
J Math Model Algor (2014) 13:597–614
DOI 10.1007/s10852-013-9248-2

A Graphical Approach to Solve an Investment
Optimization Problem

Evgeny R. Gafarov ·Alexandre Dolgui ·
Alexander A. Lazarev ·Frank Werner

Received: 16 April 2013 / Accepted: 12 December 2013 / Published online: 8 February 2014
© Springer Science+Business Media Dordrecht 2014

Abstract We consider a project investment problem, where a set of projects and an over-
all budget are given. For each project, a piecewise linear profit function is known which
describes the profit obtained if a specific amount is invested into this project. The objec-
tive is to determine the amount invested into each project such that the overall budget is not
exceeded and the total profit is maximized. For this problem, a graphical algorithm (GrA)
is presented which is based on the same Bellman equations as the best known dynamic
programming algorithm (DPA) but the GrA has several advantages in comparison with the
DPA. Based on this GrA, a fully-polynomial time approximation scheme is proposed having
the best known running time. The idea of the GrA presented can also be used to solve some
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similar scheduling or lot-sizing problems in a more effective way, e.g., the related problem
of finding lot-sizes and sequencing several products on a single imperfect machine.

Keywords Project investment · Graphical algorithm · Pseudo-polynomial time
complexity · FPTAS

1 Introduction

The investment optimization problem can be formulated as follows. A set N of n potential
projects and an investment budget (amount) A > 0 are given. For each project j, j =
1, . . . , n, a profit function fj (t), t ∈ [0, A], is defined in such a way that the value fj

(
t ′
)

denotes the profit received if we invest the amount t ′ into project j . The goal is to define an
amount τj ∈ [0, A]⋂ Z for each project j ∈ N such that

∑n
j :=1 τj ≤ A and the total profit∑n

j :=1 fj (τj ) is maximized.
Moreover, for a real-world generalization, it is often necessary to find such an optimal

solution (investment strategy) for a flexible amount A, i.e., for all A ∈ [
A′, A′′]. So, one

looks for an algorithm which is able to solve this real-world generalization effectively. In
the following, we assume that all functions fj (t), j = 1, . . . , n, are continuous piecewise
linear non-decreasing functions with kj , j = 1, 2, . . . , n, linear fragments (see Fig. 1).
If the function fj (t) is defined only for some particular points t , e.g., for t1, t2, . . . , tkj

with t1 < t2 < · · · < tkj
, then we can assume that fj (t) = fj (ti) holds on the inter-

val [ti , ti+1), i = 1, . . . , kj , where tkj+1 = A. In this paper, we propose an effective
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pseudo-polynomial algorithm and derive a fully polynomial time approximation scheme
(FPTAS) based on it.

To the best of our knowledge, there are no publications on the problem under consider-
ation. However, there are some close special cases of knapsack-like problems which are as
follows.

A special case of the problem is similar to the well-known bounded knapsack
problem [3]:

maximize
∑n

j :=1 pjxj

s.t.
∑n

j :=1 wjxj ≤ A,

xj ∈ [0, bj ], xj ∈ Z, j = 1, 2, . . . , n,

(1)

for which a dynamic programming algorithm with a time complexity of O(nA) is
known [3].

The following problem [4] is also similar to the problem under consideration:

minimize
∑n

j :=1 fj (xj )

s.t.
∑n

j :=1 xj ≥ A,

xj ∈ [0, A], xj ∈ Z, j = 1, 2, . . . , n,

(2)

where fj (xj ) are piecewise linear as well. For the problem (2), a dynamic programming
algorithm with a running time of O

(∑
kjA

)
[4] and an FPTAS with a running time of

O
((∑

kj

)3
/ε

)
[5] are known. A short survey on this lot-sizing problem can be found in

[5] as well.
It is easy to show that the investment optimization problem is NP-hard, since the classical

0-1 knapsack problem is a special case of it.
This problem can be solved by a dynamic programming algorithm (DPA), which is based

on the following well-known recursive Bellman equations:

Fj (T ) = max
t=0,1,...,T

{fj (t) + Fj−1(T − t)}, T = A, A − 1, . . . , 1,

with the initial conditions
F0(T ) = 0, for T ≥ 0,

F0(T ) = −∞, for T < 0.
(3)

In each stage j, j = 1, . . . , n, a function Fj (T ), j = 1, . . . , n, is calculated and used in
the next stage. Here the value Fj (T ) gives the maximal profit received from the realization
of the first j projects if a total amount T ≤ A is invested. Finally, the value Fn(A) denotes
the optimal objective function value. Here A and thus all values of T are integer. Note that,
if A would be rational, we can assign A := �A�.

Usually in a DPA, one works like a calculator, i.e., to calculate Fj

(
T ′), we consider

T ′ + 1 points t and for each point, we calculate the value fj (t) + Fj−1(T − t). Then we
choose the maximal value among these T ′ + 1 values. So, the time complexity of such a
DPA is O

(
nA2

)
. Here we do not take into account the analytical form of the functions fj .

