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Two-Station Single-Track Railway Scheduling Problem
With Trains of Equal Speed

Abstract

In this paper, the single-track railway scheduling problem with two stations
and several segments of the track is considered. Two subsets of trains are
given, where trains from the first subset go from the first station to the
second station, and trains from the second subset go in the opposite direc-
tion. The speed of trains over each segment is the same. A polynomial
time reduction from the problem under consideration to a special case of the
single-machine equal-processing-time scheduling problem with setup times is
presented. Different polynomial time algorithms are developed for special
cases with divers objective functions under various constraints. Moreover,
several theoretical results which can be ranked in a series of similar inves-
tigations of NP-hardness of equal-processing-time single-machine scheduling
problems without precedence relations are obtained.

Keywords: Single machine scheduling, Setup times, Transportation, Train
scheduling, Computational complexity, Polynomial time algorithms
2000 MSC: 90B35

1. Introduction

A single-track network can be seen as an embryonic portion for any type of
railway network topology. Furthermore, almost all national railway networks
have sections where there is a single-track between some stations. For some
countries (USA, Australia) a significant part of the network is single-track.
For multi-track networks such a single-track segment can be considered as
a bottleneck, in which the traffic capacity is restricted. Often, single-track
problems are considered in the case of maintenance of one track of a double-
track line. For example, the French railway company SNCF develops such
models to produce a new transport schedule in the event of an incident on
one of our double-track line sections [22].
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For this problem, different optimization criteria and different constraints
are considered:

- optimization criteria: initial scheduling to minimize total idle-time,
rescheduling to minimize delays, etc.;

- additional constraints: overtaking segments, release and due dates,
priority and velocity of trains, etc.

In this paper, we consider a case with only two stations. This case ap-
pears, for example, in private railways when a company transports loads
between two production centers [14]. It represents also an elementary sec-
tion of a larger railway network. There are segments on the track and only
one train can travel on a segment at one time. Segments of a single-track
and restriction that "at most only one train can be on any track segment at
any the time" were already used in [25].

The Single Track Railway Scheduling Problem with two stations (STRSP2)
is formulated as follows. Given a single-track railway between two stations
and a set N ′ = N ′

1

∪
N ′

2, N ′
1

∩
N ′

2 = ∅ of n′ = |N ′| trains. Trains from
the subset N ′

1 go from station 1 to station 2, and trains from the subset
N ′

2 go in the opposite direction. |N ′
1| = n′

1 and |N ′
2| = n′

2, n′
1 + n′

2 = n′.
The track is divided into Q segments 1, 2, . . . , Q. Trains from the set N ′

1

traverse segments in an order 1 → 2 → · · · → Q and trains from the set N ′
2

in the opposite order Q → Q − 1 → · · · → 1. At most one train can be on
any track segment at one time1. If a train j′ ∈ N ′

1 is on a track segment,
then no train i′ ∈ N ′

2 can be on the track and vice versa. For each segment
q, q = 1, 2 . . . , Q, a traversing time pq is given, in which a train j′ ∈ N ′

traverses the segment, i.e., for each segment q, q = 1, 2 . . . , Q, all the trains
go with the same speed2.

All notations used hereafter are typical for scheduling theory. To repre-
sent tardy trains, Boolean variables U which are equal to 0 if a job is on-time
or 1, otherwise, are used.

Let Sj′(Π) and Cj′(Π), j′ ∈ N ′, be the start and completion times of the
train j′ in a schedule Π, i.e., Sj′(Π) is a departure time of the train j′ from

1A segment is circumscribed by two signals: one signal from each side, which will control
whether a train can or cannot proceed on that segment. This is a safety precaution.

2This assumption is not far removed from practice, since most trains travel at a maxi-
mal authorized speed. Nevertheless, a safety precaution should be satisfied for unforseen
situations, i.e. at most only one train can be on any track segment at one time.
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the departure station and Cj′(Π) is an arrival time at the destination station.
Then in a feasible schedule we have:

- Cj′ ≥ Sj′ +
∑Q

q=1 pq, ∀j′ ∈ N ′;

- for any i′ ∈ N ′
1 and for any j′ ∈ N ′

2 we have Ci′ ≤ Sj′ or Cj′ ≤ Si′ .

In addition, a due date dj′ , a weight wj′ > 0, a release date rj′ ≥ 0
(the earliest possible starting time, i.e., Sj′ ≥ rj′) for each train j′ ∈ N ′ can
be given. If Cj′(Π) > dj′ , then train j′ is tardy and we have Uj′(Π) = 1.
If Cj′(Π) ≤ dj′ , then train j′ is on-time and Uj′(Π) = 0. Moreover, let
Tj′(Π) = max{0, Cj′(Π) − dj′} be the tardiness of train j′ and Cmax(Π) =
maxj′∈N ′{Cj′(Π)} be the makespan for schedule Π. For the STRSP2 with
release dates, the objective is to find an optimal schedule Π∗ that minimizes
the makespan Cmax taking into account release dates. This problem is de-
noted STRSP2|rj|Cmax by using the traditional three-field notation α|β|γ
for scheduling problems proposed by Graham et al. [13], where α describes
the resource environment, β gives the activity characteristics and further
constraints and γ describes the objective function.

