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   ABSTRACT 

In this paper, a special angular measure of functions’ asymptotic growth is offered, which allows one to distinguish between 
sub-polynomial, polynomial, sub-exponential, exponential and super-exponential functions. On the basis of the measure, an 
algorithm computational complexity classification is introduced oriented to application in theoretical and practical 
comparative analysis of computer algorithms. 
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1.  INTRODUCTION 

 In the development of algorithms and mathematics 
for software systems, the analysis is concerned with 
problem-solving algorithms and their software 
implementation. The impressive growth of contemporary 
computers’ performance, apparently, should not weaken the 
requirements for algorithmic support, including the 
requirements for implementation efficiency. This is due to 
the fact that a number of actual computational tasks belong 
either to the NP -complete or to the NP -hard class, which 
have exact solution algorithms with a super-polynomial 
complexity [1, 2, 3]. A significant increase of 
dimensionality is another characteristic of present-day 
computational tasks; problems which are solved using the 
finite element method, and especially inverse problems, 
could be considered examples [4]. Thereby, the problem of 
selecting rational algorithms’ appears to be of major 
importance. In order to solve such a problem efficiently, 
classifications of algorithms may be introduced, basing on 
complexity functions’ estimates. 

 
In the algorithmic theory, the traditional 

classification is established on the results obtained by 
Cobham (1964) [5], Cook (1971) [6] and Levin (1973) [7]. 
These studies are believed to have laid foundation to the 
computational complexity theory, which focuses on, and 
had a number of significant results related to, problem 
classes [8]. The theory considers a few particular problem 
classes; the majority of solvable problems lie within P , a 
class that encompasses problems with polynomial-
complexity solution algorithms. As for the NP -complete 
problems, the majority of their precise solution algorithms 
known to date have either exponential ( EXP  class) or 
super-polynomial complexity [1, 2, 8, 9]. 

 
Unfortunately, for the analysis of algorithms’ 

resource efficiency and for the complexity classification, 
the usage of classical complexity theory seems not to be 
quite correct. This is due to the fact that the complexity 
theory operates with problem classes, not algorithm classes; 
the majority of problem class definitions do not explicitly 
denote any complexity bounds, with an exception for P  
and EXP  classes [1, 8]. 

 

2.  STATEMENT OF PROBLEM 
 For theoretical research of computer algorithms’ 
computational complexity, development of a well-posed 
complexity function classification appears to be of a 
particular interest. The classification could be made on the 
basis of a detailed delineation of asymptotic estimates for 
algorithms’ complexity functions, with preservation of 
traditionally distinguished polynomial and exponential 
functions. Thereby, it comes to a mathematical task of 
separating polynomials from exponentials within a unified 
measure. Such a measure should also indicate a set of 
functions that separate polynomials and exponentials, as 
well as sets of sub-polynomial and super-exponential 
functions. The separation method may serve as a basis for 
correct computational complexity classification of 
computer algorithms. 
 
3.  TERMINOLOGY AND NOTATION 

Primarily abiding by [10] and the article of 
E. L. Post [11], let us use the following notation and 
terminology relative to algorithms’ computational 
complexity: 
  
 Z  — The abstract denotation of the problem in 
Post’s terminology; 
 
 A  — The abstract denotation of a particular 
algorithm that solves Z  (a finite 1-process that solves the 
general problem [11]); 
 
 D  — An input of A  — a finite set of fixed-length 
binary words, such that it determines a specific problem for 
the general problem Z ; 
 

  DDA   — The set of allowable inputs for the 

algorithm A  solving the problem Z ; 
 

  D  — The length of algorithm’s input: 

  
 ND


 , 

An integer-valued function, commonly defined as the 

cardinality of   nDDD : ; in particular cases (for 
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example, for the matrix multiplication problem) — a certain 

function of the cardinality:    DgD  ; 

 

  Df A  — the computational complexity of A  on 

input D , an integer-valued function that indicates the 
amount of basic operations specified by the algorithm A  on 
the input D  in the accepted computational model; 

nD  — the set of inputs of length n  for A : 

 
   nDDDDD An  ,| ; 

 

  nf A
  — the worst-case computational 

complexity of the algorithm on inputs of length n , that is, 
the maximum value of  Df A  on the set nD ; 

 

  nf  — the complexity of the algorithm — the 

function that appears (either in O - or  -notation) in the 

asymptotic estimate for  nf A
  — the worst-case 

computational complexity function of the algorithm: 
  
          nfnfornfOnf AA   , . 