However, if we work with the analytical representation (not with particular values fj (t)

calculated for t ∈ Z), we will have some advantages.
The remainder of the paper is as follows. In Section 2, we present the graphical algorithm

(GrA) and discuss its advantages in comparison with the DPA. In Section 3, we illustrate
the algorithm on a numerical example. Some advantages of the GrA in comparison with the
DPA are discussed in Section 4. In Section 5, we give a modification of the GrA and derive
an FPTAS. In Section 6 a GrA and an FPTAS for a related problem denoted as P-Cost are
presented.
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2 Graphical Algorithm

Next, we present the graphical algorithm (GrA) which uses the same Bellman equations as
the DPA, but considers analytical expressions of the functions. We note that the founda-
tions of such a type of algorithm have been explained e.g. in [1]. The functions fj (t), j =
1, 2, . . . , n, can be saved in the computer memory in a tabular form as given in Table 1.

In Table 1, K denotes the number of the current interval, whose values range from 1 to kj

(where the number of intervals kj is defined for each j = 1, 2, . . . , n),
[
tKj , tK+1

j

)
is the

Kth interval, and bK
j , uK

j are the parameters of the linear function f K
j (t) defined on the Kth

interval. This data means the following. For each above interval, we store the parameters bK
j

and uK
j for describing the function fj (t) = f K

j (t) = uK
j ·

(
t − tKj

)
+ bK

j on this interval.

For the example given in Fig. 1, the function f1(t) can be presented as follows in Table 2.

The points t1
j , t2

j , . . . , t
kj

j are called “break points” since the slope of the function changes
at these points. The functions Fj (T ) can be presented in the same way.

First, we formally describe the graphical algorithm (GrA). In the following, we denote
the starting points as SP and the counter of the current interval as CI .

Step I. j := 1. Copy the table for the function f1(t) into the table for the function
F1(T ).

Step II. a Let j > 1 and assume that the function Fj−1(T ) is known for all resulting
intervals. Assign SP := A and CI := 1.

Step II. b Calculate the intervals of the reflected function f ′
j (t) = fj (A − t) (Table 3).

Here t1 = SP , and the other points tK are calculated as follows: tK = tK−1−(
tK+1
j − tKj

)
, K = 2, . . . , kj . On the interval

[
tK+1, tK), we have f ′

j (t) =
bK+1
j − uK

j (t − tK+1), where f ′
j (t) is the reflected function.

Step II. c For each point TK and each point tK , calculate their equations. An equation
for a point denotes the values which are used to calculate Fj (T ), where T

belongs to the interval [SP − ε, SP ].
To calculate the equation for a point TK , we have to find the interval [ts+1, ts),
where Tk ∈ [ts+1, ts). The equation for this point is f ′

j (TK)+Fj (TK)−us
j · ε.

In the same way, we calculate the equation for tK . Let tK ∈ [Tr , Tr+1). Then
we have the equation f ′

j (tK) + Fj (tK) − ur · ε. We consider only points
TK < SP and points tK > 0.

Step II. d Among all equations, we have to find a leading equation, i.e., a leading point.
Let us consider the two points x1 and x2 and their equations Bx1 − Ux1ε and

Table 1 Function fj (t)
K 1 2 . . . kj

interval K
[
t1
j , t2

j

) [
t2
j , t3

j

)
. . .

[
t
kj

j , A
)

bK
j b1

j b2
j . . . b

kj

j

uK
j u1

j u2
j . . . u

kj

j
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Table 2 Function f1(t)
K 1 2 3 4

interval K [0, 3) [3, 10) [10, 13) [13, 25]
bK

1 0 0 7 8

uK
1 0 1 1

3 0

Bx2 − Ux2ε. If Bx1 > Bx2 or (Bx1 = Bx2 and Ux2 > Ux1 ), then the point x1
dominates the point x2. For the leading point, there is no other point which
dominates it.

Step II. e

Step II. f In the table for the function Fj (T ), save a column with the interval
[tCI , tCI+1] = [SP − LMI, SP ] and the values bCI = Bx∗ − Ux∗ · LMI ,
uCI = Ux∗

.

Step II. g If the slope of the function on the interval of Fj (T ) just saved before was the
same, then we can join both intervals.

Step II. h SP := SP − LMI and CI := CI + 1. If SP > 0, then GOTO Step II. b.

Step III. BPj := CI − 1. Modify the form of the table for the function Fj (T ) into the
form as in Table 4. Let j := j + 1. If j ≤ n, GOTO Step II.a.

Step IV. Use backtracking to find an optimal solution at the point A and the optimal
objective function value Fn(A).

Lemma 1 At each stage j, j = 1, 2, . . . , n, of the algorithm, there are no more than BPj +
kj + kj · BPj intersection points.

