

943

ISSN 1064-2307, Journal of Computer and Systems Sciences International, 2006, Vol. 45, No. 6, pp. 943–949. © Pleiades Publishing, Inc, 2006.
Original Russian Text © A.A. Lazarev, 2006, published in Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, 2006, No. 6, pp. 103–110.

0. INTRODUCTION

We consider the following problem of scheduling
theory. On a machine starting from the moment

t

 (the
moment of machine release), it is necessary to process
jobs of the set

N

 = {1, 2, …,

n

}

. Simultaneous process-
ing and interrupts in processing jobs are prohibited. For
jobs of the set

N

, we denote by

r

j

 the minimum possible
moment of the beginning of processing, by

p

j

 > 0

the
processing time, and by

d

j

 the due date of completion of
the job

j

∈

N

.
Each permutation

π

 of the jobs of the set

N

 uniquely
determines an

early schedule

 such that artificial idle
times of the machine are eliminated. In an early sched-
ule, each job

j

∈

 N

 begins to be processed immediately
after the completion of processing of the preceding job
in the corresponding schedule. If the time of comple-
tion of processing of the preceding job is less than the
release time for processing (

r

j

) of the current job, then
the beginning of the processing of the job

j

 is delayed
up to the release time. In what follows, all considered
schedules are supposed to be early. The set of possible
early schedules corresponding to the set

N

 is denoted by

Π

(

N

)

. Note that the number of schedules

π ∈ Π

(

N

)

 is
equal to the number of permutations of

n

 elements, i.e.,

|Π

(

N

)

|

 =

n

!

.
By

c

j

(

π

)

, we denote the

moment of completion

 of
processing the job

j

∈

N

 in the schedule

π ∈ Π

(

N

)

. If

π

= (

j

1

,

j

2

, …,

j

n

)

 then we have

The dependence

L

j

(

π

) =

c

j

(

π

) –

d

j

 reflects the

late-
ness

 of the jobs

j

∈

N

 in the schedule

π

.

The maximum
lateness

 of jobs of the set

N

 under the schedule

π

 is
determined as

c j1
π() max r j1

t{ } p j1
,+=

c jk
π() max c jk 1–

π(),r jk
{ } p jk

, k+ 2, ... ,n.= =

Lmax π() c j π() d j–{ }.
j N∈
max=

Let us denote the moment of completion of process-
ing all jobs of the set

N

 under the schedule

π

 by

In the case when the schedule

π

 is considered from
the moment

t

' >

t

, we use the notation

L

max

(

π

,

t

'),

C

max

(

π

,

t

')

 and

c

j

(

π

,

t

')

.
The problem consists in finding an

optimal

 schedule

π

*

∈

Π

(

N

)

 that corresponds to the minimum value of
the goal function

(0.1)

In the commonly accepted notation of scheduling
theory introduced by Graham and others [1], this prob-
lem is written as

1

|

r

j |Lmax. Intensive work for its solu-
tion has been conducted since the early 1950s. Lenstra
and others [2] showed that the general case of problem
1|rj |Lmax is NP-hard in the strong sense.

A series of polynomially resolved cases of the prob-
lem have been found, beginning with the Jackson result
[3] for the variant rj = 0, ®j ∈ N, when the schedule for
which the jobs are arranged in nondecreasing order of
the due dates of completion of processing (by the EDD
rule) is a solution. This schedule is also optimal for the
case when the release times and the due dates are coor-
dinated (ri ≤ rj ⇔ di ≤ dj, ∀i, j ∈ N).

Potts [4] presented an iterative version of the
extended Jackson rule (IJ) and proved that

Lmax(IJ)/ ≤ . Hall and Shmoys [5] modified the

iterative version and developed algorithms (MIJ) that

guarantee that Lmax(MIJ)/ ≤ . They also proposed

two approximation schemes that guarantee that ε-
approximate solution can be found for O(n +

n and O((n/ε)O(1/ε)) operations. Mastrolilli

Cmax π() c j π().
j N∈
max=

Lmax π*() L j π()
j N∈
max c j π() d j–{ }.

j N∈
max= =

Lmax* 3
2

Lmax* 4
3

nlog

1/ε()O 1/ε2()

SYSTEMS ANALYSIS
AND OPERATIONS RESEARCH

The Pareto-Optimal Set of the NP-Hard Problem
of Minimization of the Maximum Lateness for a Single Machine

A. A. Lazarev
Computing Center, Russian Academy of Sciences, ul. Vavilova 40, GSP-1, Moscow, 119991 Russia

Received May 18, 2006

Abstract—The classical problem of scheduling theory that is NP-hard in the strong sense 1|rj |Lmax is consid-
ered. New properties of optimal schedules are found. A polynomially resolved case of the problem is selected,
when the release times (rj), the processing time (pj), and due dates of completion of processing (dj) of jobs sat-
isfy the constraints d1 ≤ … ≤ dn and d1 – r1 – p1 ≥ … ≥ dn – rn – pn. An algorithm of run time O(n3logn) finds
Pareto-optimal sets of schedules according to the criteria Lmax and Cmax that contains no more than n variants.

DOI: 10.1134/S1064230706060098

944

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 45 No. 6 2006

LAZAREV

[6] developed an improved and approximation scheme
that can be executed for the time O(n + (1/ε)O(1/ε)).