 
For further discussion, the argument will be 

assumed to be continuous, that is,    xff  , all the 

required values being obtained at integer points nx  . 
 

4. FUNCTIONS SEPARATING 
POLYNOMIALS AND EXPONENTIALS 

From the set of functions separating polynomials 
from exponentials, let us select the exponential-logarithmic 

function as illustrative:   xxg ln  xln)(  . 

 
Statement 1: 
 The exponential-logarithmic function 

  xxg ln  xln)(   is a separating function for polynomials 

and exponentials. 
 
Proof: 
 The statement is equivalent to an assertion that 
 xg  satisfies the following two implications when x : 

 

 if   , , kxxf k 0  then     ,xgoxf   (1) 

 if   , , λexf λx 0  then     .xfoxg   (2) 

 
 To prove these relations, let us apply the 
logarithmic limit lemma [12]: if  
 




)(lim xf
x  and   


xg

x
lim , 

 
then the following implication holds true: 
 

If 
 
  0

ln

ln
lim 

 xg

xf
x

, that 
 
  ,0lim 

 xg

xf
x

 that is,  

     xgoxf  . 

 
 Under this lemma, the validity of the implication 
(1) can be proven: 
 

 
       0, 

ln ln 
 lim

ln ln  ln 

ln  
lim  

ln ln

)(ln 
 lim

ln






 x

k

xx

xk

x

x
xxx

k

x
 

 

thereby,   xk xox ln ln     if 0k . The validity of 

implication (2) is proven analogically: 
 

 
  
 

 
 0, 

λ

ln ln  ln 
lim  

ln

ln ln 
 lim

ln 





 x

xx

e

x

xx

x

x 
 

 

thereby,    λx x e o  x lnln  when   λ 0 . 

End of  proof .  
 
5. PRELIMINARY LEMMAS AND 

COORDINATE SYSTEM 
TRANSFORMATION 

For the problem of separating polynomials from 
exponents, a solution is offered based on a unified measure, 
which distinguishes additionally the sets of separating, sub-
polynomial, and super-exponential functions.  
 
 Let  xff   be a monotonously increasing 

function such that   


  x f
x
lim .  

 
 Let us introduce an operator     xhxfH   which 

associates  xf  with a function  xh  by the following rule: 

 

           
   x

 x   xf

xf
xfxhxfH 




lnln

ln
ln . (3) 

 
 The function     xfHxh   possesses the 

following property — the limit of the derivative of  xh  is 

a constant for both polynomials and exponentials: 
  
    C x h'

x



lim , 0C , (4) 

 
 The property is established by two following 
lemmas: 
 
Lemma 1: 

 Let       ,1 xexf λx  where  

 
       1,1,0 oxox   , when x ; 

 
then 
  
   1lim 


 λ x h'

x
. 
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Proof: 
 The derivative  xh  of  xf  can be calculated 

using the definition (3): 
 

 

 

 

 

 
.
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 (5) 

 
 For the obtained derivative, let us compute the 

limits of the summands for     xxf x   1e   , in respect 

that        1,1,0 oxox   : 
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thereby,   1lim 


 λ x h'

x
. 

End of  proof .  
 
Lemma 2: 

 Let ))(1()( xxxf k  ,  

where  

            1,11 Ox'xox,ox   ,  

 
When  x ; 
 
then 

  
1

lim 



 k

k
  xh 

x
. 

Proof:  
Let us use formula (5) from lemma 1 for  xh  and 

calculate the limits of the summands when x  for  
 

    x x x f k  1 : 
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thereby, 
    1lim 


kkx h'

x
. 

End of  proof .  
 
Due to the fact that the limit of the derivative of 

function     xfHxh   is a constant for both polynomials 

and exponentials (according to lemmas 1 and 2), the 
following lemma can be proved, introducing a coordinate 
system transformation. 

 
Lemma 3: 
 Let  xh  be a function such that   0lim 


Cxh

x
. 

