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Abstract—Consideration was given to the resource-constrained project scheduling problem and
its special cases. The existing lower estimates of the objective function—minimization of the
project time—were compared. It was hypothesized that the optimal value of the objective
function of the nonpreemptive resource-constrained project scheduling problem is at most twice
as great as that of the objective function with preemption. The hypothesis was proved for the
cases of parallel machines and no precedence relation.
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1. INTRODUCTION

The present paper is devoted to speed-oriented scheduling (minimization of the total time of
servicing the entire set of demands) under resource constraints and precedence relations. Problems
of this sort are frequently encountered in practice. For example, various stages of construction of
one or another object require different labor resources, building machinery, materials, and so on.
There exist technology-defined precedence relations between individual stages of construction. It is
required to construct the schedule so as to meet the precedence relations and resource constraints
and, at the same time, to minimize the time of construction.

The resource-constrained project scheduling problem (RCPSP) is formulated in Section 2. The
existing lower estimates for RCPSP and a new lower estimate are given in Section 3. The present
authors hypothesized that the values of the objective function of the speed RCPSP with and without
preemption differ at most by the factor of two. Section 4 outlines a proof of the hypothesis and
discusses its practical application and a special case of the problem with one cumulative resource
and empty set of the precedence relations. The hypothesis is proved in Section 5 for a special case
of parallel machine scheduling. Section 6 reviews the results obtained.

2. FORMULATION OF THE PROBLEM

Given is the set of demands N = {1, . . . , n} and K renewable resources. At each time instant t,
Qk units of the resource k, k = 1, . . . ,K, are available. The lengths of servicing pi ∈ Z

+ each
demand i = 1, . . . , n are given as well. Servicing of the demand i requires qik � Qk units of the
resource k = 1, . . . ,K. Upon completion of servicing the demand, the entire released resources can
be instantaneously used to service other demands.

For some pairs of demands, given are the precedence constraints i → j meaning that servicing
of the demand j begins only after completing the demand i.

1 This work was done within the framework of the Grant for Support of the Leading Scientific Schools, project
no. NSH-5833.2006.1, and the Foundation for Support of the National Science.
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Demand servicing begins at the time instant t = 0. Interrupts in servicing of demands are
forbidden.

Needed is to determine the time instants of starting servicing of the demand Si, i = 1, . . . , n, so
as to minimize the entire project implementation time Cmax = max

i=1,...,n
{Ci}, Ci = Si + pi. At that,

the following constraints must be observed:

—at each time instant t ∈ [0, Cmax) and
n∑

i=1
qikϕi(t) � Qk, k = 1, . . . ,K, where ϕi(t) = 1, if

the demand i is serviced at time t and ϕi(t) = 0, otherwise, that is, in the course of execution the
demands must be fully provided with resources;

—the precedence relation are not violated, that is, Si + pi � Sj is satisfied if i → j, i, j ∈ N .
This problem is called the resource-constrained project scheduling problem (RCPSP). The NP -

hard multidimensional knapsack problem may be reduced to this problem in a polynomial time.
Integrated reviews of the most significant results on RCPSP , for example [1], are regularly

published by various researchers. The PSPLIB library of benchmarks [2] was created for testing
and comparing numerous algorithms to solve RCPSP . For the time being, the branch-and-bound
algorithm of Brucker and others [3] is regarded as the “fastest” one. The algorithm described in [4]
deserves special mentioning among the metaheuristic algorithms. Experimental study of some
heuristic algorithms can be found in [5] and [6]. An exact algorithm to solve preemptive RCPSP
was suggested in [7].

Solution of RCPSP is representable as a set of the starting instants of demand servicing
S = (S1, . . . , Sn). A solution meeting the resource and precedence constraints will be called the
admissible solution.

The project structure is representable as demands-in-vertices of the oriented graph G = (V,A)
where some demand from the set N = {1, . . . , n} corresponds to each vertex from V = {1, . . . , n}
and the set of arcs A = {(i, j) | i, j ∈ V : i → j} corresponds to the precedence constraints.
Obviously, an admissible solution exists only if the precedence graph is acyclic.