Special cases 1| prec; rj |Cmax, 1|prec; pj = p; rj|Lmax
and 1|prec; rj; pmtn|Lmax with constraints of prece-
dence in processing were considered in papers by
Lawler [7], Simons [8], Baker [9], and others. Hoo-
geven [10] substantiated a polynomial algorithm (with
the run time of O(n2) operations) for a special case
in which the parameters of jobs satisfy the constraints
dj – pj – A ≤ rj ≤ dj – A for a certain constant A, ®j ∈ N.
A pseudo-polynomial algorithm for the NP-hard case,
when the release times are agreeable to the due dates (d1
≤ … ≤ dn Ë r1 ≥ … ≥ rn), was developed by Lazarev and
Shul’gina [11, 12]. The run time of the algorithm is
O(nP(n + pmax)), where P = and pmax =

. The results presented in this paper give a gen-

eralization of the solutions obtained in [13].

Together with the problem 1 |rj |Lmax, we consider in
this paper the problem of constructing a Pareto-optimal
set of schedules according to the criteria Cmax and Lmax.
We formulate an algorithm for constructing the set of
schedules Φ(N, t) = { , , …, } for which we
have

1. PROPERTIES OF PROBLEMS

Let us denote the fact that the job i precedes the job
j in the schedule π by (i j)π. We also introduce the
notation

(1.1)

(1.2)

In the cases when it is clear with which set we deal,
we simply write r(N, t) instead of r(t).

Assume that π is the schedule of processing jobs of
a certain subset from N, for defining which we use the
notation {π} in what follows.

It is supposed that the parameters of jobs satisfy the
constraints

(1.3)

For example, the case when dj = rj + pj + z, j = 1, …, n,
where z is a constant, corresponds to these constraints,
i.e., when all jobs have the same time margin (resource)
for their due date.

nlog

p j
j N∈∑

p j
j N∈
max

π1' π2' πm'

Cmax π1'() Cmax π2'() ...<< Cmax πm'(),<

Lmaxπ1') Lmaxπ2' ...>> Lmax πm'().>

r j max r j t,{ }, ∀ j N ,∈=

r N t,() r t(){ }.
j N∈
min=

d1 … dn, d1 r1 p– 1 … dn rn– pn.–≥ ≥–≤ ≤

Assume that |N | > 1 and t is the time when the
machine is released. Let us select from the set N two
jobs f = f(N, t) and s = s(N, t) as follows:

(1.4)

(1.5)

where f = f(N, t). If N = {i}, then we set f(N, t): = i and
s(N, t) := 0, ®t. We also define d0 = +∞, f(, t) = 0 and
s(, t) = 0, ∀t. For jobs f and s, the following properties
are valid.

Lemma 1. If, for jobs of the set N, (1.3) holds, then,
for any schedule π ∈ Π(N) for all j ∈ N \{f} for which
(j f)π, we have

(1.6)

and for all j ∈ N \{f, s} satisfying the condition (j
s)π, we have

(1.7)

where f = f(N, t) and s = s(N, t).
Proof. For all jobs j such that(j f)π, we have cj(π) <

cf(π). If dj ≥ df, then we obviously have

therefore, (1.6) holds.
Assume that for the job j ∈ N, (j f)π we have

dj < df. Then, we have rj > rf. If rj ≤ rf, then rj(t) ≤ rf(t)
and rf(t) = r(t) as follows from (1.1) and (1.4). Then,
rf(t) = r(t) and dj < df, but it contradicts the definition of
job f (1.4). Therefore, we have rj > rf. It is obvious that
cj(π) – pj < cf(π) – pf, and, since rj > rf, we have

If dj < df, then (1.3) implies that either dj – rj – pj ≥
df – rf – pf or dj – df ≥ rj + pj – rf – pf; therefore, cj(π) –
cf(π) < pj + rj – pf – rf ≤ dj – df. This implies that Lj(π,
t) < Lf(π, t) for all jobs j, (j f)π.

Let us prove inequality (1.7). For all jobs j satisfying
condition (j s)π, we have cj(π) < cs(π). If dj ≥ ds,
then Lj(π, t) = cj(π) – dj < cs(π) – ds = Ls(π, t); therefore,
(1.7) holds.

Assume that, for job j ∈ N \{f}, (j s)π, dj < dsis
valid; then, we have rj > rs. In fact, if we suppose that
rj ≤ rs, then rj(t) ≤ rs(t), which follows from (1.1). More-
over, for the job s, we have rs(t) ≥ r(t) according to def-
initions (1.2) and (1.5). If rs(t) = r(t), then, for j and s,
we can write rj(t) = rs(t) = r(t) and dj < ds, which contra-
dicts definition (1.5) of the job s(N, t). If rs(t) > r(t), i.e.,

f N t,() d j{ r j t()arg min = r N t,() }=
j N∈

s N t,() d j{ r j t()arg min = r N \ f t,() }=
j N \ f∈

0/
0/

L j π() L f π()<

L j π() Ls π(),<

L j π() c j π() d j c f π() d f–<– L f π(),= =

c j π() p j– r j c f π() p f– r f ,–<–

c j π() c f π() p j r j p f r f .–+ +<–

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 45 No. 6 2006

THE PARETO-OPTIMAL SET OF THE NP-HARD PROBLEM OF MINIMIZATION 945

rs > r(t), then there is no job i ∈ N \{f, s} such that rs >
ri > r(t). Hence, for jobs j and s, we obtain rj(t) = rs(t) and
dj < ds, which contradicts definition (1.5) of the job s(N,
t). Therefore, we have rj > rs.