Proof During step II, there are no more than kj · BPj different equations (with different
points or different slopes). At each point (SP − LMI) calculated according to the points
TK and tK , only for two points the equations (slopes of their equations) are changed. In the
initial point T = A, we have only BPj + kj equations. All these equations correspond to
linear functions. So, there are no more than BPj + kj + k · BPj intersection points.

Table 3 Intervals of the
reflected function f ′

j (t)
K 1 2 . . . kj

interval K [t2, t1) [t3, t2) . . .
[
0, t

kj

j

)

Calculate the length of the minimal interval LMI = min{ts − Tr}, s =
1, . . . , kj , r = 1, . . . , BPj−1, where ts > Tr . Now we check whether
there is a point x ′ with an equation Bx ′ − Ux ′ε, which is dominated by
the leading point x∗ and whose diagram has an intersection on the interval
[SP − LMI, SP ]. Let SP − ε′ be an intersection point. We have to find the
minimal value ε′ among all such points x ′. Let εmin be such a point. Then
LMI := εmin. Such points SP − LMI will be called intersection points.
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Table 4 Function Fj (T )
K 1 2 . . . BPj

interval K
[
TBPj +1, TBPj

) [
TBPj

, TBPj −1
)

. . . [T2, T1)

bK b1 b2 . . . bBPj

uK u1 u2 . . . uBPj

Theorem 1 The GrA constructs an optimal solution for all points T ∈ [0, A] in
O

(
n(BPmaxkmax)2

)
time, where BPmax = maxl=1,2,...,n{BPj }, kmax = maxj∈N kj .

Proof Since the GrA uses the same Bellman equations as the DPA, it founds an optimal
solution for any T ∈ [0, A].

Steps II. b − II. e can be simultaneously performed in O(BPj + kj ) time for each SP .
The number of starting points SP is less than BPj · kj + (BPj + kj + kj · BPj), where
the number of intersection points is BPj + kj + kj · BPj . Since there are n stages, the time
complexity of the algorithm is equal to O

(
n(BPmaxkmax)2

)
.

If we only need to find an optimal solution for T ∈ [0, A], T ∈ Z, then the GrA can
be modified as follows. If in the table for the function Fj (T ), j = 1, 2, . . . , n, we have
two columns with the intervals [TK−1, TK) and [TK, TK+1), where TK /∈ Z, then we can
change the intervals to [TK−1, �TK�) and [
TK�, TK+1). If ts ∈ (�TK�, 
TK�) at the next
stage, then its equation is not taken into account. Thus, we have BPmax ≤ A and obtain the
following corollary. Denote this modification as GrA-I.

Corollary 1 The GrA-I constructs an optimal solution for all points T ∈ [0, A], T ∈ Z,

in O
(
n(A · kmax)

2
)

time, where kmax = maxj∈N kj .

2.1 A Modification of the GrA-I with Time Complexity O(nkmaxA log(kmaxA))

Steps II.b − II.e can also be performed in another way. At each step II (if an intersection
point is not considered), only two equations go out and two new equations go in. In step 1
(or at the first iteration of step II, but not I !) (when SP = A) of each stage j, j = 2, . . . , n,
we can sort all BKj−1 + kj first equations in non-decreasing order of the time points t ,
when they become leading equations. So, the first equation in this ordered list is the leading
one. This ordering can be done in O((BKj−1 + kj ) log(BKj−1 + kj )) time. To find an
intersection point εmin, we only need to compare the first and second equations in this list.
To add two new equations in a step of the GrA, we only need to perform O(log(BKj−1 +
kj )) operations (to put them into the ordered list). Below we explain such a technique for
Stage 3 of the numerical example considered.

In the same way, we can create a list of the lengths of the intervals which are used to
compute LMI. In each step, the length of the list of the LMI values is less than or equal to
kj . So, to construct this list, we need to perform O(kj log(kj )) operations. To recalculate it,
we need O(log kj ) operations in each step. The first value in the list is LMI.

So, instead of O(BKj · kj ) operations in each step i > 1, we need only to perform
O(log(BKj−1 + kj )) operations and O((BKj−1 + kj ) log(BKj−1 + kj )) operations in the
first step. Therefore, the time complexity of the modified GrA-I is O(nkmaxA log(kmaxA)),
if we only need to find a solution for any T ∈ [0, A], T ∈ Z.
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3 Numerical Example

In this section, the idea of the GrA is explained on the numerical example presented in
Fig. 1, where n = 4.

Stage 1. Determination of F1(T ).
It is obvious that F1(T ) = f1(t).

Stage 2. Determination of F2(T ).

Step 1.
Let us analyze Fig. 2.1. To calculate the value F2(25) in the DPA, we can do the
following. We draw F1(T ) and f2(t) as shown in the figure, where f2(t) is drawn
in a reflected way from the point t , i.e., the diagram of function f ′

2(t) = f2(25−t)

is drawn. Now, for each t ∈ [0, 25], it is easy to calculate the values f2(t) +
F1(25− t). The diagram of this function is presented by a dotted line. We note that
the diagram of the function f2(t) + F1(25 − t) is piecewise linear and continuous
as well. So, its maximal values are reached at the break points, which correspond
to the break points of the functions F1(T ) and f2(t), i.e., t1, t2, T2, T3, T4, T5. We
have the maximal value 10 at the point t = 20 which corresponds to the break
point t2.