In this paper, we deal with some extensions of STRSP2 with different
objective functions and further constraints. We minimize:

- number of late trains STRSP2||
∑

Uj;

- weighted number of late trains STRSP2||
∑

wjUj;

- total completion time STRSP2|rj|
∑

Cj when release dates are given;

- weighted total completion time STRSP2||
∑

wjCj;

- total tardiness STRSP2||
∑

Tj.

A literature review on similar problems is given in Section 2. In Sec-
tion 3, a polynomial time reduction of STRSP2 to a special case of the
single-machine equal-processing-time scheduling problem with setup times is
suggested. Then, polynomial time algorithms for the single-machine prob-
lems with above mentioned objective functions are presented in Sections 4
and 5.

This paper was motivated by some train scheduling problems on single
path railways, but after the proof of reduction of these problems to equivalent
single-machine scheduling problems, the contributions of this paper are on
both train scheduling and theoretical single-machine scheduling issues.
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2. Related literature

Work on single-track railway scheduling problems (STRSP) goes back to
1970’s, with the publication [24]. A recent literature review on the single-
track railway scheduling problem can be found, e.g., in [21]. A short survey
on STRSP with several stations where trains are able to pass one other is
presented in [25]. A STRSP with two types of trains – express and local –
to minimize the period of a cyclic railway timetable is considered in [15].

Similar problems arise on a river canal (inland waterways) with a chain of
shipping locks. If each shipping lock can operate only one ship at a time and
the width of the canal is not enough to take more than one ship, then we will
have STRSP2. A lockmaster’s problem is considered in [6], where a single
lock is given with a constant lockage time which can handle several ships from
the same subset at a time. Arrival times of the ships are defined and the goal
is to minimize total ship waiting time. In [6] a dynamic programming algo-
rithm is proposed that solves this lockmaster’s problem and some generaliza-
tions in O(n5) time. This lockmaster’s problem can be presented as a single
batching machine scheduling problem 1|p − batch; b = n; ri; pi = p|

∑
wjFj

[6]. Although this problem seems to be similar to STRSP2, there are obvi-
ous differences between the problems. In the lockmaster’s problem there is a
single segment (lock) which can process several trains (ships) at a time.

A similar problem which arises on German railways is considered in [5]; it
deals with rescheduling trains in the case where one track of a railway section
consisting of two tracks in opposing directions is closed due to construction
activities and the sub-sequences of trains for both directions outside the
construction site are fixed. In that NP-hard problem the maximal lateness
should be minimized when single segment and safety distances between pairs
of trains are given. Unlike that problem, in the problem considered in this
paper st1 and st2 can be different.

Another similar problem of bidirectional scheduling is considered in [8].
Note that our paper was submitted to the journal before we found this new
work. Thus, our results were obtained independently from [8]. The princi-
pal differences between the results presented in this paper and the results
presented in [8] are as follows:

- different problem formulations – in [8], trains can wait in between seg-
ments, i.e. the condition ”for any i′ ∈ N ′

1 and for any j′ ∈ N ′
2 we have

Ci′ ≤ Sj′ or Cj′ ≤ Si′“, is not satisfied;
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- different additional conditions – in [8], weights wj′ and due dates dj′ of
jobs (trains) are not taken into account;

- different objective functions – unlike [8], we consider also objective
functions

∑
wjCj,

∑
wjUj, and

∑
Tj;

- different ideas on what the solution algorithms presented in both papers
are based, e.g., in this paper we employ for our developments a set of
possible starting times of trains, and so on.

Other surveys of optimization models for train routing and scheduling
can be found in [7, 23].

To the best of our knowledge there are no other publications for the set
of STRSP2 problems considered in this paper.

This paper is an extended, completed and developped version of our pre-
vious work (see our first preprint [10] and conference proceedings [11, 12]).

3. Reduction of STRSP2 to a Single Machine Scheduling Problem

The idea to reduce STRSP to standard scheduling problems is not new.
If the number of segments Q = 1, then STRSP2 problems under considera-
tion are equivalent to standard single-machine scheduling problems [4] and
as a consequence, if speeds of trains are arbitrary on the segment, then most
of these problems are NP-hard [4], e.g., single-machine total tardiness or
weighted number of late jobs problems. Note as well that STRSP2 problems
can be also easily reformulated as shop scheduling problems [4] with Q ma-
chines. A reduction of STRSP with several stations to a job-shop scheduling
problem is presented in [25], as well as, a shifting bottleneck algorithm to get
a close to optimal schedule.

Here we present a reduction of STRSP2 with an arbitrary Q to a single-
machine scheduling problem with setup times between two groups of jobs.

Denote pmax = maxq=1,2,...,Q{pq} and P =
∑Q

q=1 pq.