Usually, consideration is given to two dummy demands 0 and n + 1 with servicing durations
p0 = pn+1 = 0. The precedence relations are as follows: 0 → j → n + 1, j = 1, . . . , n, q0k = qn+1k = 0,
k = 1, . . . ,K.

We denote by UB the upper boundary of the optimal value of Cmax. For example, we may

assume that UB =
n∑

i=1
pi.

For each demand i ∈ N , we determine the time window [ri, di] where it must be serviced under
any permissible schedule S:

r0 = 0; ri = max
j|(j,i)∈A

{rj + pj}, i = 1, . . . , n + 1;

dn+1 = UB; di = min
j|(i,j)∈A

dj − pj, i = n, n − 1, . . . , 0.

2.1. Algorithm of RCPSP Scheduling

We present a popular project scheduling algorithm [3].

Algorithm 1 (List Scheduling (LS) Algorithm).
(1) Let EL be the list of all demands without predecessors.

Qk(τ) = Qk ∀τ, k = 1, . . . ,K;

(2) If EL = ∅, go to Step 10;
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Fig. 1. Example of RCPSP.

(3) Take demand j ∈ EL;
(4) t := max

i|(i,j)∈A
{Si + pi}. If no predecessors are defined for the demand j, then Sj = 0;

(5) If for some τ ∈ [t, t + pj) there exists a resource k such that qjk > Qk(τ), then calculate
the minimum tk > t such that the job j can be executed over the interval [tk, tk + pj) if only the
resource k is considered. If there is no such resource k, then go to Step 7;

(6) Assume that t := tk and go to Step 5;
(7) Fix execution of the demand j at the interval [Sj , Cj) = [t, t + pj);
(8) Reserve resources for the demand Qk(τ) = Qk(τ) − qjk, k = 1, . . . , r, τ ∈ [t, t + pj);
(9) EL = EL \ {j}. Add to EL the successors of the demand j for which all predecessors are

arranged and go to Step 2;
(10) End.

The solution obtained depends on the choice of the demand j at Step 3. The concept of the
algorithm lies in putting the demand j on the schedule at the earliest time instant where the resource
and precedence constraints are not violated. Laboriousness of the algorithm is O(n2K) operations.

By the active schedule is meant an admissible schedule (solution) S = (S1, . . . , Sn) for which
there is no other admissible schedule S′ = (S′

1, . . . , S
′
n) such that at least one of the inequalities

S′
j � Sj and ∀j ∈ N is nonstrict. The LS algorithm constructs only the active schedules. The

optimal schedule, obviously, must be sought among the set of the active schedules.
The following theorem proves that some permutation among the elements of the set N denoted

by π = (j1, . . . , jn) corresponds to the active schedule (S1, . . . , Sn).

Theorem 1 [3]. The active schedule is uniquely representable as the permutation π = (j1, . . . , jn)
among n demands.

The permutation π defines the succession of taking the demand j at Step 3 of the algorithm.
Such algorithm is often called the “competition” because at Step 3 the demand can be selected
using a certain “priority.”

Example 1. Let us consider the example depicted in Fig. 1. The project consists of four demands.
On the activity network the duration of demand servicing pi is shown for the ith demand above
the nodes, and the amount qi1 of the renewable resource 1 required to service the demand is shown
below. Four units of the resource 1 (for example, four installers) are available altogether.
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Fig. 2. Tree of seeking the optimal schedule.

Two admissible schedules for which the precedence relations, resource constraints, and demand
servicing duration are satisfied are shown in Fig. 1.

We illustrate the algorithm by way of example.

