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Abstract—The strongly NP-hard scheduling problem of minimizing the maximum lateness on one
machine subject to job release dates is under study. We present a general scheme of approximation
solution of the problem which is based on searching for a given problem instance another instance,
closest to the original in some metric and belonging to a known polynomially solvable class of
instances. For a few concrete variants of the scheme (using different polynomially solvable classes
of instances) some analytic formulas are found that make it possible, given a problem instance, to
compute easily an upper bound on the absolute error of the solution obtained by a chosen scheme.
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INTRODUCTION

A family of jobs N = {1, 2, . . . , n} must be processed on one machine. Preemption and simultaneous
processing of several jobs at a time are not allowed. For each j ∈ N its release date rj (the minimum
possible starting time of the job), the processing time pj � 0, and a due date dj for its completion time
are specified.

A schedule S is defined by a family S = {sj | j ∈ N} of the job starting times. A schedule S is called
feasible if sj(S) � rj for all j ∈ N and the intervals (sj′(S), sj′(S) + pj′) and (sj′′(S), sj′′(S) + pj′′)
do not overlap for any two jobs j′ �= j′′. The completion time of j ∈ N in S is denoted by cj(S).
Clearly, cj(S) = sj(S) + pj . The lateness cj(S) − dj of job j ∈ N in S is denoted by Lj(S), while
Lmax(S) = maxj∈N Lj(S) stands for the maximum job lateness in S. The problem is to find a feasible
schedule S∗ providing the minimum value to the maximum job lateness.

This problem is usually denoted by 〈1 | rj | Lmax〉 [5]. Algorithms for its solution can be used for
solving other scheduling problems, for instance, job shop problem [1] and the problems of minimizing
the weighted number of late jobs on a single machine [14].

Intensive work on elaborating the methods of solution for this problem is performed since the early
50s of the last century. As shown in [13], Problem 〈1 | rj | Lmax〉 is strongly NP-hard. A series of
polynomial time solvable cases of the problem was found, starting with the earliest result of [8] for
the case rj = 0, j ∈ N , where the sequence defined by the EDD-rule (“the job with the earliest due
date is the first”) turned out optimal. Problems 〈1 | prec, rj | Lmax〉, 〈1 | prec, pj = p, rj | Lmax〉, and
〈1 | prec, rj, pmtn | Lmax〉 with precedence constraints for job processing were considered in [2, 12, 18].
An algorithm with polynomial running time O(n2 log n) was proposed in [7] for the special case with the
property maxi(di − ri − pi) � mini(di − ri). Another pseudo-polynomial time algorithm for the NP-
hard case when the release dates and due dates are numbered in the opposite order (d1 � · · · � dn and
r1 � · · · � rn) was designed by Lazarev and Shulgina in [11].

The most frequently used exact method of the Branch-and-Bound type is the algorithm due to
Carlier [4]. The method proved to be good enough for large scale instances. Other exact methods for
this problem were considered in [3, 9, 15].
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A SCHEME OF APPROXIMATION SOLUTION 469

Some of the published papers describe approximation algorithms with ratio performance guarantees.
Potts [17] presented an iterative version of the extended Jackson’s rule (IJ) and proved its performance
ratio Lmax(SIJ)/L∗

max � 3/2. Hall and Shmoys [6] proposed a modified iterative version (MIJ) with ratio
performance guarantee Lmax(SMIJ)/L∗

max � 4/3. They also presented two approximation schemes that
for any ε > 0 guaranteed an ε-approximation in time O(n log n + n(1/ε)O(1/ε2)) and O((n/ε)O(1/ε))
respectively. Mastrolilli [14] designed an improved approximation scheme with running time O(n +
(1/ε)O(1/ε)). There are known also several polynomial time algorithms with absolute performance
guarantee

Lmax(S) − L∗
max � pmax

.= max
j∈N

pj.

In this paper we propose an original approach to searching for approximation solutions with worst
case absolute performance guarantees. The core idea of our approach consists in finding for a given
instance A another instance C (with the same number of jobs) which, first, belongs to a known
polynomially solvable class of instances and, second, is the nearest to instance A (in a certain metric
ρ(A,C)) among all instances of the class. Having applied the polynomial time algorithm to instance C,
we find its optimal sequence of jobs and apply it to the original instance A as an approximation solution
with an absolute error at most the distance ρ(A,C) between instances A and C.

Thus, the article presents an effective combination of the two classical approaches to solving NP-
hard problems: 1) designing approximation algorithms and 2) searching for efficiently solvable special
cases. Up to our knowledge, such a combination of these two approaches is proposed for the first time.