Lemma 1. Assume that for a train j′ ∈ N ′
1 we have Cj′ = Sj′ + P and

train i′ ∈ N ′
1 is the next train which passes along the track. Then, without

violation of feasibility conditions, the train i′ can be scheduled as follows:
Si′ = max{ri′ , Sj′ + pmax} and Ci′ = Si′ + P , i.e., the train i′ departs at time
point max{ri′ , Sj′ + pmax} and goes without incurring any idle-time.
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Proof. Let Sq
j′ , Sq

i′ , q = 1, 2, . . . , Q, be the start times to begin traveling upon
segment q by the trains j′ and i′, respectively. To prove the feasibility of the
schedule under consideration, we have only to show that Sq

i′ ≥ Sq
j′ + pq, q =

1, 2, . . . , Q, i.e., the train i′ only starts moving on segment q, when the train
j′ has already left it. We have Sq

j′ = Sj′ +
∑q−1

l=1 pl and Sq
i′ = Si′ +

∑q−1
l=1 pl =

max{ri′ , Sj′ + pmax} +
∑q−1

l=1 pl ≥ Sq
j′ + pq, i.e., the Lemma is true. �

In fact, Lemma 1 defines the rhythm of departures of trains from the same
subset if they follow one-by-one. In addition, notice that max{ri′ , Sj′ +pmax}
is the earliest possible departure time for the train i′, since for the track
q, pq = pmax, we have Sq

i′ = Sq
j′ + pq and as consequence |Cj′ − Ci′| ≥ pmax

for any j′, i′ which belong to the same subset N ′
1 or N ′

2. So, we can conclude
the following:

Corollary 1. For any j′ and i′ belong to the same subset N ′
1 or N ′

2, in any
feasible schedule, we have |Sj′ − Si′| ≥ pmax and |Cj′ − Ci′| ≥ pmax.

Let a sequence of trains (j′1, j
′
2, . . . , j

′
n) be the order in which the trains

travel along the track. Evidently a feasible schedule corresponds to one and
only one train sequence. Thus, an optimal schedule corresponds to just one
optimal train sequence. According to the train sequence (j′1, j

′
2, . . . , j

′
n) a

schedule can be computed as follows:


Sj′1

= rj′1
, Cj′1

= Sj′1
+ P,

Sj′k
= max{rj′k

, Sj′k−1
+ pmax}, Cj′k

= Sj′k
+ P, k = 2, . . . , n′, (∗)

Sj′k
= max{rj′k

, Sj′k−1
+ P}, Cj′k

= Sj′k
+ P, k = 2, . . . , n′, (∗∗).

(1)

(∗) holds if both j′k and j′k−1 belong to the same subset N ′
1 or N ′

2, otherwise
(∗∗) holds.

According to Lemma 1 this schedule is feasible. Furthermore, for the
above mentioned objective functions, which are the monotone functions of
the completion times of the trains, according to Lemma 1, by using rule (1)
from an optimal train sequence we can construct an optimal schedule.

Based on these properties, the following reduction to a single-machine
scheduling problem is proposed:

Single machine scheduling problem. A set N = N1

∪
N2, N1

∩
N2 = ∅

of n independent jobs that must be processed on a single-machine is given.
Job preemption is not allowed. The machine can handle only one job at

6



  

a time. Processing times pj of jobs are equal to p, ∀j ∈ N . For each
job j ∈ N , a due date dj, a weight wj > 0, and a release date rj ≥ 0
(i.e., the earliest possible starting time) can be given. A feasible solution is
described by a permutation π = (j1, j2, . . . , jn) of the jobs from the set N .
The corresponding schedule can be uniquely determined by starting each job
of this permutation as early as possible. Let Sjk

(π), Cjk
(π) = Sjk

(π) + p
be the start and completion times of job jk in the schedule resulting from
the sequence π. If jk ∈ N1 and jk+1 ∈ N2, then between jobs the machine
has to be idle during a setup time st = st1. If jk ∈ N2 and jk+1 ∈ N1,
then between jobs the machine has to be idle during a setup time st = st2.
There is no setup time between processing of jobs from the same subset, i.e.,
st = 0. In a feasible schedule Sjk+1

= max{rjk+1
, Cjk

+ st} holds. Objective
functions are the same as for STRSP2. If Cj(π) > dj, then job j is tardy
and we have Uj(π) = 1, otherwise Uj(π) = 0. If Cj(π) ≤ dj, then job
j is on-time. Moreover, let Tj(π) = max{0, Cj(π) − dj} be the tardiness
of job j and Cmax(π) = maxj∈N{Cj(π)} is the makespan. We note these
scheduling problems according to the traditional three-field notation α|β|γ,
e.g., 1|setup−times,N1, N2, pj = p, rj|Cmax for the single-machine scheduling
problem with equal-processing-times, setup times and release dates with the
objective function minimizing makespan.