Example. Step 0. EL = {1, 4};
Steps 3–9. Let j = 1. The earliest time of servicing the demand 1: [0, 2). EL = {4, 2};
Steps 3–9. Let j = 4. The earliest time of servicing the demand 4: [0, 4). EL = {2};
Steps 3–9. j = 2. The earliest time of servicing the demand 3: [4, 7) because over the interval

[2, 4) resources for demand 2 are insufficient (reserved for demand 4). EL = {3};
Steps 3–9. j = 3. The earliest time of servicing the demand 3: [7, 11) because servicing of

demand 2 is completed by the time instant 7. EL = ∅.
As the result, we get a schedule with Cmax = 11. The succession of putting the demands on the

schedule is representable as the permutation π = (1, 4, 2, 3).
If the demands were arranged as (1, 2, 4, 3) or (1, 2, 3, 4), then we would obtain a schedule with

Cmax = 9, that is, the schedule corresponding to the permutation π = (1, 2, 4, 3) is superior in
terms of the objective function.

An exact branch-and-bound algorithm may be constructed on the basis of the given scheduling
algorithm. In it branching occurs at choosing the demand j. For the example of Fig. 1, the scheme
of algorithm branching is depicted in Fig. 2. Since the branch-and-bound algorithm is the most
efficient tool for solving the problem at hand, determination of the “good” lower estimates becomes
urgent.

2.2. RCPSP with Demand Servicing Preemption

The RCPS Problem where preemption in demand servicing is permitted, is called the preemp-
tion resource-constrained project scheduling problem (PRCPSP ). Its solution is representable
as a collection of sets consisting of pairs of numbers S′ = {S1 = {[s11, c11), . . . , [s1m1 , c1m1)},
S2 = {[s21, c21), . . . , [s2m2 , c2m2)}, . . . }. The demand 1 is continuously serviced over the intervals
[s11, c11), . . . , [s1m1 , c1m1) with m1 − 1 interrupts.
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Fig. 3. Example of RCPSP with interrupts.

Let Cmax(S∗) be the optimal value of the objective function for the example of RCPSP . For the
same example, we denote by Cmax(S∗

pmtn) the optimal value of the objective function for the case
of allowable interrupts.

An example of RCPSP and the optimal solutions for the cases with and without interrupts
where at each time instant n demands are serviced and two units of resource are available is shown
in Fig. 3.

For this example, the project activity network consists of two disjoint fragments. The first
fragment represents a succession of “long” and “short” demands (of durations p and ε, respectively,
where ε is of a sufficiently small magnitude). The second fragment consists of one demand of
duration (n/2)p. The objective function is as follows:

Cmax(S∗) =
(

n

2
− 1

)

(p + ε) +
n

2
p, Cmax(S∗

pmtn) =
(

n

2
− 1

)

(p + ε) + p,

Cmax(S∗) − Cmax(S∗
pmtn) =

(
n

2
− 1

)

p < Cmax(S∗
pmtn),

Cmax(S∗) < 2Cmax(S∗
pmtn),

that is, the time of executing a project without interrupts exceeds that of a project with interrupts
at most by the factor of two. The estimate is established asymptotically for n → ∞. We draw
attention to the fact in the schedule S∗

pmtn each fragment l = [snl, cnl) of the demand n is serviced
concurrently with another demand.

3. RELATIVE ERROR OF THE RCPSP LOWER ESTIMATES

The present section describes the results of analysis of the RCPSP lower estimates and, in
particular, the relative error of the well-known lower estimates.
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3.1. LB0, Length of the Critical Way

Definition 1. Let the longest path connecting the vertices 0 and n + 1 on the activity network
be called the critical path. Its length is made up of the lengths of servicing the demands in the
path.

In the case of no resource constraints, the length of the critical path will be Cmax(S∗), that is,
the length LB0 of the critical path is the lower estimate of Cmax(S∗).

Assertion 1. There exists an example of RCPSP for which Cmax(S∗)
LB0

= n.