To calculate the values F2(25−ε), we have to shift the diagram of the function
f2(t) (and all break points t1, t2 which correspond to function f2(t)) to the left by
ε. It is easy to see that the value at the new break point t2 will be 10 − u4

1ε = 10,
if ε ≤ t2 − T2 = 20 − 13 = 7. Here u4

1 is the slope of the function F1(T ) on
the interval [T2, A). At the same time, the values at the other break points will be
changed as follows:

F ′(T5) = F1(T5) − ε ∗ u2
2 = 2,

F ′(T4) = F1(T4) − ε ∗ u2
2 = 2,

F ′(T3) = F1(T3) − ε ∗ u2
2 = 9,

F ′(T2) = F1(T2) − ε ∗ u2
2 = 10,

F ′(t1) = F1(t1) − ε ∗ u4
1 = 8.

Here F ′(Tx) denotes the equality corresponding to the point Tx if we shift the
diagram of the function f2(t) to the left. So, on the interval [25−7, 25] = [18, 25],
we have F2(T ) = 10 − u4

1ε = 10 (see Fig. 2.2).
Step 2.

At the point T = 18, the linear part of F1(T ) corresponding to the break point t2
changes. We have the equation: F ′(t2) = F1(t2 = 18) − ε · u3

1 = 10 − ε · 1
3 (see

Fig. 2.3). The same change happens for the point T2. For T = 18 − ε, we obtain
the values F ′(T2) = 10 − ε · u1

2 = 10 − ε 2
5 . The slopes of all other functions

F ′(T3), F
′(T4), F

′(T5), F
′(t1) do not change. So, the point t2 remains the leading

point.
Subsequently, we will use the following two terms: a leading equation and

a leading point. Let us consider the two points x1 and x2 and their equations
Bx1 − Ux1ε and Bx2 − Ux2ε. If Bx1 > Bx2 or (Bx1 = Bx2 and Ux2 > Ux1 ), then
the point x1 dominates the point x2. For a leading point, there is no other point
which dominates it.
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Fig. 2 Function F2(T )

We continue with shifting the diagram of the function f2(t) to the left from the
point t = 18. The values F2(18 − ε) are calculated as F2(18 − ε) = 10 − ε 1

3
corresponding to an equation for the point t2. This holds till the next change of a
slope which happens at the point t = 15, where t2 and T3 meet each other. So, on
the interval [15, 18], we have F ′

2(t) = 10 − (18 − t) 1
3 (see Fig. 2.4).

Step 3.
From the point T = 15, we have the equation: F ′(t2) = F(t2) − ε · u2

1 = 10 −
3 · 1

3 − ε · 1 = 9 − ε. The change of an equation happens for the point T3 as well.
For T = 15 − ε, we obtain the values F ′(T3) = 9 − ε ·u1

2 = 9 − ε 2
5 . So, the point

T3 becomes a leading one, since its slope is less and it starts from the same value
9 as the point t2.
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Table 5 Function F2(T )
K 1 2 3 4 5

interval K [0, 5) [5, 10) [10, 15) [15, 18) [18, 25)

bK 0 2 7 9 10

uK 2
5 1 2

5
1
3 0

We continue with shifting the diagram of the function f2(t) to the left from the
point t = 15. The values F2(15 − ε) are calculated as F2(15 − ε) = 9 − ε 2

5 which
corresponds to the equation for the point T3. This holds till the next change of a
slope (where the point t1 and T2 meet each other), namely at the point t = 13. So,
on the interval [13, 15], we have F2(t) = 9 − (15 − t) 2

5 (see Fig. 2.5).
We continue our calculations in the same way. For each of the k2 + BP1 break

points, where BP1 is the number of break points of the function F1(T )), we have
an equation which characterizes how the value F2(T ) will change if we shift the
diagram of the function f2(t) to the left (i.e., those values of the function F2(T )

we will have). Among these k2 + BP1 points, we choose the leading one and
according to its equation we calculate F2(T ). This calculation holds till the next
point t , where a break point of f2(t) and a break point of F1(T ) will meet each
other.

In such a way, we obtain:
Step 4. For t ∈ [10, 13]: F2(t) = 8 1

5 − (13 − t) · 2
5 and the leading point T3 the equation

of which is F ′(T3) = 8 1
5 − ε · u2

2 = 8 1
5 − ε · 2

5 .
Step 5. For t ∈ [5, 10]: F2(t) = 7 − (10 − t) · 1 and the leading point t2 the equation of

which is F ′(t2) = 7 − ε · u2
1 = 7 − ε.

