
ISS team scheduling problem

Alexander Lazarev1,2,3,4, Varvara Gushchina2,4

1 National Research University Higher School of Economics, Moscow;
2 Lomonosov Moscow State University, Moscow;

3 Institute of Physics and Technology State University, Moscow;
4Institute of control sciences, Moscow;
jobmath@mail.ru; vg@kvartasoft.ru

We consider the International Space Station (ISS) scheduling problem. Cos-
monauts and dispatchers have to perform given set of tasks N = {1, 2, ..., n}
during the flight time. Every task is characterized by such parameters like du-
ration li, priority pi, possible time of commencement Ti = {ti1 , ti2 , ..., tiki } and
complexity di. The problem is to distribute the tasks to the time planning hori-
zon H = {t1, t2, ..., tT } in the most optimal way: it means performing all set
of tasks and achieving the uniform load of all team members. The unit of the
time planning horizon equals to 5 minutes.
Mathematical problem.
We have:

1. M cosmonauts and dispatcher;

2. set of tasks N = {1, 2, ..., n};
3. time planning horizon H = {t1, t2, ..., tT } (k days, h hours per day).

Every task is characterized by:

1. priority pi = pij(tj), i = 1, ..., n, j = 1, ..., T ;

2. duration li;

3. complexity di.

If tj ∈ Ti then pi ̸= 0, else pi = 0.
The problem is to maximize the objective function:

max
n∑

i=1

P∑

j=1

xijpij(tj), (1)

subject to
n∑

i=1

(a+1)h∑

j=1+ah

xijdj ≤ C, a = 0, ..., k − 1. (2)

Binary variables xij have the following meaning: xij = 1 if the task i is per-
formed at the time tj , and xij = 0 otherwise.

123



The exact algorithm was proposed to solve this problem. The algorithm is a
superposition of Greedy algorithm and Branch-and-bound [1]. Both algorithms
are often used to solve Knapsack Problem which variation, Multiply Knapsack
Problem with Initial Capacity, is similar to assigned problem [2].

The proposed algorithm consicsts of 3 stages:

1. sorting tasks (greedy);

2. finding Upper Bound;

3. brunching.

This algorithm was programmed on C++ and it’s work with different initial
data was analized using received program.
Conclusion:

1. algorithm is exact;

2. algorithm is suitable for parallelize;

3. algorithm is able to develop in the event of a complication of the problem;

4. the number of possible solutions depends on the severity of restrictions.

References

1. A.A. Lazarev, E. R. Gafarov Scheduling theory. Problems and algorithms,
Lomonosov Moscow State University, Moscow (2011). (in Russian)

2. David Pisinger, Hans Kellerer, Ulrich Pferschy. Knapsack problems //
Springer. 2004