Proof. Let us consider an example of RCPSP where the demands i = 1, . . . , n have servicing
durations pi = p. There are no precedence constraints between the demands, and only one resource
is required, at that qi1 = Q1, i = 1, . . . , n. Obviously, LB0 = p, but Cmax(S∗) = pn because no
two demands can be serviced in parallel in virtue of the resource constraint qi1 = Q1, i = 1, . . . , n.
Then, Cmax(S∗)

LB0
= n.

Since the precedence graph is acyclic, O(n2) operations are required to determine the esti-
mate LB0.

3.2. LB1, Maximum Resource Load

Another lower estimate, LB1, can be determined in O(nK) operations if each resource is con-
sidered separately.

Definition 2. The variable
n∑

i=1
qikpi is called the total load of the resource k.

Obviously,
n∑

i=1
qikpi � QkCmax(S∗), k = 1, . . . ,K. Then,

LB1 =
K

max
k=1

⌈
n∑

i=1

qikpi/Qk

⌉

is the lower estimate of Cmax(S∗).

Assertion 2. There exists an example of RCPSP for which Cmax(S∗) − LB1 =
n∑

i=1
pi − 1.

Proof. Let us consider an example of RCPSP where the demands i = 1, . . . , n have servicing
durations pi. Given are the precedence relations i → i+1, i = 1, . . . , n−1; qi1 = ε, i = 1, . . . , n. Let

Q1 =
n∑

i=1
piε. Obviously, LB1 =

n∑

i=1
qi1pi/Q1 = 1, but Cmax(S∗) =

n∑

i=1
pi. Then, Cmax(S∗)−LB1 =

n∑

i=1
pi − 1, which proves the assertion.

Obviously, Cmax(S∗)−LB1 =
n∑

i=1
pi is satisfied for the example of RCPSP for which no resource

constraints are given.

3.3. LBS, Complement of the Critical Path

We denote by CP the set of demands belonging to the critical path and, by ei the maximum
length of the interval in [ri, di] where the demand i /∈ CP be can serviced in parallel with the
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demands of the critical path without violating the resource constraints. If ei < pi is satisfied, then
there exists no admissible schedule for which Cmax(S∗) = LB0. Then,

LBS = LB0 + max
i/∈CP

{max{pi − ei, 0}}

is also the lower estimate of Cmax(S∗).
LBS can be determined in O(nK|CP |) operations, where |CP | is the number of demands on

the critical path.

Assertion 3. There exists an example of RCPSP for which
Cmax(S∗)

LBS
= n/2.

Proof. Let us consider and example of RCPSP where the demands i = 1, . . . , n have durations
of servicing pi = p. There are no precedence constraints on the demands. Let qi1 = Q1, i =
1, . . . , n. Then, LB0 = p, and LBS = p + max{p − 0, 0} = 2p can be readily calculated. However,
Cmax(S∗) = pn because no two demands can be serviced in parallel by virtue of the resource
constraints qi1 = Q1, i = 1, . . . , n. Therefore, Cmax(S∗)

LBS
= n/2, which proves the assertion.

3.4. Lower Mingozzi Estimate

RCPSP as the linear programming problem was formulated in [8]. The lower Mingozzi estimate
was obtained through partial relaxation of the original model. A similar method of determining
the lower estimate was discussed earlier in [9] and generalized in [10].

Definition 3. If on an oriented graph there exists a path from vertex i to vertex j, the demands i
and j will be said to have indirect precedence relations.

If i → j, then the given demands will be said to have direct precedence relations.

Definition 4. The set of demands X ⊂ N will be called the admissible set if between each pair
of demands i, j ∈ X there are no direct or indirect precedence relations and resource constraints
are not violated,

∑

i∈X
qik � Qk, k = 1, . . . ,K.

Definition 5. The admissible set X is referred to as dominating if there exists no other admissible
set Y such that X ⊂ Y is satisfied.

Let us consider the list of all dominating sets X1, . . . ,Xf and their corresponding vectors aj ∈
{0, 1}n, j = 1, . . . , f : aj

i = 1 if i ∈ Xj , otherwise, aj
i = 0, i = 1, . . . , n.

