the moment t.
The idleness is related to some restricted set S(A, Y]
from the set of jobs in π. The schedule π′ is feasible
for the set of jobs N and the deadlines Di(π

∗) since
y < y′. According to Theorem 2, the jobs from the
set S(A, Y] can not start their execution under the

INCOM 2015
May 11-13, 2015. Ottawa, Canada

841

MAIN ALGORITHM
1. Set the bound y0 := +∞.
2. Construct the schedule π1 according to the auxiliary

algorithm,
and add it to Φ, i.e.: Φ := {π1};
set the counter k := 1;
set the bound y1 := Lmax(π1).

3. Construct the schedule πk+1 = CHECK(πk, N, yk).
a) If the schedule CHECK(πk, N, y) exists, then:

add πk+1 to the set Φ, i.e.: Φ := Φ ∪ πk;
set yk = Lmax(πk);
increase the counter k := k + 1;
repeat step 3.

b) Otherwise, return(Φ).

schedule π′ at the moment tA,Y + p and finish their
execution until the moment DY (π

∗).

Hence, all above three cases are impossible and there are
no differences between π∗ and π′.
Q.E.D.

Next, we describe the main algorithm to obtain the Pareto
set with respect to criteria Lmax and Cmax.

Lemma 2. If any job becomes a crisis job for the second
time, then algorithm stops.

Proof. When a r.s. is formed, all the jobs in this set
have deadlines no greater than the deadline of the crisis
job which triggered the r.s. Consequently, if that job
experiences a crisis for a second time, the algorithm will
not find a job to pull and will be a failure in step 1 of the
subroutine CRISIS().

Theorem 3. After the execution of algorithm 4, the Pareto
set of schedules Φ, |Φ| ≤ n + 1 according to the criteria
Lmax and Cmax has been constructed, and the schedule
π∗ is an optimal solution for the main problem.

Proof. When Algorithm 4 has terminated, the set of
schedules Φ has been constructed. For each pair of con-
secutive schedules πx, πx+1 of the set Φ the inequalities{

Lmax(πx+1) < yx+1,
Lmax(πx) < yx,

hold. Moreover, for this two schedules the inequality

Cmax(πx+1) ≥ Lmax(πx)

holds, because πx is an optimal schedule with respect to
criterion Cmax|Lmax < yx and yx+1 < yx. Hence,

Lmax(π|Φ|−1) < . . . < Lmax(π1) < Lmax(π0),

Cmax(π|Φ|−1) ≥ . . . ≥ Cmax(π1) ≥ Cmax(π0).

This implies that the schedule π∗ = π|Φ|−1 is an optimal
according to the criterion Lmax. On each CHECK()
procedure of algorithm 4 CRISIS() subroutine executes
at least once, because the schedules πk and πk+1 are
different. Hence, we get

|Φ| ≤ n+ 1.

Lemma 3. The complexity of Algorithm 4 is O(n2 log n).

Proof. According to Theorem 1, for each job X ∈ N the
procedure CRISIS(X) is executed not more than once.
Hence, the total number of running CRISIS() is not more
than n. During the procedure CRISIS(X) each job from
the set N rescheduled not more than once. Hence, each job

schedules not more than n+1 times by Schrage’s algorithm
during the construction of sets π1, . . . , π|Φ|, and not more
than n times due to execution of CRISIS() procedures.
Hence, total number of reschedulings is not more than
(2n + 1) · n. It is still necessary to multiply this result
on log n due to the use of the heaps. This leads to a total
complexity of O(n2 log n).

5. CONCLUSION

Two approaches to solve the problem 1|rj , p = const|Lmax

are presented. In addition, the Pareto set with respect
to the criteria Lmax and Cmax was constructed. The
efficiency of these approaches depends on the number of
jobs and the accuracy of the input-output parameters.
The core idea of the second approach was to construct a
schedule with lower Lmax value than in the previous step,
but use the knowledge, obtained in the previous steps. This
allowed us to adopt a makespan algorithm to the criterion
Lmax without a substantial increase of the complexity.

ACKNOWLEDGEMENTS

Authors would like to thank Prof. Frank Werner and Dr.
Ruslan Sadykov for their active assistance in working on
this problem.

REFERENCES

B.B. Simons. A fast algorithm for single processor schedul-
ing. In 19th Annual Symposium on Foundations of
Computer Science (Ann Arbor, Mich., 1978), P. 246-
252.

M.R. Garey, D.S. Johnson, B.B. Simons and R.E. Tarjan.
Scheduling unit-time tasks with arbitrary release times
and deadlines. SIAM J. COMPUT. Vol. 10, No. 2, May
1981, P. 256-269.

Schrage L. Solving Resource-Constrained Network Prob-
lems by Implicit Enumeration: Non Preemptive Case.
Operations Research. Vol. 18 Issue 2, 1970, P. 263-278.

INCOM 2015
May 11-13, 2015. Ottawa, Canada

842