The scheme of the paper is as follows: Section 1 introduces the basic notation and definitions. In
Section 2 a formula is derived which estimates the absolute variation of the optimum under a given
modification of such problem parameters as release dates and due dates (provided that job processing
times are fixed). Section 3 describes a general scheme of searching for approximation solution for a given
problem instance. Subsections 3.1 and 3.2 address certain variants of the scheme based on two different
polynomial time solvable cases of the problem. In both variants, an absolute error of the solution obtained
is estimated in terms of the job parameters of a given instance. Finally, in the conclusion we formulate
the main results of the article and propose further promising research directions.

1. NOTATION AND DEFINITIONS OF BASIC NOTIONS

In this section we introduce some basic notation and definitions to be used in the paper.

LA
j (S) and cA

j (S) will stand for the lateness and completion time of job j ∈ N in S for a given

instance A with problem parameters {rA
j , pA

j , dA
j }, j ∈ N . Respectively, LA(S) = maxj∈N LA

j (S) will
denote the maximum job lateness in a schedule S for a given instance A.

Definition 1. Given a problem instance A, each permutation π of jobs in N uniquely defines the early
schedule SA

π . In an early schedule each job j ∈ N starts processing at the earliest possible time: either at
its release date rA

j or right after the completion of the previous job in the corresponding sequence. Thus,

for an arbitrary permutation π = (j1, . . . , jn), the corresponding early schedule SA
π = {sj | j ∈ N} is

defined as:

sj1 = rA
j1 , sjk

= max{sjk−1
+ pA

jk−1
, rA

jk
}, k = 2, . . . , n.

In all our constructions the early schedules play an exclusive role, since the optimal schedule of any
instance is contained in the set of early schedules.

πA and SA will denote the optimal sequence and optimal schedule of an instance A. For optimal
schedules, we deal only with early schedules, assuming thereby that SA = SA

πA .

Π(N) will denote the set of all permutations of jobs in N .

Definition 2. Given an instance A with job set N , we say that an instance B on the same job set
inherits a parameter x from A, if xB

j = xA
j for j ∈ N .
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Definition 3. An instance Q = {(rQ
j , pQ

j , dQ
j )|j ∈ N} is inverse to an instance

P = {(rP
j , pP

j , dP
j ) | j ∈ N},

if for all j ∈ N we have

rQ
j = −dP

j , pQ
j = pP

j , dQ
j = −rP

j .

The permutation π′ = (in, in−1, . . . , i1) is called inverse to a permutation π = (i1, . . . , in). The sched-
ule S′ = {s′j | j ∈ N} is called inverse to a schedule S = {sj | j ∈ N}, if s′j = −sj − pj for all j ∈ N .

It is easily seen that the notion of inversion is symmetric, i.e., if an object X is inverse to Y then Y is
inverse to X. In particular, the processing intervals Ij and I ′j of job j in two mutually inverse schedules
S and S′ are symmetric with respect to the origin.

Definition 4. Given an instance V = {(rV
j , pV

j , dV
j ) | j ∈ N}, its feasible schedule S is called fully

feasible, if each job j ∈ N is processed within its due interval [rV
j , dV

j ].

Furthermore, Δ = Δ(V, S) will denote the minimum amount (possibly, negative) that should be
added to all due dates of jobs of instance V so as given feasible schedule S became fully feasible. Clearly,
Δ(V, S) = LV (S).

Definition 5. Given instances A and B, we define the following functions:

ρd(A,B) = max
j∈N

{dA
j − dB

j } + max
j∈N

{dB
j − dA

j }

ρr(A,B) = max
j∈N

{rA
j − rB

j } + max
j∈N

{rB
j − rA

j }

ρ(A,B) = ρd(A,B) + ρr(A,B).

It can be easily checked that ρ(A,B) meets all metric properties, and so it can be used for measuring
a distance between instances A and B.

2. THE ABSOLUTE ERROR OF AN APPROXIMATE SOLUTION

Lemma 1. Suppose that an instance B inherits from an instance A release dates and process-
ing times of jobs. Then for any feasible (for both instances) schedule S we have

LB(S) − LA(S) � max
j∈N

{dA
j − dB

j }. (1)

Proof. Given i ∈ N , we have

LA(S) + max
j∈N

{dA
j − dB

j } � ci(S) − dA
i + dA

i − dB
i = ci(S) − dB

i .

Therefore,

LA(S) + max
j∈N

{dA
j − dB

j } � max
i∈N

(ci(S) − dB
i ) = LB(S).

Lemma 1 is proved.