Let us determine in terms of xj the length of the interval where all demands of the set Xj are
serviced concurrently. Then, the following linear programming problem enables one to calculate
the lower estimate LBM of Cmax(S∗) [8]:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
f∑

j=1
xj

f∑

j=1
aj

ixj � pi, i = 1, . . . , n

xj � 0, j = 1, . . . , f.

(1)

This formulation admits that the demand i may be serviced in at least pi or more time units.
In the model, partially violated are the precedence relations, and the demand servicing interrupts
are admitted.
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Fig. 4. Illustration to the proof of LBM .

As was noted in [3], f grows exponentially with n. For n = 60 we have f ≈ 300 000, and for
n = 90, even f = 8000 000. This paper also described an efficient technique for calculation of
the lower estimate LBM , but the experimental results demonstrated “poor quality of estimation.”
Nevertheless, for the time being it is one of the “strongest” estimates.

Assertion 4. Calculation of the estimate LBM is an NP -hard problem.

Proof. Let us consider the NP -hard of pallet packing. Given are standard pallets of the lengths
of W and n items having each length wi, i = 1, . . . , n. Needed is to pack all items so as to minimize
the number of pallets used.

We rearrange the original packing problem in RCPSP . Each demand i = 1, . . . , n corresponds
to the item i. We define pi = 1, qi1 = wi, i = 1, . . . , n, Q1 = W . The precedence relations between
the demands are not given. Then, Cmax(S∗) corresponds to the minimal possible number of pallets
in the original problem.

Obviously, LBM = Cmax(S∗) for the constructed example of RCPSP . Consequently, the problem
of determining the estimate LBM amounts to the NP -hard problem of pallet packing, which proves
the assertion.

As the result of calculation of the estimate LBM , servicing of some demands can be interrupted.
Then, the following assertion is true.

Assertion 5. There exists an example of RCPSP for which Cmax(S∗)
LBM

≈ 2.

Proof. Let us consider the example of Fig. 3 for which the dominating sets X1 = {1, n}, X2 = {2},
X3 = {3, n}, X4 = {4}, . . . ,Xn−1 = {n− 1, n} and the optimal solution of the linear programming
problem (1) x1 = x3 = . . . = xn−1 = p, x2 = x4 = . . . = xn−2 = ε are obtained at calculating LBM .

The values of n, p, and ε can be selected so as to obtain Cmax(S∗)
LBM

≈ 2, which proves the assertion.
Some precedence relations can be violated as the result of calculating the estimate LBM . Then,

the following assertion is valid.

Assertion 6. There exists an example of RCPSP for which Cmax(S∗)
LBM

= 1.5 and the precedence
relations are violated “in estimate.”
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Proof. Let us consider the example of Fig. 4 for Q1/2 	 ε. Calculation of the estimate LBM

provides X1 = {1, 4}, X2 = {2, 3}, x1 = p, x2 = p, LBM = 2p, but Cmax(S∗) = 3p. Then,
Cmax(S∗)

LBM
= 1.5, which proves the assertion.

A modified Mingozzi estimate LBB with allowance for [ri, di], i = 1, . . . , n, was presented in [3].
The assertions and proofs for this estimate are the same.

3.5. Estimate LBLG

Let us strengthen the estimate LB1 by considering also [ri, di], i = 1, . . . , n, and the maximum
feasible load level at each point t.

The algorithms for the Partition problem are used to determine the estimate LBLG.

Problem 1 (Partition problem). Given is an ordered set B = {b1, b2, . . . , bn} of n positive num-
bers. Needed is to decompose B into two subsets B1 and B2, B1

⋂
B2 = ∅ and B1

⋃
B2 = B, so as

to minimize
∣
∣
∣
∣
∣
∣

∑

bi∈B1

bi −
∑

bi∈B2

bi

∣
∣
∣
∣
∣
∣
−→ min .

We describe a modified Partition problem which is required to calculate LBLG.

