ПСЕВДОЕДИНИЦЫ В РАСШИРЕНИИ МУЛЬТИПЛИКАТИВНОЙ ГРУППЫ ПО МОДУЛЮ КРИПТОСИСТЕМЫ RSA

PSEUDOUNITS IN ETH EXPANSION OF A MULTIPLICATIVE GROUP MODULO RSA CRYPTOSYSTEM

¹Ульянов М.В., д-р. техн. наук, проф.

¹Национальный исследовательский университет Высшая школа экономики ²Сметанин Ю.Г., д-р. физ.-мат. наук, г.н.с. ²Вычислительный центр РАН им. А.А. Дородницына

Аннотация

В статье рассматривается расширение до полной системы вычетов мультипликативной группы, порожденной составным модулем, соответствующим модулю в криптосистеме RSA. Вводится понятие псевдоединицы по модулю RSA и исследуются свойства псевдоединиц. Приводится формула для вычисления псевдоединиц по модулю RSA. Данная статья имеет теоретический характер, однако описанные в ней свойства псевдоединиц полезны в современных информационных технологиях при построении и анализе криптостойкости модифицированных схем инфровой подписи и обеспечении информационной безопасности и отказоустойчивости информационных и инфо-коммуникационных систем.

Ключевые слова: группы, системы вычетов, RSA, китайская теорема об остатках, псевдоединицы.

Abstract

Expansion of a multiplicative group modulo composite number in RSA cryptosystem up to the complete residual system is considered. A notion of pseudounit is proposed. Properties of pseudounits are investigated. A formula for pseudounits modulo RSA is presented.

Keywords: groups, residual systems, RSA, Chinese residue system, pseudounits.

1. Введение

Вопросы построения и анализа криптосистем с открытым ключом и схем электронной подписи, основанных на теоретико-числовых методах, привели к расширению интереса к свойствам сравнений по модулю составного числа. В классической теории чисел этот вопрос не относился к числу вопросов, вызывающих наибольший интерес, и авторам не удалось найти опубликованных результатов о числе решений степенных уравнений в кольцах по модулю составного числа. В связи с этим в статье рассматривается расширение мультипликативной группы, порожденной составным модулем, соответствующим модулю в криптосистеме RSA, до полной системы вычетов. Элементы этого расширения обладают рядом особенностей, но основной является наличие чисел, обладающих свойствами единицы. Изучению особенностей этого расширения, введению понятия псевдоединицы в расширении группы по модулю RSA и исследованию свойств псевдоединиц и посвящена настоящая статья.

2. Обозначения и терминология

Далее в тексте статьи авторы используют следующие, как общепринятые в теории чисел [1], так и оригинальные обозначения; рассматриваются только неотрицательные целые числа:

 $Z_{+} = N \cup \{0\}$ — множество неотрицательных целых чисел;

 $n = p \cdot q$ — модуль криптосистемы RSA [2], p, q — простые нечетные числа;

 $\varphi(n) = (p-1)\cdot(q-1)$ — функция Эйлера для $n = p \cdot q$;

 $a \operatorname{mod}_m = r$ — неотрицательный остаток от деления: $a = k \cdot m + r, 0 \le r \le m - 1$;

 $a \equiv b \pmod{m}$ — символ сравнения (К.Ф. Гаусс): числа a, b принадлежат одному классу эквивалентности по модулю m , т.е. $a \bmod_m = b \bmod_m$;

HOД(a,b) — наибольший общий делитель a и b;

 $*_{\mathrm{mod}_n}$ — операция умножения по модулю $n: a (*_{\mathrm{mod}_n})b = (a \cdot b) \mathrm{mod}_n$

 $Z_n^* = \{z \mid z \in Z_+, z < n, \text{ HOД}(z,n) = 1\}$ — множество чисел, меньших и взаимно простых с n;

 $Z_n = \{z \mid z \in Z_+, z < n, \}$ — расширение Z_n^* до полной системы вычетов по модулю n .

 $\left< Z_n^*, *_{{
m mod}_n} \right>$ — алгебраическая структура — мультипликативная группа вычетов по моду-

лю n. Исторически эта структура также обозначается через \mathbf{Z}_n^* (в жирном начертании), и далее под \mathbf{Z}_n^* авторы понимают именно мультипликативную группу;

 $a^{-1} (\operatorname{mod} n)$ — элемент, обратный к a в группе \mathbf{Z}_n^* ;

 $\left\langle Z_n, *_{\mathrm{mod}_n} \right\rangle$ — алгебраическая структура, определенная на полной системе вычетов по модулю n. Мы будем обозначать эту структуру через \mathbf{Z}_n , по аналогии с \mathbf{Z}_n^* . Заметим, что \mathbf{Z}_n уже не является группой, поскольку содержит числа, кратные p и q, для которых не существует обратных элементов в Z_n . Структура \mathbf{Z}_n с операцией умножения по модулю n является моноидом и содержит делители нуля.