Let us introduce a parametric function  sz , created on the 

basis of  xh  according to the following rule: 
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. (7) 

 
Proof: 

By the conditions of the lemma, x  implies   xh ; then, by the definition of function  sz  — 

formula (6), 0,0     zs . In these circumstances, the 

definition of  sz  can be extended as follows: let 0z  
when    x  s 0 . Then 
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;  

 
observing that  
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the result is 
 

 

 

 
 

 
 

.
11

limlimlim

2

2

2

2

2

0

СС
С

xh

x
x  h'

xh

xh'x

ds

dz
xx

s
x












 

End of  proof . 
 
6. GRAPHICAL INTERPRETATION OF 

THE COORDINATE SYSTEM  sz,  
The result obtained of lemmas 1, 2 and 3, can be 

interpreted graphically in the following way: in the  sz,  

coordinate system polynomials and exponents are mapped 
to  sz  functions, which have different slopes as x , 

that is, in the transformed coordinate system, different 
slopes at the point  0,0  sz  when 0 s  . Two 

examples of  sz  functions obtained from the formula (6) 

for   2xxf   и   xexf   are shown in Figure 1. 
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Fig 1:  sz  function for a polynomial (   2xxf  ) and an 

exponent (   xexf  ). 

 
7.  ANGULAR MEASURE OF FUNCTIONS’ 

ASYMPTOTIC GROWTH 
Diverse  sz  slopes for polynomials and 

exponentials in the asymptotic behavior when x , that 
is, when 0 s   in the transformed coordinate systems, 
allows a new measure to be introduced for asymptotic 
growth of functions. Slope difference has determined a 
proposal for its name — the angular measure of  functions’ 
asymptotic growth. 

 
Lemmas 1, 2 and 3 serve as a basis for the 

following theorem. 
 

Theorem 1: 
  (of the angular measure of functions’ asymptotic 
growth). 
 
 Let  xff   be a monotonously increasing 

function, such that   


   lim
x

xf . We define a measure 

  xf  for the asymptotic (at infinity) growth of the 

function: 
 

     Rarctgxf  2 , where 

 
ds

dz
R

s
x

0

lim 




 , 

 
 Parametrically defined function  sz  is specified 

in (6), where  xh  is obtained by applying operator H  to 

function  xf : 

 

           
   x

 x   xf

xf
xfxhxfH 




lnln

ln
ln ; 

Thereby, if 
 

1)      ,1 xexf λx   where 

        1,1,0 oxox   , and x , then 

    πxfπ  2 ; 

 

2)  ))(1()( xxxf k  , where 

            1,11 Ox'xox,ox   , and 

 x , then 
    20 πxf   ; 
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3)    xxxf lnln , then 

    2πxf  . 

Proof: 
 The first assertion of the theorem can be proved as 

follows. If       ,1 xexf λx   then the limit of the 

derivative of  xh , which is defined upon  xf , ,x  

is equal to   1lim 


λx h'
x

, where 0 , by Lemma 1, 

herewith 

 

 
λds

dz
R

s
x 



 1

1
lim 

0

 

 
by Lemma 3; thereby, the values of   that are possible for 
the EXP  class,  0  , lead to the inequality 

  04  Rarctgπ ; this determines the range of 

corresponding measure values:    πxfπ  2 , by the 

definition of   xf . The first assertion of the theorem has 

been proved. 
 
 Let us prove the second assertion of the theorem. 

If     ,x x xf k  1  then the limit of the derivative of 

 xh , which is defined upon  xf , ,x  is equal to 

 
1

lim



 k

k
xh

x
, where 0k , by Lemma 2, herewith 

 

 
k

k

ds

dz
R

s
x

1
lim 

0







. 

 
 By Lemma 3; thereby, the values of k  that are 
possible for the P  class,  k0 , lead to the inequality 

  42   Rarctg ; this determines the range of 

corresponding measure values:    20   xf , by the 

definition of   xf . This proves the second assertion of 

the theorem. 
 
 Let us prove the third assertion of the theorem. Let 
us consider  xh  defined upon the exponential-logarithmic 

function      x xxf lnln : 
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 The limit of the derivative of  xh , as x , can 

be calculated as follows: 
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then, by Lemma 3, 

 

 
1lim 

0



 ds

dz
R

s
x

, 

and, consequently,   4arctg πR  , so that 

 

    2ln ln  xx . 