Since cj(π) ≤ cs(π) – ps and pj > , we have cj(π) – pj <
cs(π) – ps, and, since rj > rs, we have cj(π) – pj – rj < cs(π)
– ps – rs and

(1.8)

Since dj < ds, (1.3) implies that either dj – rj – pj ≥ ds –
rs – psor

(1.9)

This implies that Lj(π) < Ls(π) for all jobs j ∈ N \{f},
(j s)π.

Theorem 1. If, for all jobs of the subset N' ⊆ N, (1.3)
holds, then for any moment t' ≥ t and every early sched-
ule π ∈ Π(N') there is π' ∈ Π(N') such that

(1.10)

and, under the schedule π', the job f = f(N', t') is pro-
cessed first or s = s(N', t'). If df ≤ ds, then, under the
schedule π', the job f is processed first.

Proof. Let π = (π1, f, π2, s, π3), where π1, π2, and π3
are partial schedules of π. Let us construct the schedule
π' = (f, π1, π2, s, π3). From definitions (1.1), (1.2), and
(1.4), we obtain rf(t') ≤ rj(t'), j ∈ N '. This implies that
Cmax((f, π1), t') ≤ Cmax((π1, f), t') and

(1.11)

(1.12)

It follows from Lemma 1 that

(1.13)

It is obvious that, for job f, we have

(1.14)

From (1.11)–(1.14), we arrive at Cmax(π', t') ≤ Cmax(π,
t') and Lmax(π', t') ≤ Lmax(π, t'). Let π = (π1, s, π2, f, π3),
i.e., the job s is processed before the job f. We construct
a schedule π' = (s, π1, π2, f, π3). Then, the proof can be
repeated as for f. The first part of the theorem is proven.

Suppose that df ≤ ds and the schedule π = (π1, s, π2,
f, π3). Let us construct a schedule π' = (f, π11, π12, π3)
where π11, and π12 are schedules from the jobs of the
sets {j : j ∈ {(π1, s, π2)}, dj < df} and {j : j ∈ {(π1, s, π2)},
dj ≥ df}. The jobs in π11 and π12 are arranged in nonde-
creasing order of release times rj. It follows from ds ≥ df
that s ∈ {π12}.

For each job j ∈ {π11}, we have dj < df. From (1.3),
we obtain dj – rj – pj ≥ df – rf – pf. This implies that rj +

c j π() cs π() p j r j ps rs.–+ +<–

c j π() cs π() p j r j ps rs d j ds.–≤–+ +<–

Lmax π ' t ',() Lmax π t ',(),≤
Cmax π ' t ',() Cmax π t ',()≤

Cmax π ' t ',() Cmax π t ',(),≤

L j π ' t ',() L j π t ',(), ∀ j π2 s π3, ,(){ }.∈≤

L j π ' t ',() Ls π ' t ',(), ∀ j π1{ } π2{ }.∪∈<

L f π ' t ',() L f π t ',().≤

pj < rf + pf, ∀j ∈ {π11}, and Cmax((f, π11), t') = rf(t') +

pf + . Since the jobs of the schedule {π12} are

arranged in nondecreasing order of release times, we
have Cmax((f, π11, π12), t') ≤ Cmax((π1, s, π2, f), t'). As a
result, we have

(1.15)

(1.16)

The job j ∈ {π12} satisfies the inequalities dj ≥ df and
cj(π', t') ≤ cf(π, t'). Hence, we have

(1.17)

Since s ∈ {π12}, we have

(1.18)

It follows from Lemma 1 that

(1.19)

Moreover, it is obvious that

(1.20)

It follows from (1.15)–(1.20) that Cmax(π', t') ≤
Cmax(π, t') and Lmax(π', t') ≤ Lmax(π, t'), which we wanted
to prove.

We call a scheduleπ' ∈ Π(N) efficient it there is no
schedule π ∈ Π(N) such that Lmax(π) ≤ Lmax(π') and
Cmax(π) ≤ Cmax(π') and at least one inequality is strict.
Thus, when, for the jobs of the set N, constraints (1.3)
hold, there is an efficient schedule π' for which either
the job f = f(N, t) or the job s = s(N, t) is first processed.
Moreover, if df ≤ ds, then there exists an optimal sched-
ule π' with top-priority processing of the job f.