Lemma 2. Suppose that an instance B inherits from an instance A release dates and process-
ing times of jobs. Then

0 � LA(SA
πB ) − LA(SA) � ρd(A,B).
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Proof. Substituting SA for S in (1), we obtain

LA(SA) + max
j∈N

{dA
j − dB

j } � LB(SA) = LB(SB
πA). (2)

By trading the places of notations of A and B in (1), we obtain

LB(SB) + max
j∈N

{dB
j − dA

j } � LA(SA
πB ). (3)

By the definition of SB, we have

LB(SB
πA) � LB(SB). (4)

Now it follows from (2)–(4) that

LA(SA) + max
j∈N

{dA
j − dB

j } � LA(SA
πB ) − max

j∈N
{dB

j − dA
j }

or LA(SA) + ρd(A,B) � LA(SA
πB) � LA(SA). Lemma 2 is proved.

Since ρd(A,B) = ρd(B,A), by trading the places of A and B, we obtain from Lemma 2

Corollary 1. ρd(A,B) � LB(SB
πA) − LB(SB) � 0.

Lemma 3. Let V and W be mutually inverse instances with job set N , and let π and π′ be
mutually inverse permutations from Π(N). Then LV (SV

π ) = LW (SW
π′ ).

Proof. Let Δ = Δ(V, SV
π ). Since SV

π is fully feasible for V (Δ); the schedule S′, inverse to SV
π , is fully

feasible for the instance W ′ inverse to V (Δ). This means that LW ′
(S′) � 0. Note that the instance W ′

differs from the instance W (inverse to V ) in that all rj are decreased by Δ. So, if we shift a schedule S′

to the right by Δ, the schedule S′′ obtained will be feasible for W , with LW (S′′) � Δ = LV (SV
π ). Since

the jobs are sequenced in S′′ by π′, we have LW (SW
π′ ) � LW (S′′) � LV (SV

π ).

By trading the places of V and W , as well as π and π′, we will obtain the inverse inequality
LV (SV

π ) � LW (SW
π′ ). This implies the equality LV (SV

π ) = LW (SW
π′ ). Lemma 3 is proved.

Corollary 2. If a permutation π is optimal for an instance V then the inverse permutation π′ is
optimal for the instance inverse to V .

Lemma 4. Suppose that an instance C inherits from an instance B processing times and due
dates. Then

0 � LB(SB
πC ) − LB(SB) � ρr(B,C).

Proof. Consider two instances E and F with parameters rE
j = −dB

j , pE
j = pB

j , dE
j = −rB

j and rF
j =

−dC
j , pF

j = pC
j , dF

j = −rC
j inverse to B and C. Let πE and πF be the permutations inverse to πB

and πC . Then by Corollary 2 the permutations πE and πF are optimal for the instances E and F . By
Lemma 2,

ρd(E,F ) � LE(SE
πF ) − LE(SE) � 0.

By Lemma 3, we have LB(SB) = LE(SE) and LB(SB
πC ) = LE(SE

πF ). Hence,

ρd(E,F ) � LB(SB
πC ) − LB(SB) � 0. (5)

But we have

ρd(E,F ) = max
j∈N

{dE
j − dF

j } + max
j∈N

{dF
j − dE

j } = max
j∈N

{rC
j − rB

j } + max
j∈N

{rB
j − rC

j } = ρr(B,C),

which together with (5) implies Lemma 4.
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Theorem 1. Suppose that an instance C inherits the job processing times from A. Then

0 � LA(SA
πC ) − LA(SA) � ρ(A,C).

Proof. The inequality 0 � LA(SA
πC ) − LA(SA) follows directly from the optimality of SA for A. Let us

prove that LA(SA
πC ) − LA(SA) � ρ(A,C).

Consider the instance B with job parameters rB
j = rA

j , pB
j = pA

j = pC
j , dB

j = dC
j and its optimal

schedule SB . By Lemma 4,

LB(SB
πC ) − LB(SB) � ρr(B,C) = ρr(A,C). (6)

By the optimality of the sequence πB for B, we have

LB(SB) � LB(SB
πA). (7)

By Lemma 1, for the instances A and B and the schedules SA
πC = SB

πC and SB
πA = SA

πA = SA we obtain

LA(SA
πC ) − LB(SB

πC ) � max
j∈N

{dB
j − dA

j }, (8)

LB(SB
πA) − LA(SA) � max

j∈N
{dA

j − dB
j }. (9)

Summing up (6)–(9), we obtain

LA(SA
πC ) − LA(SA) � ρr(A,C) + ρd(A,B) = ρr(A,C) + ρd(A,C) = ρ(A,C).

Theorem 1 is proved.