 D_n — подмножество чисел множества $Z_n\setminus\{0\}$, не входящих в группу \mathbf{Z}_n^* . Очевидно, что эти числа имеют вид $a=kp,\,k\in\{1,\ldots,q-1\}$ или $a=lq,\,l\in\{1,\ldots,p-1\}$ и являются делителями нуля в \mathbf{Z}_n . Собственно говоря, множество D_n и есть расширение множества Z_n^* до $Z_n\setminus\{0\}$.

3. Особенности моноида \mathbf{Z}_n при $n=p\cdot q$

Моноид \mathbf{Z}_n при $n=p\cdot q$ является основной структурой, на которой действует криптосистема RSA. В соответствии с теоремой Эйлера $\forall a\in Z_n^*\ a^{\phi(n)}\equiv 1 \pmod n$, и, следовательно $a^{\phi(n)+1}\equiv a \pmod n$, а если a< n, то $a^{\phi(n)+1} \mod_n=a$, что и обеспечивает работоспособность RSA в том случае, если $a\in Z_n^*$. Однако основное (в смысле криптосистемы RSA) свойство расширения множества Z_n^* состоит в том, что криптосистема работает для любых чисел из Z_n . Утверждение 1.

$$\forall a \in Z_n \ a^{\varphi(n)+1} \bmod_n = a \ . \tag{1}$$

Приведем доказательство этого утверждения, содержащееся в [2]: Доказательство

Полагая $1 \le a < n$, и учитывая, что $\varphi(n) = (p-1) \cdot (q-1)$, имеем

$$a^{\varphi(n)+1} = a \cdot a^{\varphi(n)} = a \cdot a^{(p-1)\cdot(q-1)}$$

и, следовательно, применяя теорему Эйлера отдельно для числа p, получаем

$$a^{\varphi(n)+1}(\operatorname{mod} p) \equiv a \cdot (a^{(p-1)})^{(q-1)}(\operatorname{mod} p) \equiv a \cdot 1^{(q-1)}(\operatorname{mod} p) \equiv a(\operatorname{mod} p), \tag{2}$$

аналогично, для числа q:

$$a^{\varphi(n)+1}(\operatorname{mod} q) \equiv a(\operatorname{mod} q). \tag{3}$$

В силу китайской теоремы об остатках из (2) и (3) следует, что

$$\forall a \in Z_n \ a^{\varphi(n)+1} \equiv a \pmod{p \cdot q} \Rightarrow a^{\varphi(n)+1} \mod_{p \cdot q} = a$$

и, поскольку $p \cdot q = n$, то (1) доказано.

Конец доказательства.

4. Понятие псевдоединицы в расширении \mathbf{Z}_n^*

Отметим одну интересную особенность моноида ${\bf Z}_n$ с носителем $Z_n=Z_n^*\cup D_n\cup\{0\}$ при $n=p\cdot q$, т.е. для модуля криптосистемы RSA. Очевидно, что при $a\not\in Z_n^*$, т.е. при $a\in D_n$ или при a=0 теорема Эйлера не справедлива, следовательно, мы имеем

$$a^{\varphi(n)} \operatorname{mod}_n = x$$
.

Очевидно, что $x \in Z_n$, однако значение x может быть как равно нулю или единице, так и принадлежать группе \mathbf{Z}_n^* , или же быть элементом из множества D_n . Теорема Эйлера не отвечает на этот вопрос.

Утверждение 2.

$$\forall a \in D_n \ a^{\varphi(n)} \bmod_n = x \Longrightarrow x \in D_n. \tag{4}$$

Доказательство

Докажем, что $x \neq 1$. В предположении, что x = 1, положим a = kp и, подставляя в (4), получаем

$$(k \cdot p)^{\varphi(n)} = r \cdot p \cdot q + 1 \Rightarrow (k \cdot p)^{\varphi(n)} - r \cdot p \cdot q = 1$$

но слева $(k \cdot p)^{\varphi(n)} - r \cdot p \cdot q) \mod_p = 0$, в то время как справа $1 \mod_p = 1$, следовательно $x \neq 1$. Другая возможность для $a \in D_n$ — значения a = lq рассматривается аналогично.