A survey of scheduling problems with setup times can be found, e.g., in
[1]. In [19], a single-machine problem with jobs grouped in classes is con-
sidered, where setup times are only required when processing switches from
jobs of one class to jobs of another class. Another single-machine problem
with setup-times and jobs families is considered in [2]. Some algorithms for
single-machine problems with batch setup times are presented in [20] where
a number of batches and processing times are arbitrary, rj = 0, ∀j ∈ N,
the objective functions are maximal lateness and a weighted number of late
jobs. The usefulness of the algorithms for the problems under considera-
tion is discussed in the next Section. In [26] single-machine problems to
minimize total weighted flow time or maximal lateness are considered. A
single-machine scheduling with family jobs to minimize weighted number of
tardy jobs is investigated in [18]. For the single-machine scheduling problem
with due dates and batch setup times to minimize the weighted number of
tardy jobs, a pseudo-polynomial algorithm was presented in [9].

Some results of equal-processing-time scheduling are presented in [17]. In
the series of papers of Ph.Baptiste (see e.g. [3]) classical single-machine prob-
lems with equal-processing-time without precedence relations are considered.
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It was shown that problems 1|pj = p, rj|
∑

Tj and 1|pj = p, rj|
∑

wjUj as
well as some others are polynomially solvable. One can suppose that all
such problems are polynomially solvable. However, the complexity status of
1|pj = p, rj|

∑
wjTj is still open.

The problems STRSP2|−|− for the previously mentioned objective func-
tions can be reduced to 1|setup − times,N1, N2, pj = p,−|− problems as
follows. The subset of trains N ′

1 corresponds to the subset of jobs N1, |N1| =
|N ′

1|, and subset N ′
2 of trains to the subset N2, |N2| = |N ′

2|, of jobs. Let
q∗, q∗ ∈ {1, 2, . . . , Q} be the index of a segment for which pq∗ = pmax. De-
note TAILleft =

∑q∗−1
l=1 pl, TAILright =

∑Q
l=q∗+1 pl. Then, assume p = pmax,

st1 = 2 · TAILright, st2 = 2 · TAILleft. If j ∈ N1, then release date
rj = rj′ + TAILleft, else rj = rj′ + TAILright. If j ∈ N1, then due date
dj = dj′ − TAILright, else dj = dj′ − TAILleft. Weights are the same.

Let us consider a job sequence (j1, j2, . . . , jn) and a corresponding train
sequence (j′1, j

′
2, . . . , j

′
n′), where job jk, k = 1, 2, . . . , n, n = n′, corresponds

to train j′k, and schedules are determined by starting each job/train as early
as possible (for jobs) or by rule (1) (for trains) according to these sequences.
Then, for a job j and a train j′ we can construct the following table of
correspondence (see Tables 1 and 2).

Table 1: Parameters’ correspondence
train/job release

date
due date start time completion

time
j ∈ N1 rj = rj′ +

TAILleft

dj = dj′ −
TAILright

Sj′ +
TAILleft

Cj′ −
TAILright

j′ ∈ N ′
1 rj′ dj′ Sj′ Cj′

j ∈ N2 rj = rj′ +
TAILright

dj = dj′ −
TAILleft

Sj′ +
TAILright

Cj′ −
TAILleft

j′ ∈ N ′
2 rj′ dj′ Sj′ Cj′

In addition, we have the correspondence presented in Table 2 between the
values of objective functions for the respective schedules.

So, we can conclude that for the functions mentioned in Table 2, an
optimal job sequence (j1, j2, . . . , jn) corresponds to an optimal train sequence
(j′1, j

′
2, . . . , j

′
n′), i.e., STRSP2|−|− problems can be reduced to corresponding

1|setup − times,N1, N2, pj = p,−|− problems in a polynomial time. In the
resulting single-machine problems, all jobs j ∈ N1 start not earlier than

8



  

Table 2: Objective function values’ correspondence
Objective function
value STRSP2|−|−

Objective function value 1|setup −
times,N1, N2, pj = p,−|−∑

wj′Uj′
∑

wj′Uj′∑
Tj′

∑
Tj′∑

wj′Cj′
∑

wj′Cj′ +
∑

j′∈N ′
1
wj′ · TAILright +∑

j′∈N ′
2
wj′ · TAILleft

r = TAILleft and jobs j ∈ N2 start not earlier than r = TAILright. In
the following Sections, some algorithms are presented for problems where all
release dates r are equal to 0. These algorithms can be easily adopted for
the initial scheduling problems with initial release dates.

A similar reduction can be made for

STRSP2|rj|Cmax to 1|setup − times,N1, N2, pj = p, rj|Cmax,

but in such a reduction there is no tight connection between values of
Cmax, i.e., an optimal job sequence (j1, j2, . . . , jn) can correspond to a non
optimal train sequence (j′1, j

′
2, . . . , j

′
n).

