
Finding the Pareto Set for a Bi-criteria Scheduling Problem on a
Single Machine with Equal Processing Times1

Alexander A. Lazarev

V.A. Trapeznikov Institute of Control Sciences of RAS, Moscow,
Russian Federation;

Lomonosov Moscow State University, Moscow, Russian Federation;
Moscow Institute of Physics and Technology, Dolgoprudny,

Russian Federation;
National Research University Higher School of Economics,Moscow, Russian

Federation
e-mail: jobmath@mail.ru

Dmitry I. Arkhipov

Institute of Control Sciences of RAS, Moscow, Russia
e-mail: miptrafter@gmail.com

Frank Werner

Faculty of Mathematics, Institute of Mathematical Optimization,
Otto-von-Guericke University Magdeburg, Germany

email: frank.werner@ovgu.de

January 7, 2015

Abstract: The following special case of the classical NP-hard scheduling problem 1|rj |Lmax is
considered. There is a set of jobs N = {1, 2, . . . , n} with identical processing times pj = p for
all jobs j ∈ N . All jobs have to be processed on a single machine. The optimization criterion is
the minimization of maximum lateness Lmax. We analyze algorithms for the makespan problem
1|rj |Cmax, presented by Garey et al. (1981) and Simons (1978) and give two polynomial algorithms
to solve the problem under consideration and to construct the Pareto set with respect to the criteria
Lmax and Cmax. The complexity of the presented algorithms is O(Q · n log n) and O(n2 log n),
respectively, where 10−Q is the accuracy of the input-output parameters.

Keywords: scheduling, single machine, equal processing times, polynomial algorithms, bi-criteria
problem

MSC: 90B35, 90C29

1Supported by RFBR-RZD grant 13-08-13190

1

1 Introduction

In this paper, the following scheduling problem is considered. There is a set of jobsN = {1, 2, . . . , n}
and a single machine to execute jobs from this set. For each job j ∈ N , a release date rj and a due
date dj are given. The processing time p is the same for all jobs of the set N . We define a schedule
(or sequence) π as the execution sequence K1(π),K2(π), . . . ,Kn(π), where

K1(π) ∪K2(π) ∪ · · · ∪Kn(π) ≡ N.

The equality Ki(π) = j means that job j ∈ N is executed under the ordinal number i in the
schedule π. The execution of the job Ki(π) = j starts at time

Rj(π) = max{CKi−1(π), rKi(π)}

(where CK0(π) = 0) and finishes at time

Rj(π) + p = Cj(π),

where Cj(π) is the completion time of the job j ∈ N . Let us denote the lateness of job j under the
schedule π as

Lj(π) = Cj(π)− dj .
The maximum completion time and the maximum lateness are denoted as Cmax and Lmax, respec-
tively. Let us call the schedule π allowable for the set N if all jobs according to the schedule π are
executed without preemptions and intersections. We denote the set of all allowable schedules as Π.
The goal is to find an allowable schedule π ∈ Π, which satisfies the following optimization criterion:

min
π∈Π

max
j∈N

Lj(π).

This problem 1|rj , pj = p|Lmax is a special case of the classical NP-hard scheduling problem
1|rj |Lmax. For the special case of the bi-criteria problem 1|rj |Lmax, Cmax with the conditions{

d1 ≤ · · · ≤ dn
d1 − p1 − r1 ≥ · · · ≥ dn − pn − rn

Lazarev [1] has constructed a polynomial algorithm of complexity O(n3 log n) for finding the Pareto
set. It has been shown that this set contains at most n schedules. We note that a recent survey for
solving parallel and single machine scheduling problems with equal processing times was given in
[2]. In this paper, we consider some approaches to obtain an optimal solution for this special case
and a related bi-criteria problem in polynomial time.

The remainder of the paper is as follows. In Section 2, we briefly discuss the trisection method
applied in this paper. In Section 3, we discuss an auxiliary problem: the minimization of the
maximum completion time subject to the constraint that the maximum lateness is bounded by a
given constant. The main problem is considered in Section 4. An optimal solution is determined for
the single machine problem with release dates for the bi-criteria problem of minimizing maximum
lateness and the makespan.