Step 6. For t ∈ [0, 5]: F2(t) = 2 − (5 − t) · 2
5 and the leading point T4 the equation of

which is F ′(t2) = 2 − ε · u2
2 = 2 − ε · 2

5 .
The final diagram of the function F2(T ) is presented in Fig. 2.6, and its linear

parts are described in Table 5.

Stage 3. Determination of F3(T ).

Next, we describe how the function F3(T ) is calculated using the functions F2(T ) and
f3(t). All steps are performed in the same way as for stage 2. We present only their short
description. In the following tables, a point (x, y) is described in the form x|y.

This data means the following. The point t1 takes part in calculating the values F3(T )

according to the equation 10 − ε · 0. In the table, a leading point where only one equation
influences F3(T ) is marked by the symbol ∗. The length of the minimal interval (LMI)
is obtained as LMI = t4 − T2 = 1, i.e., on this interval, the slopes of the equations
do not change, which means that all the points hold their equations. So, on the interval
[25 − LMI, 25] = [24, 25], the slope of the function F3(T ) is equal to the slope of the
equation for the point t4, i.e., 0. In addition, we calculate F3(25) = 10 + 5 = 15.

Step 1. Starting point T = 25, see Fig. 3.1.

t1 : 0|10 t4 : 0|15∗ T4 : 0|12
t2 : 0|10 T2 : 0|15 T5 : 0|7
t3 : 0|14 T3 : 0|14 T6 : 0|5
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Fig. 3 Function F3(T )

Step 2. Starting point T = 24, see Fig. 3.1.

– t4 : 1
3 |15∗ –

– T2 : 1
2 |15 –

– – –

Next, we only present the calculations made in essential steps of the algorithm.

Step 7. Starting point T = 16, see Fig. 3.2.

– t4 : 1|12 T4 : 1
2 |12∗

t2 = 2
5 |8 3

5 T5 : 0|7
t3 : 2

5 |11 4
5 T3 : 0|9 –



J Math Model Algor (2014) 13:597–614 607

Table 6 Function F3(T )

K 1 2 3 4 5 6 7 8

interval K
[
0, 2 1

2

) [
2 1

2 , 4
) [

4, 9 1
3

) [
9 1

3 , 14
)

[14, 16) [16, 21) [21,24) [21,25)

bK 0 1 4 6 1
3 11 12 14 15

uK 2
5 2 2

5 1 1
2

2
5

1
3 0

We have LMI = t3 − T4 = 12 − 10 = 2. We check whether the equation for the point t3
becomes leading on the interval [14, 16] (i.e., whether it overcomes the equation for T4):

−1

2
ε + 12 = −2

5
ε + 11

4

5
; 1

5
= 1

10
ε; ε = 2.

This means that LMI = 2 = ε, and T4 remains the leading point on the whole interval
[14, 16]. On the interval [14, 16], the slope of the function F3(T ) is equal to 1

2 .

Step 11. Starting point T = 10, see Fig. 3.3.

t1 : 1|7 t4 : 2
5 |6 3

5 T4 is out of range
t2 : 1|5 T5 : 1

2 |6 1
2

t3 : 1|7∗ –

We have LMI = t3 − T5 = 1. We check whether the equation for the point t4 becomes
leading on the interval [9, 10] (i.e., whether it overcomes the equation for t3):

−ε + 7 = −2

5
ε + 6

3

5
; 2

5
= 3

5
ε; ε = 2

3
.

On the interval
[
9 1

3 , 10
]
, the slope of the function F3(T ) is equal to 1.

Step 17. Starting point T = 4, see Fig. 3.4.

t1 : 2
5 |1 3

5
t2 : 2

5 | 4
5

t3 is out of range T6 : 2|4
We have LMI = t2 − T6 = 2. However, there is an intersection point of the equations of
the points T6 and t1:

−2ε + 4 = −2

5
ε + 1

3

5
; 12

5
= 8

5
ε; ε = 3

2
.

So, on the interval
[
2 1

2 , 4
]
, the slope of the function F3(T ) is equal to 2.

Step 18. Starting point T = 2 1
2 , see Fig. 3.5.

In this step, the leading point is t1. Thus, on the interval
[
0, 2 1

2

]
, the slope of the function

F3(T ) is equal to 2
5 .

The final diagram of the function F3(T ) is presented in Fig. 3.5, and its linear parts are
described in Table 6.
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Stage 4. Determination of F4(T ).

Next, we describe how the function F4(T ) is calculated using the functions F3(T ) and
f4(t). In the case of a step function f4(t), we can perform this stage in an easier way. We
can construct the functions �1(T ) = F3(T ), �2(T ) = 1 + F3(T − 3) and �3(T ) =
4+F3(T −4). Then we have to construct the function F4(t) = max{�1(T ),�2(T ),�3(T )}.
All these functions are presented in Fig. 4.

Of course, we can perform the same operations like at Stages 2 and 3, but this is more
complicated and takes more time.