Problem 2. Given is an ordered set of n positive integers B = {b1, b2, . . . , bn} and the number
A � ∑

bi∈B
bi. Needed is to specify a subsets of the numbers B1 ∈ B so as to minimize the value :

∣
∣
∣
∣
∣
∣
A −

∑

bi∈B1

bi

∣
∣
∣
∣
∣
∣
−→ min .

The following assertion demonstrates that the modified Partition problem comes to the the
Partition problem.

Assertion 7. If for the modified Partition problem there exists B1 ∈ B such that
∑

bi∈B1

bi = A,

then for the Partition problem with the set of numbers B = B ∪ {bn+1, bn+2}, where bn+1 = A +
∑

bi∈B
bi and bn+2 = 2

∑

bi∈B
bi −A, there exist two subsets B1 and B2, B1

⋂
B2 = ∅ and B1

⋃
B2 = B,

∑

bi∈B1

bi =
∑

bi∈B2

bi.

Proof. To reduce the modified problem to the original one, we complement the set B by two
demands bn+1 = A +

∑

bi∈B
bi and bn+2 = 2

∑

bi∈B
bi − A and consider the Partition problem with the

set of numbers B ∪ {bn+1, bn+2}.
Obviously, the numbers bn+1 and bn+2 will be in different subsets B1 and B2. Let us specify a

subset of numbers B1 ∈ B so that A =
∑

bi∈B1

bi and consider two sets

B1 = {bn+2} ∪ B1 and B2 = {bn+1} ∪ B \ B1.

Then,
∑

bi∈B1

bi = A + 2
∑

bi∈B

bi − A = 2
∑

bi∈B

bi
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and
∑

bi∈B2

bi = A +
∑

bi∈B

bi +
∑

bi∈B

bi − A = 2
∑

bi∈B

bi,

that is,
∑

bi∈B1

bi =
∑

bi∈B2

bi, which proves the assertion.

Obviously, the Partition problem may be reduced to the modified Partition problem by assuming
that A = 1

2

∑

bi∈B
bi, that is, both problems may be regarded as equivalent.

For both Partition problems, an efficient graphic algorithm which in practice showed itself to
good advantage in comparison with the existing dynamic programming algorithms [12] is given
in [11]. This graphic algorithm allows one to handle examples with noninteger values of bi and A.

We denote by z0 < z1 < . . . < zτ the ordered list of different values of ri, di. For each interval,
It = [zt, zt−1), t = 1, . . . , τ , we determine the set Yt of demands for which ri � zt−1 � zt � di.

The estimate LBLG is calculated independently for each resource k = 1, . . . ,K.

Algorithm to calculate LBLG.

Algorithm 2. (1) G := 0; LBLG := 0; t := 1;
(2) Take into consideration the volume of work for the resource k for the demands accessible for

servicing from the time instant zt−1. G := G +
∑

i|zt−1=ri

qikpi;

(3) Construct an example of the modified Partition problem: B := {qik|i ∈ Yt}, A := Qk;
(4) Solve the example of the modified Partition problem and determine the subset B′ and

H =
∑

bi∈B′
bi, A − ∑

bi∈B′
bi � 0. The value of H is the maximum possible load level ;

(5) Calculate the length of the rectangle of height H and volume at most G. l := min{zt −
zt−1, G/H};

(6) G := G − lH, LBLG := zt + l;
(7) If t = τ , the go to Step 8, otherwise, t := t + 1, and go to Step 2;
(8) End.

Assertion 8. The value of LBLG established by Algorithm 2 is the lower estimate of Cmax(S∗).

The proof follows from the algorithm to calculate LBLG.

Assertion 9. Satisfied is LBLG � LB0 − pj, where j is the last demand on the critical path.

Proof. We assume without loss of generality that LB0 = dmax. Then, LB0 = dmax = max
j∈N

dj = zτ .