The modification of solution algorithms for

1|setup − times,N1, N2, pj = p, rj|Cmax,

presented in the next Section, can be used for STRSP2|rj|Cmax as well.
Thus, in the next two Sections, solution algorithms for the following

1|setup − times, N1, N2, pj = p,−|− problems are presented:

- 1|setup − times,N1, N2, pj = p, rj|Cmax;

- 1|setup − times,N1, N2, pj = p, rj|
∑

Cj ;

- 1|setup − times,N1, N2, pj = p|
∑

wjCj;

- 1|setup − times,N1, N2, pj = p|
∑

Tj;

- 1|setup − times,N1, N2, pj = p|
∑

Uj;

- 1|setup − times,N1, N2, pj = p|
∑

wjUj.
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Definition 1. We call schedules for 1|setup − times,N1, N2, pj = p,−|−
problems left-shifted, if they are determined by starting each job as early
as possible. Obviously, for any aforementioned problem there are optimal
schedules which are left-shifted.

Definition 2. Let Θ = {t|t = rj+x1·p+x2·st1+x3·st2, j ∈ {1, 2, . . . , n}, x1,
x2, x3 ∈ {0, 1, 2, . . . , n}, x2 + x3 ≤ x1}.That means Θ - is a set of possible
starting times of jobs in a left-shifted schedule.
Notice that there are at most O(n4) values in set Θ, since there are no more
than n different values for each rj, x1, x2, x3.

Lemma 2. In all left-shifted schedules, job starting times belong to Θ.

Proof. Let in a feasible left-shifted schedule which corresponds to a job
sequence (j1, j2, . . . , jn), job jk, k ≥ 1, be the earliest job for which Sjk

/∈ Θ,
i.e., a starting time of its predecessor Sjk−1

∈ Θ. The earliest possible starting
time S of the job jk is defined as follows:

S = max{rjk
, Sjk−1

+ p}, (∗)
S = max{rjk

, Sjk−1
+ p + st1}, (∗∗)

S = max{rjk
, Sjk−1

+ p + st2}. (∗ ∗ ∗)

(*) holds if both jk and jk−1 belong to the same subset N1 or N2, (**) holds if
jk ∈ N2 and jk−1 ∈ N1 and (***) holds if jk ∈ N1 and jk−1 ∈ N2. Certainly,
S ∈ Θ. Since Sjk

/∈ Θ, we have S < Sjk
and the schedule Π is not left-shifted.

�

4. Algorithms for the Problems with Ordered Subsets N1 and N2

In this Section, solution algorithms for the following problems are pre-
sented:

- 1|setup − times,N1, N2, pj = p, rj|Cmax;

- 1|setup − times,N1, N2, pj = p, rj|
∑

Cj ;

- 1|setup − times,N1, N2, pj = p|
∑

wjCj;

- 1|setup − times,N1, N2, pj = p|
∑

Tj.

10



  

All the algorithms are based on the same properties of optimal solutions
and use the same search procedure.

Denote the subsets N1 = {j1, j2, . . . , jn1} and N2 = {i1, i2, . . . , in2}.

Lemma 3. For each of the above mentioned problems there is an optimal
schedule in which jobs are processed in the following special order:

- for the problems 1|setup−times,N1, N2, pj = p, rj|Cmax and 1|setup−
times,N1, N2, pj = p, rj|

∑
Cj jobs are ordered according to non-decreasing

release dates, i.e., rj1 ≤ rj2 ≤ · · · ≤ rjn1
and ri1 ≤ ri2 ≤ · · · ≤ rin2

;

- for the problem 1|setup − times,N1, N2, pj = p|
∑

wjCj jobs in each
subset are ordered according to non-increasing weights, i.e., wj1 ≥
wj2 ≥ · · · ≥ wjn1

and wi1 ≥ wi2 ≥ · · · ≥ win2
;

- for the problem 1|setup− times,N1, N2, pj = p|
∑

Tj jobs in each sub-
set are ordered according to non-decreasing due dates, i.e., dj1 ≤ dj2 ≤
· · · ≤ djn1

and di1 ≤ di2 ≤ · · · ≤ din2
.

Proof. If in an optimal schedule Π two jobs which belong to the same subset
N1 or N2 are processed in violation of their corresponding order, then we can
interchange them in the schedule without increasing the objective function
value. �

Next, we present Algorithm 1 for the 1|setup−times,N1, N2, pj = p, rj|Cmax

problem and explain how it can be used for other problems considered in
this Section. Assume that jobs in N1 and N2 are ordered according to
Lemma 3. In this algorithm, we consider jobs i1, i2, . . . , in2 one-by-one. For
each job ik, k = 1, 2, . . . , n2, we have to take into account all positions
l, l = 0, 1, 2, . . . , n1, where position l means that job jl precedes job ik in
a constructed schedule and ik precedes job jl+1. If for the job ik a position
l is chosen, then for the job ik+1 only positions l, l + 1, . . . , n1 have to be
evaluated (see Lemma 3).

It is easy to establish a time bound for this algorithm. The sets of un-
scheduled jobs appearing in the arguments of the recursive procedure are of
the form:

{jl+1, jl+2, . . . , jn1 , ik, ik+1, . . . , in2},

i.e., they are completely characterized by the index pairs (k, l). The argu-
ments Sik−1

belong to the set Θ. Thus, we need to call function
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Algorithm 1. (F, πopt) := Sequence(1, 0,−p), where πopt is an optimal job
sequence and F = C∗

max is the minimal makespan.