Backtracking

To find an optimal solution at the point T = 25, we can do backtracking. We have τ4 = 4
and f4(τ4) = 4, τ3 = 6 and f3(τ3) = 5, τ2 = 5 and f2(τ2) = 2; τ1 = 10 and f1(τ1) = 7.
Moreover, F ∗(25) = 18.

Let us analyze the running times of the graphical algorithm (GrA) and the DPA. In the
DPA, we have to consider (4 − 1) ∗ 25(25+1)

2 + 25 = 1000 points t .
In the first stage of the GrA, we consider 4 points of the function f1(t). At the second

stage, we consider less than 4∗2 = 8 steps and recalculate up to 4+2 = 6 equations in each
step (practically, we have 6+6+6+5+4+3+2 = 32). At the second stage, we consider less
than the 5 ∗ 4 = 20 steps obtained from the break points and the two steps obtained due to
the intersection of equations (practically, 17 steps) and recalculate up to 5+4 = 9 equations
in each step (practically, we have 9 + 9 + 9 + 9 + 8+8+ 8+3∗ 7+ 4∗6 +5+4+ 3+2 =
119). In the last step, we have to consider 3 ∗ 8 = 24 break points of the three functions

Fig. 4 Function F4(T )

t25

F3 1
15

18

t25

F4

218
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t25

F’(t  ), F’(T )4

1
15 2

F’(t  ), F’(T )3 3

F’(T )4

F’(t  ), F’(T )1 2

F’(T )5

F’(T )6

t25

F’(t  )4

2
15

F’(t  ), F’(T )3 3

F’(T )4

F’(t  ), F’(T )1 2

F’(T )5

F’(T )6

F’(T )2

t25

F’(t  )4

3
15

F’(T )3

F’(T )4

F’(t  ), F’(T )1 2

F’(T )5

F’(T )6

F’(T )2

F’(t  )3

t25

F’(t  )4

4
15

F’(T )3

F’(T )4

F’(t  ), F’(T )1 2

F’(T )5

F’(T )6

F’(T )2
F’(t  )3

Fig. 5 List of equations in stage 3

�1(T ),�2(T ),�3(T ). Thus, in the GrA, we consider up to 4+32+119+24 = 179 points
or equations. If we scale our instance to a big number M (i.e., we multiply all input data by
M), then the running time of the DPA increases M2 times, but the running time of the GrA
remains the same. Of course, for each equation, we have to do some simple calculations
(operations). However, this number is constant: O(1).

3.1 Stage 3 of the Numerical Example for the Modification of the GrA

In Fig. 5.1, the diagrams of F ′(t1), F ′(t2), F ′(t3), F ′(t4), F ′(T1), F
′(T2), F

′(T3), F
′(T4),

F ′(T5), F
′(T6) are presented. So, the ordered list in step 1 of the stage is (t4, T2, T3, t3,

T4, t1, t2, T5, T6).
In step 2, we delete the two equations corresponding to t4 and T2 from the list. To enter

a new equation F ′(t4), we do the following. Compare F ′(t4) and F ′(t1). Their intersection
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point is (9, 10), i.e., t = 9, F = 10. Moreover, at SP = 24, the value of F ′(t4) is larger. So,
in the list, t4 is before t1. Then compare it with t3. The intersection point is (21, 14) and the
value of F(t4) is larger at SP . Finally, we compare it with T3. We have t4 before T3 in the
list. Analogously, we look for a position for T2 in the list. The ordered list remains the same
(t4, T2, T3, t3, T4, t1, t2, T5, T6). In Fig. 5.2, the diagrams of the corresponding equations in
step 2 are shown.

To be exact, we have to save not the points tx and Tx in the list but the pairs
(Intervalx, tx), where Intervalx is the interval where the equation tx is leading. In
step 3, we delete the two old equations corresponding to t4 and T3 from the list and
insert two new equations corresponding to these points. We have the following order:
(t4, T3, t3, T2, T4, t1, t2, T5, T6) (see Fig. 5.3). We note that T2 dominates T4 only before the
point t = 21, i.e., on the interval [21, 22). This information has to be saved in the list.

Analogously, in step 4, we have the same order (t4, T3, t3, T2, T4, t1, t2, T5, T6). We
remind that T4 dominates T2 for t < 21.

We have to mention as well that after deleting an equation tx from the list, we have to
reinsert (reorder) the equations of its left and right neighbors as well, since it has common
intersection points (edges of the interval Intervalx). This means that in each step, we have
to delete up to 6 equations from the list and to add 6 new equations.

4 Some Benefits of the GrA (GrA-I) in Comparison with the DPA

1. The time complexity of the modified GrA-I is O(nkmaxA log(kmaxA)) in contrast to
the time complexity O

(
nA2

)
of the DPA.

2. In spite of the fact that the complexity of the non-modified GrA-I is O
(
n(A · kmax)

2
)

and the complexity of the DPA is O
(
nA2

)
, we suppose that in practice, the running

time of the GrA-I is substantially less. This conjecture is made based on our numerical
results with graphical algorithms for other problems.