Corollary 3. 0 � LC(SC
πA) − LC(SC) � ρ(A,C).

The result of Theorem 1 can be applied to Problem 〈1 | rj | Lmax〉 in conditions of uncertainty of
release and/or due dates of jobs. Suppose that for a given instance A we somehow found an optimal job
sequence πA, after which a new information on the values of the parameters {rj , dj} was received (while
job processing times remained unchanged). Let C denote the new instance. The question arises: What is
the quality of the solution obtained by applying the sequence πA to the instance C? Corollary 3 enables
us to bound the absolute error of such solution by the distance ρ between the instances A and C.

Another application of Corollary 3 is related to elaboration of efficient approximation algorithms for
the NP-hard problem 〈1 | rj | Lmax〉. The general scheme of the approximate solution based on the
algorithms elaborated for special polynomially solvable cases of our problem is considered in the next
section together with different variants of application of this scheme.

3. A SCHEME OF APPROXIMATE SOLUTION

The general idea of approximate solution of Problem 〈1 | rj | Lmax〉 consists in performing the
following two steps: At the first step, given an instance A, we find a transformation of its parameters
rA
j , dA

j such that the obtained instance C with job parameters rC
j , pC

j = pA
j , dC

j would belong to a given
polynomial time solvable class of instances of the original (NP-hard) problem. At the second step, to find
a solution for the instance C, we apply the known algorithm capable of solving the class of instances in
polynomial time. After that, it remains to apply the job sequence found by the algorithm to constructing
an early schedule for instance A.

By Theorem 1, the absolute error of such solution cannot be greater than the distance ρ(A,C)
between instances A and C. It is clear that the minimum bound on the error of such solution will be
guaranteed in the case when at the first step of this scheme an instance C is found that minimizes the
value of ρ(A,C). Thus, given an instance A of the problem under study, its approximate solution reduces
to searching for another instance C belonging to a given class of instances C (known to be polynomially
solvable) and being the nearest one to A among all instances in C.
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A SCHEME OF APPROXIMATION SOLUTION 473

Consider the case when a polynomial time solvable class of instances of our problem is defined by
a system of linear inequalities of the following type:

A ∗ RC + B ∗ PC + C ∗ DC � H (10)

(under the constraints pC
j � 0, j ∈ N ), where

RC = (rC
1 , . . . , rC

n )T , PC = (pC
1 , . . . , pC

n )T , DC = (dC
1 , . . . , dC

n )T ,

A, B, and C are matrices of size m × n and H = (h1, . . . , hm)T is an m-dimensional vector (the
upper index T is used here to denote the transposed matrix). Then to find in such class of instances
the particular instance C minimizing the distance ρ(A,C) (for a given instance A), it is sufficient to
solve the following linear program: Find

min (xd − yd + xr − yr) (11)

under the constraints

yd � dA
j − dC

j � xd, yr � rA
j − rC

j � xr,

pA
j = pC

j , j ∈ N,

A ∗ RC + B ∗ PC + C ∗ DC � H.

(11a)

Of course, while using in the general reduction scheme some concrete polynomially solvable classes
of instances, it is desirable to use most efficient algorithms of minimizing ρ(A,C). To this end, while
solving (11a), one should maximally take into account the specificity of the system resulting from the
specificity of the matrices A, B, C, and H .

For instance, in the special case [1], when dj − rj − pj = 0, j ∈ N , in the system of linear inequali-
ties (10) the matrices A, B, C, and H are specified as follows:

A = B = (I ⊕ (−I))T , C = ((−I) ⊕ I)T , H = (h)T ,

where I is the identity matrix of size n, while h is the 2n-dimensional zero vector and A ⊕ B denotes
the concatenation of a matrix A of size l × p and a matrix B of size l × q.

For another illustration, let us consider the class C of instances of Problem 〈1 | rj | Lmax〉with dj = δ,
j ∈ N , where δ is a constant. To obtain the optimal schedule S′ for an arbitrary instance C ∈ C, it is
sufficient to sequence the jobs in nondecreasing order of their release dates. The schedule S′ can be
found in O(n log n) time. To reduce an arbitrary instance A of our problem to C ∈ C, it is sufficient to
equalize all due dates to some constant δ. Let us formulate a linear program similar to (11)–(11a) for
finding the instance C with the minimal distance ρ(A,C). Find

min (xd − yd) (12)

subject to

yd � dA
j − δ � xd, j ∈ N. (12a)

The solution of the linear program (12)–(12a) is an arbitrary value of δ, and xd, yd such that
xd − yd = maxj∈N dA

j − minj∈N dA
j , i.e., the distance ρ(A,C) for a given instance A is the same for

any instance C ∈ C, and the absolute error of S′ in any case cannot be larger than the difference between
the maximum and minimum due dates of jobs of A.