2 Trisection search method

A simple way to obtain an optimal solution is the trisection method. In the first step, we find
boundary values on the objective function Lmax. For each job j ∈ N , we have:

dj + Lj = Cj ≥ rj + p.

2

Figure 1: An example of the use of the trisection method.

Hence, a lower bound LB0 on the optimal value Lmax is as follows:

LB0 = min
j∈N
{rj − dj}+ p.

An upper bound UB0 on the optimal value Lmax can be given as follows:

UB0 = Lmax(πC),

where πC is an optimal schedule for the problem 1|rj , pj = p|Cmax. The fastest algorithm for
solving this problem was presented in [3]. Let us use this algorithm to construct a schedule πC
with O(n log n) operations.

After finding the bounds LB and UB, we apply the trisection search method to find a solution of
the problem as follows. In the first step, we divide the interval [LB0, UB0] into three subintervals.
Then, we set deadlines for all jobs j ∈ N as follows:

D1
j = dj +

2

3
LB0 +

1

3
UB0,

D2
j = dj +

1

3
LB0 +

2

3
UB0.

Then we use the algorithm presented in [3] to construct the schedules π1
C and π2

C for the problems
1|rj , D1

j , pj = p|Cmax and 1|rj , D2
j , pj = p|Cmax, respectively. If the schedule π1

C exists, set:


LB1 := LB0

UB1 := 2LB0+1UB0
3

If the schedule π1
C does not exist and the schedule π2

C exists, we set:
LB1 := 2LB0+1UB0

3

UB1 := 1LB0+2UB0
3

Otherwise, we set: 
LB1 := 1LB0+2UB0

3

UB1 := UB0

This procedure is repeated until the difference UB − LB is not larger than the accuracy 10−Q of
the input-output parameters. An example for the application of the trisection method is illustrated
in Figure 1.

The number of necessary steps is equal to

log3[(UB0 − LB0) · 10Q].

In each step, the two schedules π1
C and π2

C are constructed. Hence, the total complexity is given
by:

log3

[
(UB0 − LB0) · 10Q

]
· 2O(n log n) = O(Q · n log n).

3

3 The auxiliary problem

3.1 Formulation of the auxiliary problem

Now we consider a second approach. We have to formulate an auxiliary problem to construct the
second algorithm. We consider the same set of jobs N = {1, 2, . . . , n} and a bound on the maximum
lateness y. The goal is to construct a schedule satisfying the following optimization criterion:

min
π∈Π

max
j∈N

Cj(π)|Lmax(π) < y.

For each set of due dates d1, . . . , dn and the bound on the lateness y, deadlines Dj can be calculated
by the following formula:

Dj = dj + y.

The auxiliary problem is the same as problem 1|rj , pj = p|Cmax, but with one exception: the
completion time Cj of the job j ∈ N may not exceed its deadline Dj , i.e., we must have:

Cj < Dj .

An allowable schedule satisfying this restriction is called feasible. To construct the solution of the
auxiliary problem, we consider the approach presented in [4]. Next, we briefly recall the main idea
and the important notations from this paper.

The algorithm works as follows. While the completion times of all jobs are not larger than its
deadlines, schedule the jobs according to the algorithm, presented in [5]. If for any job X ∈ N , the
inequality

CX ≥ DX

holds, then execute the special procedure CRISIS(X) described in Section 3.2. This procedure
finds the job A, which is already scheduled with the latest completion time, but for which