3. The running time of the GrA for two instances I1 and I2, where all parameters of I2 are
equal to the parameters of I1 multiplied by M > 1, M ∈ Z, will be the same, although
the running time of the DPA increases M2 times. Thus, using the GrA, we can solve
large scale instances or instances with real numbers in a more effective way.

4. If at stage j, j = 1, 2, . . . , n, we have kjBPj > A, then we can recalculate the table
for Fj (T ) from the table used in the DPA and continue with all other stages according
to the DPA. This means that the running time of such a modification is always less than
the running time of the DPA.

5. The GrA-I is more effective for some sub-cases. As we saw in Section 2 for a numer-
ical instance, for some functions at stage 4, the complexity of the GrA-I will be less,
if all functions fj (t) are step functions. Then the time complexity of the GrA-I is
O(nkmaxA), which is substantially less than the complexity of the DPA considered.

6. As it is shown in Section 5, it is easier to construct an FPTAS based on a GrA.

5 An FPTAS Based on a GrA

In this section, a fully polynomial-time approximation scheme (FPTAS) is presented based
on the corresponding GrA.

First, we recall some relevant definitions. For the optimization problem of minimizing
a function F(x), a polynomial-time algorithm that finds a feasible solution x ′ such that
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F(x ′) is at most ρ ≥ 1 times less than the optimal value F(x∗) is called a ρ-approximation
algorithm; the value of ρ is called a worst-case ratio bound. If a problem admits a ρ-
approximation algorithm, it is said to be approximable within a factor ρ. A family of ρ-
approximation algorithms is called a fully polynomial-time approximation scheme, or an
FPTAS, if ρ = 1 + ε for any ε > 0 and the running time is polynomial with respect to both
the length of the problem input and 1/ε. Notice that a problem, which is NP-hard in the
strong sense, admits no FPTAS unless P = NP.

Let LB = max
j=1,...,n

fj (A) be a lower bound and UB = n · LB be an upper bound on the

optimal objective function value for the problem.
The idea of the FPTAS is as follows. Let δ = εLB

n
. To reduce the time complexity of the

GrA, we have to diminish the number of columns BKj considered, which is the number of
different objective function values 0 = b1, b2, b3, . . . , bBLk = UB . If we do not consider
the original values bk but the values bk which are rounded up or down to the nearest multiple

of δ values bk, there are no more than UB
δ

= n2

ε
different values bk . Then we will be

able to convert the table for the function Fj (T ) into a similar table with no more than 2 n2

ε

columns (see Fig. 6). Furthermore, for such a modified table (function) F ′(T ), we will have
|F(T )−F ′(T )| < δ ≤ εF ∗(A)

n
. If we do the rounding and modification after each step III of

the GrA, then the cumulative error will be no more than nδ ≤ εF ∗(A), and the total running
time of the n runs of the GrA will be

O

(
n3kmax

ε
log

(

kmax

n2

ε

))

,

i.e., an FPTAS is obtained.
In [6], a technique was proposed to improve the complexity of an approximation algo-

rithm for optimization problems. This technique can be described as follows. If there is an

FPTAS for a problem with a running time bounded by a polynomial P
(
L, 1

ε
, UB

LB

)
, where

L is the length of the problem instance and UB , LB are known upper and lower bounds,

F

t

1+q )(

q

1-q )(

+1y )(

y

-1y )(

Fig. 6 Substitution of columns and modification of Fj (T )
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and the value UB
LB

is not bounded by a constant, then the technique enables us to find in
P

(
L, log log UB

LB

)
time values UB0 and LB0 such that LB0 ≤ F ∗ ≤ UB0 < 3LB0, i.e.,

UB0
LB0

is bounded by the constant 3. By using such values UB0 and LB0, the running time of

the FPTAS will be reduced to P
(
L, 1

ε

)
, where P is the same polynomial. So, by using this

technique, we can improve the FPTAS to have a running time of

O

(
n2kmax

ε
log

(
kmax

n

ε

)
(1 + log log n)

)

,

We have to note that this time complexity is less than the time complexity of the FPTAS
presented in [5] for a similar problem.

A detailed description of FPTASes based on a GrA for some single machine scheduling
problems has been presented in [2].

6 A GrA for the Problem P-Cost

In this section, a GrA for the problem of finding lot-sizes and sequencing several products
on a single imperfect machine is presented. For this problem, so-called P-cost and studied
in [7], we have similar Bellman equations. Moreover, the problem P-Cost can be reduced
to the project investment problem. Here, we consider a special case of problem P-Cost, for
which the GrA improves the complexity of the DPA substantially.