Function Sequence(k, l, Sik−1
)

1: if k = n2 + 1 then
2: Schedule jobs jl+1, jl+2, . . . , jn1 from the time Sik−1

+p+st2 according
to rule (1);

3: σ := (jl+1, jl+2, . . . , jn1)
4: Return pair (Cjn1

, σ);
5: end if
6: if l = n1 then
7: Schedule jobs ik, ik+1, . . . , in2 from the time Sik−1

+p according to rule
(1);

8: σ := (ik, ik+1, . . . , in2)
9: Return pair (Cin2

, σ);
10: end if
11: S := Sik−1

;
12: fmin := ∞;
13: σmin := ();
14: for pos := l to n1 do
15: if pos = l then
16: Sik := max{rik , S + p};
17: If l = 0 then S := 0 else S := S + p + st2;
18: (f, σ) := Sequence(k + 1, l, Sik);
19: else
20: Sjpos := max{rjpos , S};
21: Sik := max{rik , Sjpos + p + st1};
22: (f, σ) := Sequence(k + 1, pos, Sik);
23: S := Sjpos + p;
24: end if
25: if fmin > f then
26: fmin := f ;
27: σmin := (jl+1, . . . , jpos, ik, σ)
28: end if
29: end for
30: Return pair (fmin, σmin);

12



  

Sequence(k, l, Sik−1
) at the most O(n · n · n4) = O(n6) times. The run time

of the function is O(n). So, the running time of Algorithm 1 is O(n7).
According to Lemma 3, Algorithm 1 constructs an optimal job sequence

in O(n7) time.
Notice that in [20] the algorithm presented does not take into account

release dates, although it also deals with ordered subsets. In the algorithm,
on each step j = 1, 2 . . . , n an unscheduled job is chosen to be inserted at
the end of a partial job sequence to minimize its cost. For problem 1|setup−
times, N1, N2, pj = p, rj|

∑
Cj, it does not lead to an optimal solution, e.g.,

for instance n1 = 3, n2 = 1, st1 = 1, st2 = 3, rj1 = 0, rj2 = rj3 = 4, ri1 = 3.
For problem 1|setup − times, N1, N2, pj = p|

∑
wjCj, it also does not lead

to an optimal solution, e.g., for instance n1 = 2, n2 = 1, st1 = 0, st2 =
100, wj1 = 1, wj2 = 3, wi1 = 2.
The function Sequence(k, l, Sik−1

) can be easily modified to solve the problem
STRSP2|rj|Cmax. We have to change lines 4 and 9 as follows:

4. Return pair (Cjn1
+ TAILright, σ);

9. Return pair (Cin2
+ TAILleft, σ);

To solve the problem 1|setup − times,N1, N2, pj = p, rj|
∑

Cj we have to
change the following lines:

4. Return pair (
∑n1

x:=l+1 Cjx , σ), where Cjx is the completion time of the
job jx in the partial schedule obtained from sequence σ, where jobs are
processed from the time Sik−1

+ p + st2;

9. Return pair (
∑n2

x:=k Cix , σ), where Cix is the completion time of the job
ix in the partial schedule obtained from sequence σ, where jobs are
processed from the time Sik−1

+ p;

25. If fmin > f + fcurrent then,

26. fmin := f + fcurrent;

where fcurrent is the total completion time of jobs in a partial sequence
(jl+1, . . . , jpos, ik) scheduled from time Sik−1

+ p. Remember that for the
problem 1|setup− times,N1, N2, pj = p, rj|

∑
Cj, jobs in N1 and N2 have to

be ordered according to Lemma 3.

13



  

Analogously, the procedure Sequence can be changed to solve problems
1|setup − times,N1, N2, pj = p|

∑
wjCj and 1|setup − times,N1, N2, pj =

p|
∑

Tj. Note that for these two problems |Θ| = O(n3), since all the release
dates are equal to 0, i.e., the running time of the modified algorithms for
these problems is equal to O(n6).

Let’s consider the following numerical instance of the problem (see Fig.1).
Here we have p = 2, st1 = 1, st2 = 2, n1 = 4, rj1 = 0, rj2 = 5, rj3 = 8, rj4 =
14, n2 = 2, ri1 = 1, ri2 = 6. In Algorithm 1, all schedules corresponding
to Lemma 3 are considered, an optimal of them is found. In Fig.1, three
of them are presented. Schedule 2 is an optimal schedule for the problems
1|setup − times,N1, N2, pj = p, rj|Cmax and 1|setup − times,N1, N2, pj =
p, rj|

∑
Cj, where Cmax = 16 and

∑
Cj = 57.

N
1

N
2

Schedule 1

Schedule 2

Schedule 3

0 181 t

Figure 1: A numerical instance

Theorem 1. The following problems are solvable in a polynomial time, in
O(n7) time for:

- 1|setup − times,N1, N2, pj = p, rj|Cmax and STRSP2|rj|Cmax,

- 1|setup − times,N1, N2, pj = p, rj|
∑

Cj and STRSP2|rj|
∑

Cj,

and in O(n6) time for:

- 1|setup − times,N1, N2, pj = p|
∑

wjCj and STRSP2||
∑

wjCj,
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- 1|setup − times,N1, N2, pj = p|
∑

Tj and STRSP2||
∑

Tj,

by Algorithm 1 and its modifications.