DA > DX

holds. This job is called Pull(X), the time moment when its execution starts is denoted as tA,X
and all jobs which are already scheduled after Pull(X) and X constitute the restricted set S(A,X]
(see Fig. 2). The set of jobs, which belong to S(A,X] and do not belong to any restricted subset
of S(A,X] is denoted as S(A,X]. If S(A,X] is a restricted set which is properly contained in
S′ ⊆ N , then S(B,Z] is called an inner restricted set of S′. A first-level restricted set of S′

is an inner restricted set of S′ which is not contained in any other inner restricted set of S′.
Simons [4] has shown that the number of jobs of S(A,X] which must be scheduled before the
initial first-level restricted set of S(A,X], between any two first-level restricted sets, or after the
final first-level restricted set is invariant over all possible schedules. We refer to the intervals in
the schedule in which the jobs of S(A,X] must be scheduled as first-level intervals of S(A,X].
The procedure CRISIS(X) reschedules the jobs of the set {A} ∪ S(A,X]. The procedure fails
when a job Pull(X) for a crisis job X does not exist. After a successful execution of the procedure
CRISIS(X), Schrage’s algorithm [5] is used to schedule the jobs. Such a scheduling is repeated
until any call of the procedure CRISIS() fails or all jobs from the set N have been successfully
scheduled.

3.2 Procedures for the auxiliary algorithm

This algorithm consists of the following procedures: Schrage’s algorithm [5]as well as the proce-
dures CRISIS(X) and INV ASION(S(C,W], rS(C,W]) from [4]. They are as follows.

4

Figure 2: Job X experiences a crisis.

SCHRAGE’s ALGORITHM:

1. Find the earliest release time:
t := min

j∈N
rj .

2. Find a non-processed job, which is released at the moment t:
i := arg min

j:rj≤t
Dj .

3. Process the job i, add this job to π and remove it from N :
Ci := t+ p;
π := {π, i};
N := N \ {i};

3. If N 6= ∅, then:

set the time t := max

{
Ci,min

j∈N
ri

}
) and go to step 2.

4. Else:
return(π).

CRISIS(X)

1. Assume that the job X belongs to a minimal restricted set S′. If the job X does not belong
to any restricted set, then S′ ≡ N .
Backtrack over the first-level jobs of S′ looking for a job Pull(X). Let A = Pull(X) and
define S(A,X] to be a restricted set. If no job Pull(X) exists, report a failure and stop.

2. Count the number of jobs of the set S(A,X] in each first-level interval of S(A,X]. Increase
the counter of the initial first-level interval by 1.

3. Remove the jobs S(A,X] from the schedule.

4. i := 1.

5. While the required number of jobs of the set S(A,X] has not been scheduled in the ith first-
level interval, schedule the jobs of the set S(A,X] using Schrage’s algorithm. (If i = 1, the
first-level interval begins at time rS(A,X]; otherwise, the interval begins at the time at which
the preceding restricted set is completed).

a) If some job Z experiences a crisis, call the procedure CRISIS(Z).

b) If some job Y overlaps with the restricted set S(C,W], set rS(C,W] to be the time at
which job Y is completed and call the procedure INV ASION(S(C,W], rS(C,W]).

6. If all jobs of the set S(A,X] have been scheduled, then return;
otherwise i := i+ 1.

5

7. Go to step 5.

INV ASION(S(C,W], rS(C,W])

1. Count the number of jobs of the set S(A,X] in each first-level interval of the set S(A,X].

2. Steps 2-6 are identical to steps 3-7 of the subroutine CRISIS.

3.3 Algorithm for the auxiliary problem

The solution of the auxiliary problem 1|rj , pj = p,Dj |Cmax, presented in [4], is as follows. Find the
schedule π by means of Schrage’s algorithm and use then the auxiliary algorithm.

AUXILIARY ALGORITHM

1. While the set N has not been completely checked under the schedule π,
check whether for all jobs j ∈ N the inequality Cj(π) < Dj holds;
otherwise stop (the set N has been successfully scheduled).

a) If some job X experiences a crisis, call the procedure CRISIS(X).

b) Else return(π).

The two following theorems from [4] can be used.

Theorem 1 After the execution of the auxiliary algorithm, an optimal set with respect to the
criterion Cmax is constructed, provided that the schedule π is constructed by Schrage’s algorithm.

The proof of this theorem was given in [4].