The production line considered in this paper contains one facility (machine), which pro-
duces items of n different products in lots. A lot is a maximal set of items of the same
product manufactured sequentially on the machine. The machine cannot process more than
one item simultaneously. A sequence-dependent setup time is required between items of
different products. The machine is imperfect in the following two senses: it can produce
defective items which are not repairable, and it can break down. It is assumed that no item
can be produced during a setup or breakdown and that setup and breakdown times cannot
overlap. The following deterministic parameters are assumed to be given for each prod-
uct j, j = 1, . . . , n: bj , bj > 0, is the demand for good quality items; cj , cj > 0, is
the per item cost of the unsatisfied demand; tj , tj > 0 is the processing time of an item;
si,j , si,j ≥ 0 is the setup time between items of products i and j ; fj (x) is a non-decreasing
integer-valued function representing the number of defective items, x is the total manufac-
tured quantity of product j ; fj (0) = 0, and fj (x) < x for x = 1, 2, . . . , n; T (x1, . . . , xn)

is a non-negative non-decreasing real-valued function representing the cumulative machine
breakdown time before the production of the last item, and xj is the total number of
manufactured items of product j .

The problem is to minimize the total cost

n∑

j :=1

cj max{0, bj − (xj − fj (xj ))},

of demand dissatisfaction subject to the constraint that the completion time Cmax of the last
item does not exceed a given upper bound A. As aforementioned, this problem was denoted
as P-Cost.

In [7], this problem is solved in two steps. In the first step, a sequence of lots is computed
by using an exact B&B algorithm for the Traveling Salesman Problem to minimize total
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setup time. The time complexity of this algorithm is O
(
n22n

)
. Let T T be the total time

given for production. Then A = T T − T S∗, where T S∗ is the minimal total setup time.
In the second step, the function

F(x1, . . . , xn) =
n∑

j :=1

cj max{0, bj − (xj − fj (xj ))}

is minimized, where
∑n

j :=1 xj tj ≤ A. It is obvious that this problem can be solved in

O
(
nA2

)
time by a DPA with Bellman equations similar to the ones presented in Section 1.

In [7], the authors considered a special case of this problem, where fj (xj ) = �αjxj�,
and they presented an FPTAS with a time complexity of

O

⎛

⎝n3

ε2
+ n3 log log

⎛

⎝
n∑

j :=1

cj bj

⎞

⎠

⎞

⎠ .

According to the results of the numerical experiments provided in [8], this FPTAS works
slower than an exact algorithm provided by CPLEX for a MIP formulation of the problem.
However, we have to note the following. Since the traveling salesman problem (TSP) solved
in the first step is many times more difficult, it seems to be necessary to do the following.
First, using an effective algorithms we find UBT S and LBT S , which are an upper and a
lower bound on the optimal objective function value for the TSP. Then we use the DPA to
solve the problem P-Cost, where A = T T − LBT S . As a result of the DPA, we will have
optimal solutions for all A′ ∈ [0, A], in contrast to the fact that CPLEX provides only an
optimal solution for A′ = A. Then we return to the TSP and decide whether it makes sense
to continue the B&B calculations, i.e., which result will be obtained for the problem P-Cost,
if we improve the current value UBT S . So, this approach seems to be more effective than a
combination of the B&B algorithm for the TSP and CPLEX.

If we assume fj (xj ) = αjxj , then we can use the GrA to solve the problem, where
kj = 2, j = 1, . . . , n. The analytical form fj (xj ) = αjxj seems to be more adequate than
fj (xj ) = �αjxj� since, in practice, we deal with functions fj (xj ) statistically received.

Lemma 2 The problem P-Cost with fj (xj ) = αjxj , j = 1, . . . , n, is NP-hard.

Proof We present a polynomial time reduction from the partition problem, which is as
follows.

Partition problem A set N = {a1, a2, . . . , an} of values a1 ≥ a2 ≥ · · · ≥ an > 0 with
ai ∈ Z+, i = 1, 2, . . . , n, and a value A ∈ Z, A = 1

2

∑n
j=1 aj are given. Is there a subset

N ′ ⊂ N such that
∑

j∈N ′ aj = A?

Each lot j ∈ N corresponds to an item j ∈ N . Moreover, we have bj = 1, αj = 0, cj =
tj = aj and A = A. There exists an optimal solution of the problem P-Cost with F ∗ = A

if and only if there exists such a subset N ′ for the partition problem.

Theorem 2 The problem P-Cost with fj (xj ) = αjxj , j = 1, . . . , n, can be solved by the
GrA-I in O(nA log A) time.
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Theorem 3 For the problem P-Cost with fj (xj ) = αjxj , j = 1, . . . , n, there exists an
FPTAS based on the GrA with a time complexity of

O

⎛

⎝n2

ε
log(n/ε) + n2 log log

⎛

⎝
n∑

j :=1

cj bj

⎞

⎠

⎞

⎠ .

7 Concluding Remarks

The graphical approach can be applied to problems, where a pseudo-polynomial algorithm
exists based on the Bellman equations. For the investment optimization and the P-Cost
problems, the graphical algorithm improved the complexity of the corresponding pseudo-
polynomial algorithm substantially. An FPTAS based on this GrA can be constructed with
the best running time among the FPTASes known.
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