Proof. Algorithm 1 constructs a schedule with the minimal objective func-
tion value among schedules which correspond to Lemma 3, i.e. an optimal
schedule. The running time of the algorithm is presented above in the text.
�

5. Problems with Partially Ordered Subsets

Lemma 4. For the problem 1|setup − times,N1, N2, pj = p|
∑

wjUj, there
is an optimal left-shifted schedule, where on-time jobs from the same subset
N1 or N2 are ordered according to non-decreasing due dates, i.e., dj1 ≤ dj2 ≤
· · · ≤ djn1

and di1 ≤ di2 ≤ · · · ≤ din2
.

Lemma 5. Assume that jobs are ordered according to Lemma 4. For the
problem 1|setup− times,N1, N2, pj = p|

∑
Uj, there is an optimal left-shifted

schedule and such indexes x, 1 ≤ x ≤ n1, and y, 1 ≤ y ≤ n2, that only
jobs jx, jx+1, . . . , jn1 , iy, iy+1, . . . , in2 are on-time and processed according to
the order given by Lemma 4.

Both Lemmas 4 and 5 can be proven similarly to Lemma 3.

Theorem 2. The problem 1|setup−times,N1, N2, pj = p|
∑

Uj can be solved
in O(n7 log n) time.

Proof. According to Lemmas 4 and 5 for the problem
1|setup − times,N1, N2, pj = p|

∑
Uj, we have to choose indexes x and y,

such that x + y → max and jobs jx, jx+1, . . . , jn1 , iy, iy+1, . . . , in2 can all be
processed on-time at the beginning of a schedule. Thus, we have to take into
account at most (n1 + 1) log(n2 + 1) pairs (x, y). For each of these pairs,
we solve the problem 1|setup − times,N1, N2, pj = p|

∑
Tj with the set of

jobs {jx, jx+1, . . . , jn1 , iy, iy+1, . . . , in2} by a modification of Algorithm 1. If∑
Tj(π

∗) = 0, then pair (x, y) is feasible. �
For the problem 1|setup − times,N1, N2, pj = p|

∑
wjUj, a dynamic pro-

gramming polynomial time algorithm can be suggested. This algorithm is
based on the following assumptions. Note jobs in N = {H1, H2, . . . , Hn},
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where wH1 ≤ wH2 ≤ · · · ≤ wHn . If wHk
= wHk+1

, then dHk
≤ dHk+1

. Jobs
from N1 and N2 are noted and ordered according to Lemma 4. Let Hn ∈ N2

and Hn = ik. For Hn, a position in a schedule is defined by a pair (t, l), where
t ∈ Θ is the starting time for the job, the index l = 0, 1, . . . , n1 means that
on-time jobs from the subset {j1, j2, . . . , jl} precede the job Hn in a schedule
and on-time jobs from the subset {jl+1, jl+2, . . . , jn1} are scheduled after Hn.
A position (−, n1 + 1) means that the job Hn is late and processed at the
end of schedule from time T ∈ Θ.

Then, for each position (t, l) among O(n4) possible, we can decompose
the initial problem into two independent subproblems:

- with a set of jobs Nleft = {j1, j2, . . . , jl, i1, i2, . . . , ik−1} which have to
be processed in interval [0, t);

- with a set of jobs Nright = {jl+1, jl+2, . . . , jn1 , ik+1, ik+2, . . . , in2} which
have to be processed in interval [t + p, T ).

Denote Tmax = max{t|t ∈ Θ}. Note that for the 1|setup−times,N1, N2, pj =
p|

∑
wjUj problem, |Θ| = O(n3), since all release dates of jobs are equal to

0.
Next, we present Algorithm 2 to solve this problem. It is easy to establish

a time bound for this algorithm. The sets of unscheduled jobs appearing in
the arguments of the recursive procedure are in the form of

N ′ = {jl1 , jl1+1, . . . , jl2 , ik1 , ik1+1, . . . , ik2},

N ′
∩

{Hh+1, Hh+2, . . . , Hn} = ∅,

i.e., they are completely delineated by the five indices h, k1, k2, l1, l2. The
arguments t1, t2 belong to the set Θ.
Thus, we need to call function SequenceWU(h, t1, t2, I1, I2, k1, k2, l1, l2) at
most O(n5+3+3) times. The run time for this function is O(n4). So, the
running time of Algorithm 2 is O(n15). Note that if Hh /∈ N ′, then assign
h := maxx=1,...,h−1{Hx ∈ N ′}.

6. Conclusion

In this paper, the single-track railway scheduling problem with 2 stations
and Q segments was considered. A polynomial time reduction to the single-
machine scheduling problems with setup-times was presented. The reduction
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was made owing to an observation that trains from the same subset can
begin traveling every pmax time unit if they follow one-by-one. For some
objective functions and additional restrictions, these problems were solved
polynomially. In Table 3 polynomial time cases are presented.

