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We consider the International Space Station (ISS) scheduling problem. Cos-
monauts and dispatchers have to perform given set of tasks N = {1, 2, ..., n}
during the flight time. Every task is characterized by such parameters like du-
ration li, priority pi, possible time of commencement Ti = {ti1 , ti2 , ..., tiki } and
complexity di. The problem is to distribute the tasks to the time planning hori-
zon H = {t1, t2, ..., tT } in the most optimal way: it means performing all set
of tasks and achieving the uniform load of all team members. The unit of the
time planning horizon equals to 5 minutes.
Mathematical problem.
We have:

1. M cosmonauts and dispatcher;

2. set of tasks N = {1, 2, ..., n};
3. time planning horizon H = {t1, t2, ..., tT } (k days, h hours per day).

Every task is characterized by:

1. priority pi = pij(tj), i = 1, ..., n, j = 1, ..., T ;

2. duration li;

3. complexity di.

If tj ∈ Ti then pi ̸= 0, else pi = 0.
The problem is to maximize the objective function:

max
n∑

i=1

P∑

j=1

xijpij(tj), (1)

subject to
n∑

i=1

(a+1)h∑

j=1+ah

xijdj ≤ C, a = 0, ..., k − 1. (2)

Binary variables xij have the following meaning: xij = 1 if the task i is per-
formed at the time tj , and xij = 0 otherwise.
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The exact algorithm was proposed to solve this problem. The algorithm is a
superposition of Greedy algorithm and Branch-and-bound [1]. Both algorithms
are often used to solve Knapsack Problem which variation, Multiply Knapsack
Problem with Initial Capacity, is similar to assigned problem [2].

The proposed algorithm consicsts of 3 stages:

1. sorting tasks (greedy);

2. finding Upper Bound;

3. brunching.

This algorithm was programmed on C++ and it’s work with different initial
data was analized using received program.
Conclusion:

1. algorithm is exact;

2. algorithm is suitable for parallelize;

3. algorithm is able to develop in the event of a complication of the problem;

4. the number of possible solutions depends on the severity of restrictions.
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