The third example of a polynomially solvable class of instances that can be written as a linear system
of the type (10) is the class defined by Hoogeveen [7] (let us call it a Hoogeveen class). An instance
C = {(rC

j , pC
j , dC

j ) | j ∈ N} belongs to the Hoogeveen class, if there is a constant β such that for each
job j ∈ N we have

dC
j − rC

j − pC
j � β � dC

j − rC
j . (13)

Note that it is sufficient to consider the class defined by this property with β = 0. Indeed, if for a given
instance A we found an instance C belonging to the Hoogeveen class with β �= 0, then instead of it we
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could take the instance C ′ obtainable from C by decreasing all dj by β. At that, C ′ will belong to the
Hoogeveen class with β = 0, and ρ(A,C) = ρ(A,C ′).

The Hoogeveen class with β = 0 can be defined by the inequalities

dC
j − rC

j − pC
j � 0, −dC

j + rC
j � 0, j ∈ N, (14)

which, evidently, can be easily written in the form of (10).
Some other variants of application of the above-described general scheme not based on the solution

of a linear program of the type (11)–(11a) are considered in the following subsections.

3.1. A Variant of the Scheme Based on the L-Class of Instances
Let us consider the polynomially solvable class L of instances of Problem 〈1 | rj | Lmax〉 proposed by

Lazarev [10].
We say that an instance C = {(rC

j , pC
j , dC

j ) | j ∈ N} belongs to class L, if there exists a numbering
of jobs {1, 2, . . . , n} such that

dC
1 � · · · � dC

n ; ΔC
1 � · · · � ΔC

n , (15)

where ΔC
j = dC

j − rC
j − pC

j denotes the float time of job j.
Given A, let us define the function

ρL(A) = max
i,j∈N

ρL
ij(A), (16)

where

ρL
ij(A) = min{dA

j − dA
i ,ΔA

j − ΔA
i }. (17)

It can be easily seen that ρL(A) � 0 for each A (for example, ρL
ij(A) = 0 for i = j); at that, ρL(A) = 0,

if and only if A belongs to L.
The exact solution for any instance of Problem 〈1 | rj | Lmax〉 from the class L can be obtained in

time O(n3 log n) [10].
Suppose, we are given an instance A not belonging to class L. Let us apply to it the above-described

scheme of approximate solution as follows: We reduce A to some instance C that inherits from A the job
processing times and belongs to class L. Note that the class L cannot be written by means of a linear
system like (10), since it is not a convex polyhedron in 3n-dimensional parametric space. For instance, as
follows from (15), in the case that pj ≡ const it represents a family of n! cones whose union is not convex.
That is why while implementing the general scheme with class L, we apply a nonstandard approach at
the first step of the scheme.

The following theorem enables one to find an instance C of class L which provides the minimum to
the distance ρ(A,C).

Theorem 2. For any instance A of Problem 〈1 | rj | Lmax〉 and any instance C ∈ L that inherits
the job processing times from instance A, the following bound on the distance between A and C
is valid:

ρ(A,C) � ρL(A). (18)

Bound (18) is attainable at some instance C that can be found in O(n log n) time.

Proof. For each C ∈ L the parameters of every two jobs i, j ∈ N satisfy one of the following inequalities:

dC
i − dC

j � 0 (19)

or

ΔC
i − ΔC

j � 0. (20)

If (19) holds for jobs i, j then from the definition of the distance ρ(A,C) and (17) we derive

ρ(A,C) � ρd(A,C) � (dA
j − dC

j ) + (dC
i − dA

i ) � dA
j − dA

i � ρL
ij(A). (21)
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A SCHEME OF APPROXIMATION SOLUTION 475

Alternatively, if (20) holds for jobs i, j then (17), (20), and the definition of the metric ρ(A,C) imply

ρ(A,C) � (dA
j − dC

j ) + (dC
i − dA

i ) + (rC
j − rA

j ) + (rA
i − rC

i )

= (dA
j − rA

j − pj) − (dC
j − rC

j − pj) + (dC
i − rC

i − pi) − (dA
i − rA

i − pi)

= ΔA
j − ΔC

j + ΔC
i − ΔA

i � ΔA
j − ΔA

i � ρL
ij(A). (22)

The desired bound (18) follows from (21), (22), and (16):

ρ(A,C) � max
i,j∈N

ρL
ij(A) = ρL(A).