Let us determine Ω(N, t) as a subset of Π(N). The
schedule π = (i1, i2, … , in) belongs to Ω(N, t) if the job
ik, k = 1, 2, … , n is chosen from fk = f(Nk – 1,) and
sk = s(Nk – 1,), where Nk – 1 = N \ {i1, i2, …, ik – 1},

 = (π) and N0 = N, = t. For ≤ , we

have ik = fk; if > , then either ik = fk or ik = sk. It is
obvious that the set of schedules Ω(N, t) contains no
more than 2n schedules. For the example when

(1.21)

the set Ω(N, t) contains 2m schedules.
Theorem 2. If, for the jobs of the subset N' ⊆ N, | N'

| = n', (1.3) is valid, then, for any time t' ≥ t and schedule
π ∈ Π(N'), there exists a schedule π' ∈ Ω(N', t') such that

p j

j π11∈
∑

Cmax π ' t ',() Cmax π t ',(),≤

L j π ' t ',() L j π t ',(), ∀ j π3{ }.∈≤

L j π ' t ',() L f π t ',(), ∀ j π12{ }.∈≤

Ls π ' t ',() L f π t ',().≤

L j π ' t ',() Ls π t ',(), ∀ j π11{ }.∈≤

L f π ' t ',() L f π t ',().≤

cik 1–

cik 1–

cik 1–
cik 1–

ci0
d f k

dsk

d f k
dsk

n 2m t r1 r2 … rn,< < <≤,=

r2i 1– r2i p2i r2i 1– p2i 1– , 1 i m,≤ ≤+<+<
r2i p2i p2i 1– r2i 1+ 1 i m 1,–≤≤,≤+ +

d j r j p j 1 j n,≤ ≤,+=⎩
⎪
⎪
⎨
⎪
⎪
⎧

Lmax π ' t ',() Lmax π t ',() and Cmax π ' t ',() Cmax π t ',()≤≤

946

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 45 No. 6 2006

LAZAREV

Proof. Let π = (j1, j2, …, jn') be an arbitrary schedule.
We denote the first l jobs of the schedule π by πl, l = 0,
1, 2, …, n', where π0 is an empty schedule and = (jl + 1,

…, jn'). Then, π = (πl,). Let us introduce Nl = N' \{πl}
and Cl = Cmax(πl, t'). Suppose that, for a certain l, 0 ≤ l <
n', πl is the greatest initial partial schedule of a certain
schedule from Ω(N', t'). If j1≠ f(N', t') and j1≠ s(N', t'),
then πl = π0, l = 0; i.e., the greatest partial schedule is
empty. Assume that f = f(Nl, Cl) and s = s(Nl, Cl). If df > ds,
then jl + 1 ≠ f and jl + 1 ≠ s; on the contrary, if df ≤ ds, then
jl + 1 ≠ f, since πl + 1 is not the initial schedule of a certain
schedule from Ω(N', t').

By Theorem 1 for jobs of the set { }, ∈ Π(Nl)

from the time Cl, there exists a schedule for which

we have Lmax(, Cl) ≤ Lmax(, Cl) and Cmax(, Cl) ≤
Cmax(, Cl), and []1 = f or s. Moreover, for df ≤ ds, we

have []1 = f, where [σ]k is the job at the kth place in

the schedule σ. This implies Lmax((πl,), t') ≤ Lmax((πl,

), t') and Cmax((πl,), t') ≤ Cmax((πl,), t').

Let us denote π' = (πl,). We obtain a schedule π'
such that the processing of the first l jobs coincides with
the processing of the first l jobs of a certain schedule
from the set Ω(N', t') and Lmax(π', t') ≤ Lmax(π, t') and
Cmax(π', t') ≤ Cmax(π, t').

After less than n' sequential transformations (since
the length of the schedule n' ≤ n) of the initial arbitrary
chosen schedule π, we arrive at the schedule π' ∈ Ω(N',
t') that provides that Lmax(π', t') ≤ Lmax(π, t') and Cmax(π',
t') ≤ Cmax(π, t'), which we wanted to prove.

Let us form the following partial schedule ω(N, t) =
(i1, i2, …, il). For each job ik, k = 1, 2, …, l, we have ik =
fk and ≤ , where fk = f(Nk − 1, Ck −1) and sk = s(Nk –

1, Ck – 1). For f = f(Nl, Cl) and s = s(Nl, Cl), the inequality
df > ds holds. If df > ds for f = f(N, t) and s = s(N, t), then
ω(N, t) = . Thus, ω(N, t) is the “maximum” schedule
such that a job (f) is chosen uniquely at the recurrent
place of the schedule in its construction. With the help
of algorithm 1, for jobs of the set N from the time t, the
schedule ω(N, t) can be constructed.

Algorithm 1. Let us set ω = in advance.
We find the jobs f = f(N, t) and s = s(N, t). If df ≤ ds,

then ω = (ω, f); otherwise, the algorithm terminates the
operation. We set N = N \{f} and t = rf(t) + pf and repeat
operations for the next step.

Lemma 2. The run time of algorithm 1 for finding
the schedule ω(N, t) for any n and t is no more than
O(n) operations.

Proof. At each iteration step of algorithm 1, we find
two jobs, f = f(N, t) and s = s(N, t). If the jobs are
arranged according to the release times rj (and, corre-

πl

πl

πl πl

πl'

πl' πl πl'

πl πl

πl

πl'

πl πl' πl

πl'

d f k
dsk

0/

0/

nlog

spondingly, the time r(t) is found for O(1) operations),
then, to find the two jobs (f and s), O() operations
are required. In total, there are no more than n iteration
steps. Thus, to construct the schedule ω(N, t), O(n)
operations are required.

Lemma 3. If, for jobs of the set N, (1.3) holds, then
any schedule π ∈ Ω(N, t) begins with the schedule ω(N, t).