End of  proof .  
 
8. PROPERTIES OF THE ANGULAR 

MEASURES OF FUNCTIONS’ 
ASYMPTOTIC GROWTH 

The proposed measure of functions’ asymptotic 
growth possesses a number of properties that allow it to be 
used for constructing an algorithm complexity 
classification. Foremost, let us define the following five 
functional sets on the basis of the introduced measure 

  xf , assuming that   


  x f
x
lim : 

 
1)  The set FZ  is defined as follows: 
 

     0,|  kxxfxfFZ k , 

 
forming a set of sub-polynomial functions. For each function 
 xf  in the set FZ  the value of R  as determined by 

Lemma 3, equals  , so that the measure   FZxf   

     0arctg2  Rπxf . In particular,    0ln x . 

 
2)  The set FP  may be defined as follows:  
 

       kxxfkxfFP  :0| , 

 
forming a set of polynomial functions. This definition is 
based on Lemma 2; it can be proved, though, that the 
proposed measure still holds the same value for a broader 

class of functions      xgxxf k  , where   FZxg  . 

Thereby, the set FP  may be defined otherwise. On the 
basis of the initially defined set kF : 

 

       xkxxfxxfF kk
k ,0,0,|  

 
 
 we define the generalized polynomial set FP  on 
its basis: 
 
     kFxfkxfFP  :0| . 

 
 The function  xf  in the definition of FP  gives 

the value of   0,1  kkkR , by Lemmas 2 and 3, so 

that the measure      kkπxf 1arctg2  , thereby, 

   20 πxf   . The plot of the measure for polynomials 

is shown in Figure 2. 
 
3)  The set FL is defined as follows: 
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     00  λ,k,exfx|xfFL λxk  , 

 
forming a set of sub-exponential functions. For any 
function  xf  belonging to FL  the value of R , as defined 

by Lemma 3, equals 1, so that the measure 

    1arctg2  πxf . In particular,   2ln ln πx x  . 

 
4)  The set FE  may be defined as follows: 
 

       xexfxfFE   :0| , 

 
forming a set of exponential functions. This definition is 
based on Lemma 3, but one can prove, that the proposed 
measure still holds the same value for a broader class of 

functions of the form      xgexf x   , where  xg  

belongs to one of the sets FLFPFZ ,, . Thereby, the set 

FE  may be defined otherwise. On the basis of the initially 
defined set λF : 

 

 
       


















x,ε,λ

,exfе|xf
F

xελxελ

λ
00


, 

we define the generalized exponential set FE : 
 
     λFxfλ|xfFE  :0 . 

 
 For each function  xf  that belongs to FE  the 

value of   011  λ,λR , by Lemmas 1 and 3, so that the 

measure 
        11arctg2πxf , 

 
thereby    πxfπ  2 . The plot of the measure for 

exponentials is presented in Figure 3. 
 
5)  The set FF  is defined as follows: 
 

     0 λ,xfe|xfFF λx  , 

forming a set of super-exponential functions. For function 
 xf  in the definition of FF  the value of R , as defined by 

Lemma 3, equals zero, so that the measure 

     πRπxf  arctg2 . In particular,   πxx  . 
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Fig 2: The plot of the measure   xf  for 

polynomials    kxxf  . 
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Fig 3: The plot of the measure   xf  for 

exponentials    xexf  . 

 
Let us also put forward several properties of the 

introduced measure of functions’ asymptotic growth — 
  xf : 

—  The measure  kx  takes the value of 4π  

when 22k ; 

—  The measure  xe  takes the value of 43π  

when the exponent 2λ ; 

—  The measure  kx  possesses the following 

notable property: 

     π,ex λxλ   1  in particular,  

     πex x   . 

 
9. CLASSIFICATION OF THE 

ALGORITHMS ON COMPUTATIONAL 
COMPLEXITY 

The usage of the angular measure of functions’ 
asymptotic growth,   xf , allows an algorithm 

classification to be introduced, which differentiates 
algorithms by the asymptotic growth of their computational 
complexity (we assume the worst-case complexity). 
Preserving a common notation n  for the algorithm A ’s 

input dimension, denoting by  nf  the function of A ’s 

computational complexity and assuming a formal transition 
from n  to the real-valued argument x  when computing 

  xf  at nx  , let us introduce the following set-

theoretic class definitions: 
 

1.  Class 0π  (pi zero) — the «fast algorithm» class 
— contains algorithms whose computational 
complexity functions belong to the FZ  set and 
have zero measure: 

      FZnfnfAπ  0|0  . 