Докажем, что $x \notin Z_n^*$. Предположим, что a = kp и $x \in Z_n^*$, тогда в силу теоремы Эйлера $x^{\varphi(n)} \bmod_n = 1 \Longrightarrow (k \cdot p)^{\varphi(n) \cdot \varphi(n)} = r \cdot p \cdot q + 1,$

невозможность этого доказывается аналогично случаю x=1, точно также проводится и доказательство для значений a вида lq.

Остаются два случая: x=0 или $x\in D_n$. Случай x=0 невозможен, поскольку при a=kp значение k< q , а при a=lq значение l< p , и, следовательно, $a^{\varphi(n)}$ не делится нацело на $n=p\cdot q$, поскольку p и q — простые нечетные числа. Следовательно $x\in D_n$. Конец доказательства.

Таким образом, для $a \in D_n$ $a^{\varphi(n)} \bmod_n = x$, и в силу утверждения 2 значение $x \in D_n$, но с другой стороны выполняется свойство RSA: $a^{\varphi(n)+1} \bmod_n = a$, что приводит к равенству

$$(a \cdot x) \operatorname{mod}_{n} = a, x \in D_{n}, \tag{5}$$

причем нас интересует значение x, порожденное условием

$$x = a^{\varphi(n)} \bmod_n. \tag{6}$$

Определение

Значения x, обладающие свойством единицы в силу (5), и порожденные соотношением (6), сами при этом не равные единице, и принадлежащие расширению группы \mathbf{Z}_n^* до моноида \mathbf{Z}_n , мы будем называть далее *псевдоединицами* по модулю криптосистемы RSA. *Конец определения*.

5. Постановка задачи

Таким образом, *объектом исследования* в настоящей статье является алгебраическая структура, состоящая из множества Z_n и операции умножения по модулю n — $\mathbf{Z}_n = \left\langle Z_n, * \operatorname{mod}_n \right\rangle$. *Предметом* исследования являются псевдоединицы в структуре \mathbf{Z}_n .

Авторы ставят перед собой следующие задачи:

- 1. Определить число псевдоединиц в ${\bf Z}_n$.
- 2. Указать способ вычисления значений этих псевдоединиц.
- 3. Исследовать свойства псевдоединиц.

6. Исследование псевдоединиц по модулю криптосистемы RSA

Прежде всего отметим, что при $a \mod_n = 0$ любое значение x удовлетворяет равенству (5), а значение x = 0 удовлетворяет и условию (6). Таким образом, x = 0 при $a \mod_n = 0$ является вырожденной псевдоединицей и далее рассматриваться не будет.

Рассмотрим далее значения $x \in D_n$. Предположим, что a = kp и подставим это значение в (5) при $n = p \cdot q$

$$(kp \cdot x) \mod_{p \cdot q} = kp \implies kp \cdot x = m \cdot pq + kp \Rightarrow x = \frac{mq}{k} + 1,$$
 (7)

Поскольку $x \in Z_n$, т.е. является целым, то в (7) число m должно иметь вид $m = r \cdot k$, и, следовательно, x представим в виде x = rq + 1, т.е.

$$x \bmod_q = 1. (8)$$

Поскольку $x \in D_n$ по утверждению 2, и x не может быть кратен q в силу (8), то $x \bmod_p = 0$, поскольку числа не кратные q в D_n имеют вид $k \cdot p$. Таким образом, для a = kp псевдоединица x представима в системе счисления в остатках по p и q в виде:

$$x = \begin{bmatrix} 0,1 \end{bmatrix}_{p,q}. \tag{9}$$

Обозначим певдоединицу для значений a вида kp через 1_p . Рассуждая аналогично при a=lq , из D_n получаем представление псевдоединицы для элементов из D_n вида lq :

$$x = \begin{bmatrix} 1, 0 \end{bmatrix}_{p,q} \tag{10}$$

и вводим соответствующее обозначение — $\mathbf{1}_q$.

 Легко видеть, что в D_n существует ровно две псевдоединицы — $\mathbf{1}_p$ и $\mathbf{1}_q$.

В системе счисления в остатках для двух модулей существует красивая формула перевода в обычное представление [3]:

$$[\alpha, \beta]_{p,q} \equiv (p \cdot p^{-1} (\operatorname{mod} q) \cdot \beta + q \cdot q^{-1} (\operatorname{mod} p) \cdot \alpha) (\operatorname{mod} p \cdot q)$$
(11)

Поскольку псевдоединицы имеют представление (9) и (10), т.е. $\alpha \in \{0,1\}$, $\beta \in \{0,1\}$ и

$$p \cdot p^{-1} \pmod{q} , и $q \cdot q^{-1} \pmod{p} ,$$$

то (11) эквивалентно

$$[\alpha, \beta]_{p,q} = p \cdot p^{-1} \pmod{q} \cdot \beta + q \cdot q^{-1} \pmod{p} \cdot \alpha$$
.