Proof. If ω(N, t) = , i.e., df > ds, where f = f(N, t)
and s = s(N, t), the assertion of the lemma holds, since
any schedule stars from the empty one.

Let ω(N, t) = (i1, i2, …, il) and, consequently, for
each ik, k = 1, 2,…, l, we have ik = fk and ≤ ,
where fk = f(Nk – 1, Ck – 1) and sk = s(Nk – 1, Ck – 1). For f =
f(Nl, Cl) and s = s(Nl, Cl we have df > ds. As can be seen
from the definition of the set of schedules Ω(N, t), all
schedules of this subset begin with the partial schedule
ω(N, t).

Let us use the following notation: ω1(N, t) = (f,
ω(N', t')) and ω2(N, t) = (s, ω(N'', t'')), where f = f(N, t),
s = s(N, t), N' = N \{f}, N'' = N \{s}, t' = rf(t) + pf, and t''
= rs(t) + ps. It is obvious that the algorithm for finding
ω1 (as well as ω2) is executed for O(n) operations,
the same as the algorithm for constructing ω(N, t).

Corollary from Lemma 3. If for jobs of the set N
(1.3) is valid, then each schedule π ∈ Ω(N, t) begins
with either ω1(N, t) or ω2(N, t).

Theorem 3. If the jobs of the set N satisfy (1.3),
then, for any schedule π ∈ Ω(N, t), (i j)π holds for
any i ∈ {ω1(N, t)} and j ∈ N \{ω1(N, t)}.

Proof. In the case {ω1(N, t)}= N, the assertion of the
theorem is obviously true. Let {ω1(N, t)} ≠ N. Below in
the text of proof, we use the notation ω1 = ω1(N, t).

If f = f(N, t) and s = s(N, t) are such that df ≤ ds, then
all schedules from the set Ω(N, t) begin with the partial
schedule ω(N, t) = ω1; therefore, the assertion of the
theorem is also true.

Consider the case df > ds. All schedules of the set
Ω(N, t) that begins with the job f have the partial sched-
ule ω(N, t) = ω1. Let us take an arbitrary schedule π ∈
Ω(N, t) with the job sat the first place, [π]1 = s and the
schedule |ω1| = l, l < n that contains l jobs. Assume that
πl = (j1, j2, …, jl) is a partial schedule of length l of the
schedule π, j1 = s. Let us prove that {πl} = {ω1}. Sup-
pose the contrary, which means that there exists a job
j ∈ {πl}, but j ∉ {ω1}.

Assume that (j f)π. If dj < df, then (1.3) implies
that dj – rj – pj ≥ df – rf – pf; therefore, rj + pj < rf + pf.
Hence, the job j is involved in the schedule ω1 by the
definition of ω(N, t) and ω1, but, by assumption, j ∉
{ω1}. If dj ≥ df, then the fact that π ∈ Ω(N, t) implies that
(f j)π, but this contradicts (j f)π.

Let (f j)π. Then, for each job i ∈{ω1} such that
i ∉ {πl}, we have ri < ri + pi ≤ Cmax(ω1) < ≤ rj since
j ∉{ω1}, where sl + 1 = s(N \{ω1}, Cmax(ω1)). The jobs

nlog

nlog

0/

d f k
dsk

nlog

rsl 1+

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 45 No. 6 2006

THE PARETO-OPTIMAL SET OF THE NP-HARD PROBLEM OF MINIMIZATION 947

sl + 1 and j were not sequenced in the schedule ω1; there-
fore, Cmax(π1) < ≤ rj. Moreover, di ≤ dj. If we have
di > dj, then ri + pi ≥ rj + pj, but ri + pi < rj is valid. Hence,
i since π = (πl,) ∈ Ω(N, t) but the assump-
tion that i ∉ {πl} and j ∈{πl} is violated.

Therefore, our supposition is not true; therefore,
{ω1}= {πl}, which we wanted to prove.

Thus, the processing of jobs of the set {ω1(N, t)}
precedes the processing of the jobs of the set N \{ω1(N,
t)} for any schedule from the set Ω(N, t).

2. MAKESPAN PROBLEM UNDER
A CONSTRAINT ON THE MAXIMUM LATENESS

Let us formulate problem 1 1 |di ≤ dj, di – ri – pi ≥ dj –
rj – pj; Lmax ≤ y |Cmax, which consists in finding, for a cer-
tain real number y, a schedule θ with
Cmax(θ) = min{Cmax(π): Lmax(π) ≤ y}. If Lmax(π) > y for
any π ∈ Π(N), then θ = .

Algorithm 2. Let us set θ = ω(N, t). If Lmax(π) > y,
then θ = and the algorithm terminates the operation;
otherwise, continue to construct the schedule θ.

Find N' = N\{θ} and t': = Cmax(θ). If N' = , then the
algorithms is terminated. Otherwise,

if Lmax(ω1, t') ≤ y, where ω1 = ω1(N', t'), then θ
= (θ, ω1) and go to the next step;

if Lmax(ω1, t') > y and Lmax(ω2, t') ≤ y where ω2

= ω2(N', t'), then θ = (θ, ω2) and go to the next step;

if Lmax(ω1, t') > y and Lmax(ω2, t') > y, the set θ =
and the algorithm terminates the operation.