To prove that (18) is attainable at some instance C of class L, we construct an instance C that inherits
from A the processing times and release dates of jobs. Once the parameters pj and rj do not differ in A
and C, we will denote them without the upper indices A or C.

Let us number the jobs of instance A by nondecreasing rj + pj :

r1 + p1 � · · · � rn + pn. (23)

We define the increasing sequence of dividing indices j0 < j1 < · · · < jK = n as follows:

j0 := 0; k := 0;

while jk < n do {k := k + 1; jk := max arg min
{j | jk−1<j�n}

dA
j }. (24)

It can be easily seen that

dA
j1 < dA

j2 < · · · < dA
jK

. (25)

Put

dC
j =

⎧
⎨

⎩

dA
j1

, for j � j1,

min{dA
jk

, dA
j − ΔA

j + ΔC
jk−1

}, for jk−1 < j � jk, k > 1.
(26)

Let us prove that the so-defined instance C belongs to L. To this end, we first prove the following
inequalities by induction on k = 1, . . . ,K:

dC
j � dA

j (j � jk); (27)

dC
i � dC

j (i < j � jk); (28)

ΔC
i � ΔC

j (i < j � jk). (29)

The induction base.
Let k = 1. For any j � j1, we have dA

j1
� dA

j by (24), while dC
j = dA

j1
by (26), which implies (27).

At that, for any i and j such that i < j � j1, inequality (28) holds as equality (due to (26)), while (29)
follows from the relations:

ΔC
i = dC

i − ri − pi
from (26)

= dA
j1 − ri − pi

from (23)
� dA

j1 − rj − pj
from (26)

= dC
j − rj − pj = ΔC

j .

The induction step.
Assume that (27)–(29) are valid for k = k′ − 1 < K. Let us prove them for k = k′.

For all j (jk′−1 < j � jk′), we can derive dC
j � dA

jk′
� dA

j from (26) and (24), which implies (27) by
the induction hypothesis.

To prove (28) and (29), by the induction hypothesis, it is sufficient to consider the following variants
of the indices i and j: a) i = jk′−1 < j � jk′ ; b) jk′−1 < i < j � jk′ .

For any j (jk′−1 < j � jk′), from (26) we have either c) dC
j = dA

jk′
or d) dC

j = rj + pj + dC
jk′−1

−
rjk′−1

− pjk′−1
.
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In case c),

dC
jk′−1

from (27)
� dA

jk′−1

from (25)
� dA

jk′
= dC

j .

In case d), (23) implies dC
j � dC

jk′−1
. In both cases we have (28) for the variant of indices a). Let us show

that (28) is valid for the variant of indices b), as well.

In case c), from the definition (26) we have dC
i � dA

jk′
= dC

j . In case d),

dC
i

from (26)
� ri + pi + ΔC

jk′−1

from (23)
� rj + pj + ΔC

jk′−1
= dC

j .

Thus, in both cases we obtain (28) for the variant of indices b).
The relations

ΔC
jk′−1

� min{ΔC
jk′−1

, dA
jk′

− dA
j + ΔA

j }

= min{ΔC
jk′−1

+ dA
j − ΔA

j , dA
jk′

} − dA
j + ΔA

j = dC
j − rj − pj = ΔC

j

imply (29) for the variant of indices a).

In case b), inequality (29) follows from

ΔC
i = dC

i − ri − pi
from (26)

= min{dA
jk′

− ri − pi,ΔC
jk′−1

}
from (23)

� min{dA
jk′

− rj − pj,ΔC
jk′−1

} from (26)
= dC

j − rj − pj = ΔC
j .

Thus, (27)–(29) are proved for all k. This, in particular, implies that C belongs to class L.

To prove that (18) is attained at C, we first note that if to represent ρL
ij(A) (defined by (17)) in the

form ρL
ij(A) = min{dA

j − dA
i , dA

j − dA
i + (ri + pi) − (rj + pj)}, then due to (23) we will have

ρL
ij(A) =

⎧
⎨

⎩

dA
j − dA

i , for i � j,

ΔA
j − ΔA

i , for i < j.
(30)

From (26) with k � 2 and j = jk we derive dC
jk

= min{dA
jk

, dA
jk

− ΔA
jk

+ ΔC
jk−1

}. Subtracting from
both parts of this equality the amount rjk

+ pjk
, we obtain

ΔC
jk

= min{ΔA
jk

,ΔC
jk−1

}. (31)

By (31) and the equality ΔC
j1

= ΔA
j1

, we infer for every k � 1:

ΔC
jk

= min
ν�k

ΔA
jν

. (32)

Next, let us prove for every j the inequality

dA
j − dC

j � ρL(A). (33)

For j � j1, due to (30), we have dA
j − dC

j = dA
j − dA

j1
= ρL

j1j(A) � ρL(A).