Theorem 2 Let S(A,X] be a restricted set. If a feasible schedule exists, then the assertions 1-
4 hold for all feasible schedules. Each time a procedure CRISIS() or INV ASION() is used to
schedule the jobs of the set S(A,X], the following assertions 1-3 hold:

1. The first job of the set S(A,X] is always scheduled to start in the interval (tA,X , tA,X + p),

2. Only jobs from the set S(A,X] can be scheduled completely in the interval (tA,X , Dx].

3. The set S(A,X] cannot be scheduled such that a job starts before time rS(A,X].

When the program returns from a call of procedure CRISIS() or INV ASION(), the follow-
ing assertion holds:

4. The set S(A,X] cannot be completed at an earlier time than the time at which it is currently
scheduled to be completed.

The proof of this theorem was given in [4].

6

4 Solution of the main problem

Next, we consider the main problem 1|rj , pj = p|Lmax. We present an algorithm to obtain the
Pareto set of schedules with respect to the criteria Lmax and Cmax. First, we introduce a proce-
dure CHECK(π,N, y) which is as follows.

CHECK(π,N, y)

1. Set the bound y.

2. Set the deadlines Di := di + y.

3. If all jobs from the set N have been scheduled, go to step 7.

4. While t is not in the interval [rS(A,X], DX) for any restricted set S(A,X] from the schedule π
that has not yet been completely performed, execute the jobs under π∗ according to Schrage’s
algorithm.

5. Otherwise, execute only the jobs from the set S(A,X] under the schedule π, and then go to
step 3.

6. If in steps 4-5 any job Y experiences a crisis, run the procedure CRISIS(Y).

7. return(π∗).

Lemma 1 Let π and π′ be the schedules constructed by the auxiliary algorithm for the bounds y
and y′, respectively, and

π∗ = CHECK(π,N, y).

If y < y′, then
CHECK(π,N, y) = π′.

holds.

Proof: Assume the contrary. We compare the schedules CHECK(π,N, y) and π′ from t = 0 up
to Cmax. Suppose that at some moment t, the first difference was found. The possible cases of
such a difference are illustrated in Figure 3, and they are as follows:

1) Two different jobs start at the moment t.

This type of a difference is impossible, because both algorithms ensure that at the moment t
only the job with a minimal deadline can start its execution.

2) There is an execution of the job X under the schedule π∗ and an idleness under
the schedule π′ at the moment t.

The job X is not executed in the sequence π′ in spite of rX ≤ t. Hence, we have X = Pull(Y)
in the schedule π. According to the time rS(X,Y] and Theorem 2, the jobs from the set S(X,Y]
cannot finish their execution in the schedule π∗ before the time DY (π′) because the first of
them starts at time tX,Y + p. Hence, some jobs from the set S(X,Y] experience a crisis in
the schedule π∗. In the last call of CRISIS(Y ′), Y ′ ∈ S(X,Y], we have CRISIS(Y ′) = X.
Thus, the job X cannot start at the moment t.

7

Figure 3: Cases of the possible difference of the schedules CHECK(π,N, y) and π′.

3) There is an execution of the job X under the schedule π′ and an idleness under
the schedule π∗ at the moment t.

The idleness is related to some restricted set S(A, Y] from the set of jobs in π. The schedule
π′ is feasible for the set of jobs N and the deadlines Di(π

∗) since y < y′. According to
Theorem 2, the jobs from the set S(A, Y] cannot start their execution under the schedule π′

at the moment tA,Y + p and finish their execution until the moment DY (π∗).

Hence, all above three cases are impossible and there are no differences between the schedules π∗

and π′.

Q.E.D.

Next, we describe the main algorithm M to obtain the Pareto set with respect to the criteria Lmax
and Cmax.

MAIN ALGORITHM (Algorithm M)

1. Set the bound y0 := +∞.

2. Construct the schedule π1 according to the auxiliary algorithm,
and add it to Φ, i.e.: Φ := {π1};
set the counter k := 1;
set the bound y1 := Lmax(π1).

3. Construct the schedule πk+1 = CHECK(πk, N, yk).

a) If the schedule CHECK(πk, N, y) exists, then:
add πk+1 to the set Φ, i.e.: Φ := Φ ∪ πk;
set yk = Lmax(πk);
increase the counter k, i.e.: k := k + 1;
repeat step 3.

b) Otherwise, return(Φ).