At that, dmax = zτ . We obtain from the algorithm that LBLG � zτ−1 = zτ − pj, where j is the last
demand on the critical path. Then, LBLG � LB0 − pj, which proves the assertion.
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Fig. 5. Estimate LBLG.
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In contrast to the estimate LBM , the given estimate can be modified to calculate the lower
estimate of problems where Qk depends on time t (there exist time intervals over which Qk = Qk(t)),
which is useful in practice and for implementation of some branch-and-bound algorithms.

For the case where Qk is constant, that is, independent of time t, the estimate LBLG is calculated

at most in O

(

n2
n∑

i=1
qik

)

operations. The experiments showed that for the vast majority of examples

the algorithms described in [11] solve the Partition problem in time O(n2). The estimate LBLG

can be calculated for the majority of example in time O(n3).

3.6. Estimate LBSPP

It seems only logical to use the solution of the strip packing problem (SPP) as the lower estimate
of RCPSP .

Strip packing. Given are a strip of height R and n items to be packed on it without intersections
so as to minimize the occupied strip width. For each item i = 1, . . . , n, its height ri and length pi

are defined. It is forbidden to turn and tear the items. The optimal length of the strip is denoted
by SPP ∗.

An example of RCPSP for which defined are one power resource Q1 = R and n demands of
durations pi and resource needs qi1 = ri, i = 1, . . . , n, “corresponds” to each example of SPP. The
precedence relations between the demands are not defined.

As was shown in [13], there are examples for which SPP ∗ � Cmax(S∗) for the corresponding
example of RCPSP .

As was proved above, all available estimates (LB0, LB1, LBs) are either ineffective or deter-
mination of their (LBLG, LBM ) generally is an NP -hard problem. Lack of efficient methods for
determination of the lower estimates prevents practical use of the branch-and-bound, branch &
cuts, and other methods.

4. RELATION OF THE OPTIMAL VALUES OF THE OBJECTIVE FUNCTION
FOR THE PROBLEMS WITH AND WITHOUT INTERRUPTS

Lemma 1. For any example of PRCPSP , there exists an optimal solution under which at each
time instant t ∈ [sil, cil) other demands, except, possibly, for the last fragment, are serviced concur-
rently with each fragment l = [sil, cil) of the “interrupted” demand i.

Proof. Let us assume that in the optimal solution no demand is serviced in parallel with a
fragment l of the “interrupted” demand i. We transform the solution by “shifting” the fragment l
to the next fragment l + 1 (or the preceding fragment l− 1) of the demand i (see Figs. 6b and 6c).
At that, the demands serviced “in between” the fragments l and l + 1 are shifted by cil − sil to
the “left” (correspondingly, “right”). By repeating this operation, we obtain a schedule where the
demand i is not interrupted and at that the value of the objective function does not increase. In
the course of executing the operation, other “interrupted” demands do not occur.

A situation is possible where not the entire fragment l is shifted but only its part which is not
“covered” by other demands. At that, we try to shift this part to the last fragment mi (see Figs. 6d
and 6e).

Lemma 1 is required to support the following hypothesis. In what follows, we consider only the
schedules satisfying this lemma.

Hypothesis 1. For any example of RCPSP and the corresponding example of PRCPSP ,
Cmax(S∗) � 2Cmax(S′) is satisfied.
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Fig. 7. One shift.

The present authors hypothesize that the optimal value of the objective function (the total time
of project execution) in the problem without demand interruption is at most twice the value of Cmax

in the corresponding problem with permitted interrupts.
Outline of the proof. Let there be the optimal solution S′ and the value of Cmax(S′) for the

example of PRCPSP (with interrupts). We rearrange the solution S′ in an admissible solution S
and the value of Cmax(S) for the corresponding example of RCPSP (without interrupts). The value
of Cmax(S) is the upper estimate of the optimal Cmax(S∗).

We prove that Cmax(S) � 2Cmax(S′). Then, Cmax(S∗) � Cmax(S) � 2Cmax(S′), and the
hypothesis is proved.