С учетом (9) и (10) мы получили явные формулы для вычисления значений псевдоединиц:

$$1_{p} = [0,1]_{p,q} = p \cdot p^{-1} (\text{mod } q),$$

$$1_{q} = [1,0]_{p,q} = q \cdot q^{-1} (\text{mod } p).$$
(12)

Отметим, что помимо указанных свойств, псевдоединицы обладают также свойством, характерным для обычной единицы $(1^2 = 1)$:

$$(1_p)^2 \operatorname{mod}_{p \cdot q} = 1_p, \quad (1_q)^2 \operatorname{mod}_{p \cdot q} = 1_q,$$

так и особыми свойствами, характерными только для псевдоединиц:

$$\left(1_{p}\cdot 1_{q}\right) \operatorname{mod}_{p\cdot q} = 0,$$

т.е. псевдоединицы являются делителями нуля, и

$$(1_p + 1_q) \mod_{p \cdot q} = 1 \Longrightarrow 1_p + 1_q = p \cdot q + 1$$
,

последнее равенство справедливо в силу того, что и $1_p < pq$ и $1_q < pq$.

6. Числовой пример

Рассмотрим модуль RSA $n=p\cdot q$, образованный простыми числами p=7, q=11. При этом $\varphi(n)=(p-1)\cdot (q-1)=6\cdot 10=60$. Вычислим псевдоединицы для данного модуля RSA по формулам (12):

$$1_7 = [0,1]_{7,11} = 7 \cdot 7^{-1} \pmod{11} = 7 \cdot 8 = 56,$$

$$1_{11} = [1,0]_{7,11} = 11 \cdot 11^{-1} \pmod{7} = 11 \cdot 2 = 22.$$

Фрагмент расчета по формуле (1) для чисел из Z_n приведен в таблице 1. Строки, выделенные жирным начертанием соответствуют элементам из D_n , и иллюстрируют равенство (5).

Табл. 1. Псевдоединицы для модуля RSA p = 7, q = 11.

а	$a \operatorname{mod}_7$	$a \operatorname{mod}_{11}$	$a^{60} \operatorname{mod}_{77}$	$a^{61} \operatorname{mod}_{77}$
0	0	0	0	0
1	1	1	1	1
2	2	2	1	2
3	3	3	1	3
4	4	4	1	4
5	5	5	1	5
6	6	6	1	6
7	0	7	56	7
8	1	8	1	8
9	2	9	1	9
10	3	10	1	10
11	4	0	22	11
12	5	1	1	12
13	6	2	1	13
14	0	3	56	14
15	1	4	1	15
16	2	5	1	16

		/		
17	3	6	1	17
18	4	7	1	18
19	5	8	1	19
20	6	9	1	20
21	0	10	56	21
22	1	0	22	22
23	2	1	1	23
24	3	2	1	24

7. Заключение

Таким образом, в статье введено понятие псевдоединицы в расширении мультипликативной группы по модулю криптосистемы RSA, дано определение псевдоединицы, показано, что при модуле вида $n=p\cdot q$ имеется всего две псевдоединицы — 1_p и 1_q . Указана формула для прямого вычисления значений псевдоединц и исследованы их свойства.

Данная статья имеет теоретический характер, однако описанные в ней свойства псевдоединиц полезны в современных информационных технологиях при построении и анализе криптостойкости модифицированных схем цифровой подписи и обеспечении информационной безопасности и отказоустойчивости информационных и инфо-коммуникационных систем. В частности, псевдоединицы играют важную роль в реконструкции закодированной информации при возникновении ее искажений. Конкретные приложения полученных результатов в современных информационных и инфо-коммуникационных технологиях представляют предмет дальнейших исследований авторов.

Библиографический список

- 1. Манин Ю. И., Панчишкин А. А. Введение в теорию чисел. М.: ВИНИТИ, 1990. Т. 49. 341 с. (Итоги науки и техники. Серия «Современные проблемы математики. Фундаментальные направления».).
- 2. Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. М.: МЦНМО, 1999. 960 с., 263 ил.
- 3. Дэвенпорт Г. Высшая арифметика: введение в теорию чисел. Пер. с англ./ Под ред. Ю.В. Линника. Изд 2-е. М.: Книжный дом «ЛИБРОКОМ», 2010. 176 с.