Lemma 4. The run time of algorithm 2 does not
exceed O(n2) operations.

Proof. At each iteration step of the main step of
algorithm 2, the schedules ω1 are found, and, if neces-
sary, the schedules ω2 are also found for O(n)
operations. Since ω1 and ω2 consists of at least one job,
at each iteration step of the algorithm, one or several
jobs are added to the schedule θ or we set θ = and ter-
minate the work. Therefore, the total number of algo-
rithm steps is no less than n. Thus, algorithm 2 is exe-
cuted in O(n2) operations.

Denote by θ(N, t, y) the schedule constructed by
algorithm 2 since the time t from jobs of the set N with
a maximum lateness no greater than y. If N = , then
θ(, t, y) = for any t and y.

Theorem 4. Assume that, for jobs of the set N, (1.3)
holds. If with the help of algorithm 2 the schedule θ(N,
t, y) = is constructed, then Cmax(θ) = min{Cmax(π):
Lmax(π) ≤ y, π ∈ Π(N)}. If, as a result of operation of
algorithm 2, the schedule is not formed, i.e., θ(N, t, y) =

, then Lmax(π) > y for each π ∈ Π(N).

rsl 1+

j)πl
πl

0/

0/

0/

0/

nlog

nlog

0/

nlog

0/
0/ 0/

0/

0/

Proof. In the situation when for the schedule π ∈
Π(N) holds, there exists a schedule π' ∈ Ω(N, t) such
that Lmax(π') ≤ Lmax(π) ≤ y and Cmax(π') ≤ Cmax(π) by
Theorem 2. Therefore, the desired schedule θ is found
among the schedules of the set Ω(N, t). By Lemma 3,
all schedules of the set Ω(N, t) begin with ω(N, t). Let
us take θ0 = ω(N, t).

After k, k ≥ 0 main steps of algorithm 2, we obtain
the schedule θk and N' = N\{θk} and t' = Cmax(θk). Sup-
pose that there exists a makespan schedule θ beginning
with θk. By Theorem 2, the schedule θk can be opti-
mally extended among the schedules of the set Ω(N', t').

Let θk + 1 = (θk, ω1(N', t')), i.e., Lmax(θk + 1) ≤ y. Under
the schedule ω1, ω1 = ω1(N', t'), there are no artificial
idle times of the machine, and all schedules from the set
Ω(N', t') begin with jobs of the set {ω1(N', t')} by Theo-
rem 3. Therefore, ω1(N', t') is makespan (Cmax) among
all extensions of the partial schedule θk that are admis-
sible in the maximum lateness (Lmax).

At the recurrent step of the algorithm, θk + 1 = (θk,
ω2(N', t')), i.e., Lmax(ω1, t') > y and Lmax(ω2 , t') ≤ y. All
the schedules of the set Ω(N', t') begin with the sched-
ule ω1(N', t') or ω2(N', t'). Since Lmax(ω1, t') > y, there
exists only one appropriate extension ω2(N', t').

Thus, at each main step of the algorithm, we choose
the makespan extension of the partial schedule θk
among all extensions admissible in the maximum late-
ness. After no more than n main steps of the algorithm,
the desired schedule will be constructed.

Assume that, after the (k + 1)th step of the algo-
rithm, Lmax(ω1, t') > y and Lmax(ω2, t') > y. If the schedule
θ existed, i.e., θ� , then θ would begin with θk. Then,
for any schedule π ∈ Π(N', t'), there exists a schedule π' ∈
Ω(N', t') such that either Lmax(π, t') ≥ Lmax(π', t') ≥
Lmax(ω1, t') > y or Lmax(π, t') ≥ Lmax(π', t') ≥ Lmax(ω2, t') > y.
Therefore, θ = .

Repeating our considerations as many times as the
main step of algorithm 2 was executed (no more than n
times), we arrive at the validity of the assertion of the
theorem.

3. AN ALGORITHM FOR CONSTRUCTING
THE SET OF PARETO-SCHEDULES ACCORDING

TO THE CRITERIA Cmax AND Lmax

In what follows, we present an algorithm for con-
structing the set of Pareto-schedules Φ(N, t) = { , ,

…, } according to the criteria Cmax and Lmax such that

The schedule is a solution to problem 1|rj| Lmax

under the condition that (1.3) holds.

0/

0/

π1' π2'

πm'

Cmax π1'() Cmax π2') … Cmax πm'(),< <()<

Lmax π1'() Lmax π2' () …> Lmax πm'().><

πm'

948

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 45 No. 6 2006

LAZAREV

Algorithm 3. Set y: = +∞, π*: = ω(N, t), Φ: = , m: = 0.

Find N' = N \{π*} and t' = Cmax(π*). If N' = , then
Φ = Φ ∪ (π*) and m = 1 and the algorithm terminates
operation. Otherwise,

if Lmax(ω1, t') ≤ Lmax(π*), then π*: = (π*, ω1), where
ω1 = ω1(N', t') and go to the next step;

in the case Lmax(ω1, t') > Lmax(π*) the following vari-
ants are possible:

(1) Lmax(ω1, t') < y, then find θ = θ(N', t', y') with the
help of algorithm 2, where y' = Lmax(ω1, t') and test

if θ = , then π*: = (π*, ω1) and go to the next step;

otherwise, set π': = (π*, θ); comparing Cmax() <
Cmax(π') and making sure that this inequality is valid, we
execute m: = m + 1, : = π', Φ: = Φ ∪ () and y =

Lmax(); in the opposite case, : = π' and go to the
next step;

(2) Lmax(π1, t') ≥ y; find ω2 = ω2(N', t'):
if Lmax(ω2, t') < y, then π*: = (π*, ω2) and go to the

next step;

otherwise, π*: = and the algorithm terminates
operation.