 
 Algorithms of this class are substantially fast with 
respect to the input length; these are primarily algorithms of 
poly-logarithmic or logarithmic complexity. For instance, 
the class contains the algorithm of binary search in an array 
of sorted keys: its asymptotic complexity estimate is 

  nO ln  [2], and measure    0ln n . 

2. Class πP  — the class of «rational (truly 
polynomial) algorithms» — contains algorithms, 
whose complexity functions belong to the FP  set: 
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      FPnfπnfAπP  020|  . 

 
 The majority of algorithms that are used in 
practice and allow one to solve computational problems in a 
reasonable time, pertain to this class. Note that the class has 
the property of natural closure. πP  is a subclass of 
algorithms defining class P  in the computational 
complexity theory. 
 

3. Класс πL  — the class of «sub-exponential 
algorithms» — contains algorithms, whose 
complexity functions belong to the set FL : 
 

      FLnfπnfAπL  2|  . 

 
 This class is formed by algorithms with super-
polynomial yet sub-exponential complexity. Such 
algorithms are fairly time-consuming, with the 
corresponding problems primarily belonging to the 
complexity class NP . Nevertheless, for particular tasks 
such algorithms are put into practice. One of the examples 
could be the General number sieve method, which is 
designed for factorization of large composite numbers and 
is used for direct attacks on the RSA cryptosystem. If n  is 
the number of bits in the number presented for the 
factorization, then a heuristic estimate of the algorithm’s 
complexity, as given in [13], takes the following form: 
 

  
  

































 3

2
3

1

ln nnO

enf , and    2πnf  . 

 
 The symbol L  in the name of the class reflects the 
fact, that the function of exponential logarithm 

    xxxg lnln  is one of the functions that separate 

polynomials and exponentials by virtue of Theorem 1. 
 

4. Class πE  — the class of «truly exponential 
algorithms» — contains algorithms, whose 
complexity functions belong to the FE  set: 
 

      FEnfπnfπAπE  2| . 

 
 These are algorithms with exponential complexity, 
which are currently applicable only for low input 
dimensions. The potential of real application of such 
algorithms is tied with the practical implementation of 
quantum computing. Among the examples of algorithms of 
the given form are brute-force methods for solving NP -
complete problems, including SAT, the subset sum 
problem, the clique problem and others [2]. The problems 
mentioned have asymptotic complexity estimates of the 

form      nnn nOnOO 2,2,2 2  . 

5. Class πF  — the class of «super-exponential 
algorithms» — contains algorithms, whose 
complexity functions belong to the FF  set: 

 
      FFnfπnfAπE  | . 

 
 This is a class of practically inapplicable 
algorithms that have a super-exponential complexity, 

possibly of the factorial form or of the form  xx . A 

brute-force algorithm for the travelling salesman problem 
has the asymptotic estimate  !n , and, since  1!  nn , 

where  x  is Euler’s gamma function, 

   xxxx  ln1ln , implies  1ln!  nnen  [14], and 

since the measure     1ln xxe , this algorithms belongs 

to the class πF . The class also contains the algorithm for 
enumerating all spanning trees of a complete n -vertices 

graph, with the asymptotic complexity estimate of  2 nn  

[2]. The symbol F  in the class name reflects the fact that 
algorithms with factorial complexity belong to the class. 
 
10.  CONCLUSION 

In this study, for the purposes of theoretic analysis 
and research of computer algorithms: 

 
—  an angular measure was introduced for 

functions’ asymptotic growth; 
—  analysis was performed upon the properties of 

the measure; 
—  on the basis of the introduced measure and 

functional sets, a computational complexity 
classification of computer algorithms was 
suggested. 

 
The results obtained may be used in theoretical 

analysis of computer algorithms’ resource efficiency, as 
well as in practice, for comparative analysis and 
justification of the selection of rational algorithms. 
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