Lemma 2 If any job becomes a crisis job for the second time, then the algorithm stops.

8

Proof: When a restricted set is formed, all the jobs in this set have deadlines not greater than the
deadline of the crisis job which triggered the restricted set. Consequently, if that job experiences
a crisis for a second time, the algorithm will not find a job to pull and so there will be a failure in
step 1 of the subroutine CRISIS().

Q.E.D.

Theorem 3 After the execution of Algorithm M , the Pareto set of schedules Φ, |Φ| ≤ n + 1,
according to the criteria Lmax and Cmax has been constructed, and the schedule π∗ is an optimal
solution for the main problem.

Proof: When Algorithm M has terminated, the set of schedules Φ has been constructed. For each
pair of consecutive schedules πx, πx+1 of the set Φ, the inequalities{

Lmax(πx+1) < yx+1

Lmax(πx) < yx.

hold. Moreover, for these two schedules the inequality

Cmax(πx+1) ≥ Lmax(πx)

also holds, because πx is an optimal schedule with respect to the criterion Cmax|Lmax < yx and
yx+1 < yx. Hence, we have

Lmax(π|Φ|−1) < · · · < Lmax(π1) < Lmax(π0),

Cmax(π|Φ|−1) ≥ · · · ≥ Cmax(π1) ≥ Cmax(π0).

This implies that the schedule π∗ = π|Φ|−1 is an optimal schedule with respect to the criterion
Lmax. In each call of the procedure CHECK() by Algorithm M , the subroutine CRISIS() is
executed at least once, because the schedules πk and πk+1 are different. Hence, we get:

|Φ| ≤ n+ 1.

Q.E.D.

Lemma 3 The complexity of Algorithm M is O(n2 log n).

Proof: According to Theorem 1, for each job X ∈ N , the procedure CRISIS(X) is executed
not more than once. Hence, the total number of running the procedure CRISIS() is not more
than n. During the procedure CRISIS(X), each job from the set N is rescheduled not more than
once. Hence, each job is scheduled not more than n + 1 times by Schrage’s algorithm during the
construction of the schedules π1, . . . , π|Φ|, and not more than n times due to the execution of the
procedure CRISIS(). Hence, the total number of reschedulings is not more than (2n + 1) · n. It
is still necessary to multiply this result by the factor log n due to the use of the heaps. This leads
to a total complexity of O(n2 log n).

Q.E.D.

9

5 Concluding Remarks

In this paper, two approaches to solve the problem 1|rj , pj = p|Lmax were presented. In addition,
the Pareto set with respect to the criteria Lmax and Cmax was constructed. The efficiency of these
approaches depends on the number of jobs and the accuracy of the input-output parameters. The
core idea of the second approach was to construct a schedule with lower Lmax value than in the
previous step, but to use the knowledge obtained in the previous steps. This allowed us to adopt
a makespan algorithm to the criterion Lmax without a substantial increase of the complexity.

References

[1] Lazarev, A.A.: The Pareto-optimal set of the NP-hard problem of minimization of the maximum
lateness for a single machine. Journal of Computer and Systems Sciences International. M.: SP
MAIK Nauka/Interperiodica. 2006. 45, No. 6, 943 - 949.

[2] Kravchenko, S.A. and Werner, F.: Parallel Machine Problems with Equal Processing Times.
Journal of Scheduling. Vol. 14, No. 5, 2011, 435 - 444.

[3] Garey, M.R.; Johnson, D.S.; Simons, B.B. and Tarjan, R.E.: Scheduling unit-time tasks with
arbitrary release times and deadlines. SIAM J. COMPUT. Vol. 10, No. 2, May 1981, 256 - 269.

[4] Simons, B.B.: A fast algorithm for single processor scheduling. In 19th Annual Symposium on
Foundations of Computer Science (Ann Arbor, Mich., 1978), 246-252.

[5] Schrage, L.: Solving Resource-Constrained Network Problems by Implicit Enumeration: Non
Preemptive Case. Operations Research. Vol. 18 Issue 2, 1970, 263 - 278.

10