For any j, jk−1 < j � jk, and any k � 2, we have

dA
j − dC

j = dA
j − min{dA

jk
, dA

j − ΔA
j + ΔC

jk−1
} = max{dA

j − dA
jk

,ΔA
j − ΔC

jk−1
} =

(by (32) for some ν � k − 1)

= max{dA
j − dA

jk
,ΔA

j − ΔA
jν
} from (30)

= max{ρL
jkj(A), ρL

jν j(A)} � ρL(A),
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which implies (33). Finally, since ρr(A,C) = 0, we have

ρ(A,C) = ρd(A,C) = max
j

{dA
j − dC

j } + max
j

{dC
j − dA

j }
from (33) and (27)

� ρL(A),

which together with (18) implies ρ(A,C) = ρL(A).
The overall running time of the algorithm of finding the desired instance C is formed of three

components, being complexities of the steps:
1) job numbering according to (23);
2) finding the sequence of dividing indices according to (24);
3) finding new due dates according to (26).
The first step can be performed by means of a standard procedure that sequences n numbers in time

O(n log n). The third step, clearly, can be done in linear time. As far as the second step is concerned, the
straightforward realization of formula (24) requires time O(n2). However, the amount of calculation at
this step can be significantly reduced if to look through the jobs in the opposite order and compute the
dividing indices as follows.

Let us assume (just for ease of notation) that the number K of dividing indices is known. Put jK = n.
Assume that 1 < jk < · · · < jK are already defined. We proceed with consecutively considering jobs
j = jk − 1, jk − 2, . . . , and for jk−1 we take the first index j < jk such that dA

j < dA
jk

(if any). It can be
easily checked that the so-defined sequence of indices j1, . . . , jK meets (24); at that, all inequalities (25)
hold as equalities, and the running time of this procedure is linear in n. Theorem 2 is proved.

In fact, in the algorithm of computing the desired instance C it is expedient from the very beginning
to number the jobs of instance A in the reverse order: in the nonincreasing order of rj + pj . The formal
record of such algorithm is presented below. (It is assumed that the jobs of instance A are already
numbered in the nonincreasing order of rA

j + pA
j .)

Algorithm 1 (of finding the instance from L nearest to a given instance A)

FOR j := 1 TO n rC
j := rA

j ; pC
j := pA

j END FOR

k := 1; j1 = 1;
FOR i := 2 TO n IF dA

i < dA
jk

THEN k := k + 1; jk := i END IF END FOR

FOR j := n DOWNTO jk dC
j := dA

jk
END FOR

ΔC
jk

:= dC
jk

− rC
jk

− pC
jk

;

FOR ν := k DOWNTO 2 FOR j := jν − 1 DOWNTO jν−1

dC
j := min{dA

jν−1
, dA

j − ΔA
j + ΔC

jν
}; ΔC

j := dC
j − rC

j − pC
j END FOR END FOR

Example. Let us follow Algorithm 1. Suppose, we are given an instance A of Problem 〈1 | rj | Lmax〉
with the job parameters specified in Table 1, the jobs numbered in the nonincreasing order of rA

j + pA
j .

Table 1. Job parameters of A

j 1 2 3 4 5 6 7 8

rA
j 7 5 3 5 1 2 3 0

pA
j 2 4 5 3 5 3 1 4

dA
j 16 18 13 14 15 11 12 14

Let us start our algorithm with the job set N = {1, . . . , 8}. After completing the first cycle, for all
j ∈ N we obtain rC

j = rA
j and pC

j = pA
j . As a result of the second cycle, the dividing indices are found:

j1 = 1, j2 = 3, j3 = 6. At the third cycle we compute: dC
6 = dC

7 = dC
8 = dA

6 = 11.
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The cycle on ν is started:
ν = 3

dC
5 = min {dA

3 , dC
6 − rC

6 − pC
6 + rA

5 + pA
5 } = 12,

dC
4 = min {dA

3 , dC
6 − rC

6 − pC
6 + rA

4 + pA
4 } = 13,

dC
3 = min {dA

3 , dC
6 − rC

6 − pC
6 + rA

3 + pA
3 } = 13.

ν = 2

dC
2 = min {dA

1 , dC
3 − rC

3 − pC
3 + rA

2 + pA
2 } = 14,

dC
1 = min {dA

1 , dC
3 − rC

3 − pC
3 + rA

1 + pA
1 } = 14.

The algorithm completes the work.