As a result of operation of algorithm 3 for the set of
jobs N, since the moment t, a set of schedules Φ(N, t) is
constructed such that 1 ≤ |Φ(N, t) | ≤ n. The set Φ(N, t)
of example (1.21) consists of no more than two sched-
ules.

Lemma 5. The run time of algorithm 3 does not
exceed O(n3) operations.

Proof. At each iteration of the described step of
algorithm 3, the schedule ω1 and, if necessary, the
schedule ω2 are found for O(n) operations accord-
ing to Lemma 2, as well as the schedule θ for
O(n2) operations. Since ω1 and ω2 consist of at
least one job, at any iteration step of the algorithm, one
or more jobs are added to the schedule π* or the algo-
rithm is terminated at the last reference schedule π'.
Therefore, the total number of iterations is no greater
than n. Thus, algorithm 3 is executed for no more than
O(n3) operations.

Theorem 5. Suppose that, for jobs of N, (1.3) is
valid. Then the schedule π* constructed by algorithm 3
is optimal according to the criterion Lmax. Moreover, for
any schedule π ∈ Π(N), there is a schedule π' ∈ Φ(N, t)
such that Lmax(π') ≤ Lmax(π) and Cmax(π') ≤ Cmax(π).

Proof. By Theorem 2, there exists an optimal
(according to Lmax) schedule that belongs to Ω(N, t). All
schedules of the set Ω(N, t) begin with the partial
schedule ω(N, t) by Lemma 3.

Let π0 = ω(N, t). After k, k ≥ 0 main steps of algo-
rithm 3, we have a partial schedule πk. Assume that
there is an optimal (according to Lmax) schedule begin-
ning with πk. Let us introduce the notation N' = N \{πk}
and t' = Cmax(πk).

0/

0/

0/

πm'

πm' πm'

πm' πm'

πm'

nlog

nlog

nlog

nlog

If πk + 1 = (πk, ω1), where ω1 = ω1(N', t'), then either
Lmax(ω1, t') ≤ Lmax(πk) or Lmax(πk) < Lmax(ω1, t') < y is the
current value of the criterion, and maximum lateness
will appear at the next steps of algorithm 3, i.e., θ(N', t',
y') ≠ , where y' = Lmax(ω1, t'). If θ = θ(N', t', y') ≠ ,
then we improve the current value of the maximum
lateness π' = (πk, θ) and y = Lmax(π') = Lmax(ω1, t'). The
schedule π' is appended to the set of schedules Φ(N, t).
Moreover, the processing of jobs of the set {ω1} pre-
cedes the processing of jobs of the set N' \{ω1},– by
Theorem 3. Thus, the schedule ω1 without artificial idle
times of the machine is the best extension for πk.

Consider the case πk + 1 = (πk, ω2), where ω2 = ω2(N',
t'), i.e., Lmax(ω2, t') < Lmax(π') ≤ Lmax(ω1, t') according to
algorithm 3. Therefore, the extension ω2 is better than
ω1. This implies that the partial schedule πk + 1 is part of
a certain optimal schedule.

Repeating such considerations no more than n
times, we arrive at the optimality (according to Lmax) of
the schedule π*. The set of schedules Φ(N, t) contains
no more than n schedules since, at each main step of the
algorithm, no more than one schedule is appended to
the set Φ(N, t), and this step is executed no more than n
times.

Assume that there exists a schedule π ∈ Π(N), π ∉
Φ(N, t), such that either Cmax(π) ≤ Cmax(π') and Lmax(π) ≥
Lmax(π') or Cmax(π) ≥ Cmax(π') and Lmax(π) ≤ Lmax(π') for
each schedule π' ∈ Φ(N, and at least one of the pair of
inequalities is strict. Theorem 2 implies that there exists
a schedule π'' ∈ Ω(N, t) such that Lmax(π'') ≤ Lmax(π) and
Cmax(π'') ≤ Cmax(π). If π'' ∈ Φ(N, t), then, obviously, our
assumption does not hold. Let π'' ∈ Ω(N, t)\Φ(N, t).
Algorithm 3 shows that the structure of each schedule
π' ∈ Φ(N, t) can be represented as a sequence of partial
schedules π' = (, , , …,), where = ω(N,

t), is either ω1(,) or ω2(,) and =

N\{ , …, }, = Cmax((, …,), t), i = 1,
2, …, k'. The schedule π'' has an analogous structure by the
definition of the set Ω(N, t); i.e., π = (, , , …,

), possibly, k'' ≠ k', where = = ω(N, t), is

either ω1(,) or ω2(,), and = N\{ , …,

} and = Cmax((, …,), t), i = 1, 2, …, k''.