Table 3: Complexity of algorithms
Railway problem Corresponding single-machine problem Running

time of
algorithms

STRSP2|rj|Cmax 1|setup − times,N1, N2, pj = p, rj|Cmax O(n7)
STRSP2|rj|

∑
Cj 1|setup−times,N1, N2, pj = p, rj|

∑
Cj O(n7)

STRSP2||
∑

wjCj 1|setup− times,N1, N2, pj = p|
∑

wjCj O(n6)
STRSP2||

∑
Tj 1|setup − times,N1, N2, pj = p|

∑
Tj O(n6)

STRSP2||
∑

Uj 1|setup − times,N1, N2, pj = p|
∑

Uj O(n7 log n)
STRSP2||

∑
wjUj 1|setup− times,N1, N2, pj = p|

∑
wjUj O(n15)

Motivated by problems of single path trains scheduling, this paper was
finally focused on solving equivalent single machine-scheduling problems and
proofs of their complexity.

As a perspective for our research, we have sought how to reduce the com-
plexity of algorithms proposed. Another question arises for single-machine
equal-processing-time scheduling problems without setup-times and prece-
dence relations: "Are there problems with equal processing time of jobs,
which are NP-hard?"
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Algorithm 2.
(F, SCHEDULEopt) := SequenceWU(n, 0, Tmax, 0, 0, 0, n2, 0, n1), where
SCHEDULEopt is an unfeasible job schedule, which can be transformed
to an optimal one by rescheduling jobs started at time Tmax, and F =∑

wj(1 − Uj) is the maximal weighted number of on-time jobs.
Function SequenceWU(h, t1, t2, I1, I2, k1, k2, l1, l2)

1: fmax := −∞;//weighted number of on-time jobs;
2: σmax := {};//a set of pairs (h, Sh), i.e., a schedule.
3: if Hh ∈ N1 then
4: I = 1; pos1 := k1; pos2 := k2;
5: if I1 = 1 then tmin := t1;
6: if I1 = 2 then tmin := t1 + st2;
7: if I1 = 0 then tmin := 0;
8: if I2 = 1 then tmax := t2 − p;
9: if I2 = 2 then tmax := t2 − p − st1;

10: if I2 = 0 then tmax := Tmax;
11: else
12: I = 2; pos1 := l1; pos2 := l2;
13: if I1 = 1 then tmin := t1 + st1;
14: if I1 = 2 then tmin := t1;
15: if I1 = 0 then tmin := 0;
16: if I2 = 1 then tmax := t2 − p − st2;
17: if I2 = 2 then tmax := t2 − p;
18: if I2 = 0 then tmax := Tmax;
19: end if
20: for pos := pos1 to pos2 do
21: for each t ∈ Θ, tmin ≤ t ≤ tmax, t + p ≤ dHh

do
22: if Hh ∈ N1 then
23: Let jl = Hh;
24: (σ1, f1) := SequenceWU(h − 1, t1, t + p, I1, I, k1, pos, l1, l − 1);
25: (σ2, f2) := SequenceWU(h − 1, t + p, t2, I, I2, pos, k2, l + 1, l2);
26: else
27: Let ik = Hh;
28: (σ1, f1) := SequenceWU(h− 1, t1, t + p, I1, I, k1, k− 1, l1, pos);
29: (σ2, f2) := SequenceWU(h− 1, t + p, t2, I, I2, k + 1, k2, pos, l2);
30: end if
31: if f1 + f2 + wHh

> fmax then
32: fmax := f1 + f2 + wHh

;
33: σmax := σ1

∪
σ2

∪
{(h, t)};

34: end if
35: end for
36: end for
37: //In addition, we consider the case, when the job Hh is late.
38: (σ1, f1) := SequenceWU(h − 1, t1, t2, I1, I2, k1, k2, l1, l2);
39: if f1 > fmax then
40: fmax := f1;
41: σmax := σ1

∪
{(h, Tmax)};

42: end if
43: Return pair (fmax, σmax);
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Abstract

In this paper, the single-track railway scheduling problem with two stations
and several segments of the track is considered. Two subsets of trains are
given, where trains from the �rst subset go from the �rst station to the
second station, and trains from the second subset go in the opposite direc-
tion. The speed of trains over each segment is the same. A polynomial
time reduction from the problem under consideration to a special case of the
single-machine equal-processing-time scheduling problem with setup times is
presented. Di�erent polynomial time algorithms are developed for special
cases with divers objective functions under various constraints. Moreover,
several theoretical results which can be ranked in a series of similar inves-
tigations of NP-hardness of equal-processing-time single-machine scheduling
problems without precedence relations are obtained.
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A single track railway scheduling for 2 stations and several segments is considered.  
Often this situation concerns the case of maintenance of one track of a double track line. 
A reduction to the single machine scheduling problems with setup-times is presented.  
Polynomial time solution algorithms were developed. 
Can serve as a basis to develop efficient algorithms for decision support systems. 
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