We thereby obtained an instance C from L. The job parameters of C are specified in Table 2. The
bound on the absolute error of our solution is equal to

ρ(A,C) = max
j∈N

{dA
j − dC

j } + max
j∈N

{dC
j − dA

j } = dA
2 − dC

2 + 0 = 4.

Table 2. Job parameters of C

j 1 2 3 4 5 6 7 8

rA
j 7 5 3 5 1 2 3 0

pA
j 2 4 5 3 5 3 1 4

dA
j 14 14 13 13 12 11 11 11

3.2. The Version of the Scheme on the Base of the Hoogeveen Class

The following version of the scheme of approximate solution is based on the transformation of any
given instance to an instance from the polynomial-time solvable class H defined by Hoogeveen [7] (for
solving instances from that class there is an algorithm of running time O(n2 log n)).

As follows from (13), an instance A = {(rA
j , pA

j , dA
j ) | j ∈ N} belongs to class H if and only if

ΔA
max

.= max
i

ΔA
i � dA

j − rA
j , j ∈ N. (34)

Let us define the function ρH on the set of instances:

ρH(A) = max
j∈N

{ΔA
max − dA

j + rA
j }. (35)

It is clear that a given instance A belongs to H if and only if ρH(A) � 0.

Theorem 3. For any instance A of Problem 〈1 | rj | Lmax〉 and any instance C ∈ H that inherits
the job processing times from instance A, the following bound on the distance between A and C
is valid

ρ(A,C) � ρH(A). (36)

Bound (36) is attained at some instance C that inherits from A the job processing times and
release dates (the instance can be found in time O(n)).
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Proof. As is noted above, it is sufficient to prove (36) for any instance C that meets (14). By the definition
of ρ(A,C), we have

ρ(A,C) = max
i

(dC
i − dA

i ) + max
j

(dA
j − dC

j ) + max
j

(rC
j − rA

j ) + max
i

(rA
i − rC

i )

� dC
i − dA

i + dA
j − dC

j + rC
j − rA

j + rA
i − rC

i = (dA
j − rA

j − pj)

+ (rC
j − dC

j + pj) + (rA
i − dA

i ) + (dC
i − rC

i )
from (13)

� (dA
j − rA

j − pj) + (rA
i − dA

i ).

Since these relations are valid for all j, i ∈ N , applying (35) we obtain (36):

ρ(A,C) � max
j

(dA
j − rA

j − pj) + max
i

(rA
i − dA

i ) = ρH(A).

Let us prove that bound (36) is attained at some instance C ∈ H . (Since the parameters pj and rj

not to be distinguished for A and C, we will denote them without the upper index A or C respectively.)
Once the instance A does not meet (34), there are jobs j such that

ΔA
max > dA

j − rj. (37)

Let N ′ be the set of such j. For each job j ∈ N we define the new (enlarged) value of dC
j by the formula

dC
j := dA

j + (ΔA
max − dA

j + rj)+. (38)

Then

ΔC
max = ΔA

max. (39)

Indeed, since dC
j � dA

j for any j ∈ N (at that, rj and pj remained the same), we have ΔC
max � ΔA

max.

Let us prove the converse statement. If j �∈ N ′ then ΔC
j = ΔA

j � ΔA
max. For j ∈ N ′, from (37)

and (38) we obtain dC
j = ΔA

max + rj . Hence, ΔC
j = ΔA

max − pj � ΔA
max. Thus, ΔC

max � ΔA
max, which

implies (39).
Let us prove that the instance C meets (34).
For any j ∈ N \ N ′ inequalities (34) follow from ΔC

max = ΔA
max � dA

j − rj = dC
j − rj .

If j ∈ N ′ then dC
j − rj = ΔA

max = ΔC
max. Thus, C belongs to class H . Its distance from A is

determined by the relations

ρ(A,C) = max
j∈N

{dC
j − dA

j } = max
j∈N ′

{ΔA
max − dA

j + rj} = ρH(A).

Theorem 3 is proved.

For the instance from Table 1 the bound on the absolute error is equal to ρ(A,C) = 1.

4. CONCLUSION

In this paper some general scheme is presented for finding approximate solutions to Problem 〈1 | rj |
Lmax〉. The scheme is based on a transformation of a given instance to another instance belonging to
a known polynomially solvable class of instances. For two versions of the scheme (using the polynomial-
time solvable classes L and H), we derived analytical formulas that, given an instance of the problem,
enable one to compute upper bounds on the absolute errors of approximate solutions found by means of
those two methods.

Further research could address the theoretical and practical comparison of the performance guaran-
tees of our approximation methods and other approaches.
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