Suppose that the first k partial schedules π'' and π'
coincide, i.e., = = ωi, i = 0, 1, …, k – 1 and

≠ . Let y = Lmax(ω0, …, ωk – 1). We construct the
schedule θ with the help of algorithm 2, θ = θ(Nk, Ck, y).
If θ = , then, by algorithm 3, = ω1(Nk, Ck). Since

 ≠ , we have = ω2(Nk, Ck). The value of the
goal function (Lmax) is achieved on jobs of the set Nk

since θ = . The entire structure of algorithm 3 is

0/ 0/

ω0' ω1' ω2' ωk'' ω0'

ωi' Ni
' Ci

' Ni
' Ci

' Ni
'

ω0' ωi 1–' Ci
' ω0' ωi 1–'

ω0'' ω1'' ω2''

ωk''' ω0'' ω0' ωi''

Ni
'' Ci

'' Ni
'' Ci

'' Ni
'' ω0''

ωi 1–'' Ci
'' ω0'' ωi 1–''

ωi'' ωi' ωk''

ωk'

0/ ωk'

ωk'' ωk' ωk''

0/

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 45 No. 6 2006

THE PARETO-OPTIMAL SET OF THE NP-HARD PROBLEM OF MINIMIZATION 949

arranged so as to order the jobs as densely as possible
before the critical job is met (according to Lmax); there-
fore, we extend the schedule ω1 and after that Cmax(π')
≤ Cmax(π'') and Lmax(π') ≤ Lmax(π''). If θ ≠ , then, for the
schedules π' and π'', we have Cmax(π') ≤ Cmax(π'') and
Lmax(π') = Lmax(π''). Thus, for any schedule π'' ∈ Ω(N,
t)\Φ(N, t), there exists a schedule π' ∈ Φ(N, t) such that
Lmax(π') ≤ Lmax(π'') and Cmax(π') ≤ Cmax(π'') . Figure 1
schematically presents the considered schedules.

For the set of schedules Φ(N, t) = { , , …, },
we have

The schedule is makespan (according to Cmax),

while is optimal according to the maximum late-
ness (according to Lmax) if the parameters of jobs of the
set N satisfy conditions (1.3)

Experimental investigation of algorithm 3 has
shown that it is able to construct optimal schedules
(according to Lmax) even for examples that do not sat-
isfy conditions (1.3).

0/

π1' π2' πm'

Cmax π1'() Cmax π2'() … Cmax πm'(),< <<

Lmax π1'() Lmax π2'() …> Lmax πm'().>>

π1'

πm'

REFERENCES

1. R. L. Graham, E. L. Lawler, J. K. Lenstra, et al., “Opti-
mization and Approximation in Deterministic Sequenc-
ing and Scheduling: a Survey,” Ann. Discrete Math. 5,
287–326 (1979).

2. J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker,
“Complexity of Machine Scheduling Problems,” Ann.
Oper. Res. 1, 343–362 (1975).

3. J. R. Jackson, “Scheduling a Production Line to Mini-
mize Maximum Tardiness,” Manage. Sci. 43 (1955).

4. C. N. Potts, “Analysis of a Heuristic for One Machine
Sequencing with Release Dates and Delivery Times,”
Oper. Res. 28, 1436–1441 (1980).

5. L. A. Hall and D. B. Shmoys, “Jackson’S Rule for One-
Machine Scheduling: Making a Good Heuristic Better,”
Math. Oper. Res. 17, 22–35 (1992).

6. M. Mastrolilli, “Efficient Approximation Schemes for
Scheduling Problems with Release Dates and Delivery
Times,” J. Scheduling 6, 521–531 (2003).

7. E. L. Lawler, “Optimal Sequencing of a Single Machine
Subject to Precedence Constraints,” Manage. Sci. 19,
544–546 (1973).

8. B. B. Simons, “A Fast Algorithm for Single Processor
Scheduling,” in Proceedings of 19th Annual Symposium
on Foundations of Computer Science, New York, USA,
1978, pp. 246–252.

9. K. R. Baker, E. L. Lawler, J. K. Lenstra, et al., “Preemp-
tive Scheduling of a Single Machine to Minimize Maxi-
mum Cost Subject to Release Dates and Precedence
Constraints,” Oper. Res. 31, 381–386 (1983).

10. J. A. Hoogeveen, “Minimizing Maximum Promptness
and Maximum Lateness on a Single Machine,” Math.
Oper. Res. 21, 100–114 (1996).

11. A. A. Lazarev and O. N. Shul’gina, “A Pseudo-polyno-
mial Algorithm for Solving the NP-hard Problem of
Minimization of Maximum Lateness,” in Proceedings of
11th Baikal Workshop on Optimization Methods and
Their Applications, Irkutsk, Russia, 1998, pp. 163–167
[in Russian].

12. A. A. Lazarev and O. N. Shul’gina, “A Polynomially
Resolved Partial Case of the Problem of Minimization of
Maximum Lateness,” Izv. Vyssh. Uchebn. Zaved., Mat.,
11 (2000).

13. A. A. Lazarev, Candidate’s Dissertation in Mathematics
and Physics (KGU, Kazan, 1989).

Φ(N, t)

π'm

π'i
π''

π

Π(N)

Lmax

Cmax

Ω(N, t)

π'1

 The set of Pareto-optimal schedules.