The solution S′ is rearranged in the admissible solution S as follows.
Single shift. Let in the schedule S′ servicing of only one demand i be interrupted.
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We fix servicing of this demand “entirely” to the interval [simi , simi +pi). At that, all demands j
for which sj1 � cimi “remain” in their places. The rest of demands are shifted to the “right” by
pi − (cimi − simi) (see Fig. 7).

As the result of this operation, the value of Cmax was increased by pi − (cimi − simi), that is,
less than twice.

In virtue of Lemma 1, the duration of servicing the “nonshifted” fragment exceeds pi.
The case where under the schedule S′ servicing of only two demands (two shifts) is interrupted

is proved along the same lines.
Three and more shifts were not considered by the present authors yet.
Proof or refutation of the hypothesis under consideration will provide the following results:
If the hypothesis is true, then solved a problem with interruptions, we shall receive the bottom

estimate LB = Cmax(S′) and a unattainable top estimate UB = 2Cmax(S′) for a problem RCPSP
without interrupts. The top estimate can be used in a branches and bounds method, effectively
cutting bad decisions. To the contrary, having received an estimate Cmax(S∗) for a problem RCPSP ,
we shall find the top estimate for a problem PRCPSP ;

If the hypothesis will appear is incorrect and it will turn out Cmax(S∗) ≈ O(n)Cmax(S′) (i.e.
a difference by way of n times), the best known estimate LBM , used in a branches and bounds
method, can deviate from Cmax(S∗) in O(n) times. In this case use of a method of type of branches
and bounds method with the bottom estimation LBM will appear inefficient generally.

4.1. Proof of the Hypothesis for the Case of RCPSP with One Resource

Consideration is given to a special NP -hard case of RCPSP with one cumulative resource of
power Q1 and empty graph of precedence relations. For qj1 = 1 and Q1 = m, we have the classical
problem of m-decomposition [14]. One can see some resemblance of this special case to the strip
packing problem (SPP). Nevertheless, there exist substantial distinctions (see Section 3.6). For
example, at visual representation of RCPSP , the “rectangles” corresponding to the demands can
be torn vertically, which in inadmissible in SPP.

Let us consider a scheduling algorithm LS with the following domination rule: from the set EL
of the not yet scheduled demands that one is taken whose servicing can be started before other
demands from EL without violating the resource constraints. Stated differently, at Step 2 of the
algorithm LS each demand j ∈ EL is assigned the “possible time of starting” rj beginning from
which the demand can be serviced without violating the resource constraints. Selected is the
demand j ∈ EL with the least rj . The scheduling algorithm with such domination rule will be
denoted by LSt.

Example 2. Let us consider an example (only without the precedence relations) familiar to the
present authors (Fig. 8). The algorithm LSt is illustrated by way of example.

Step 1. EL = {1, 2, 3, 4};
Steps 3–9. r1 = r2 = r3 = r4 = 0. Let j = 1. The earliest time of execution of demand 1: [0, 2).

EL = {2, 3, 4};
Steps 3–9. r3 = r4 = 0, r2 = 2. Let j = 4. The earliest time of execution of demand 4: [0, 4).

EL = {2, 3};
Steps 3–9. r3 = 0, r2 = 4. Then, j = 3. The earliest time of execution of demand 3: [2, 6).

EL = {2};
Steps 3–9. r2 = 6, j = 2. The earliest time of execution of demand 2: [6, 9). EL = ∅.

Figure 8 schematizes the resulting schedule and the level of resource load corresponding to it.
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Fig. 8. Example RCPSP.

Theorem 2. Cmax(LSt) − pmax < 2C∗
max, where pmax = max

j∈N
pj .

Proof. Let for some example I satisfying the special case under consideration the algorithm LSt

construct an admissible schedule S = (S1, S2, . . . , Sn) and determine the value of the objective
function Cmax(LSt).

Let us consider the level of loading of the cumulative resource at each time instant t ∈ [0,
Cmax(LSt)) and denote by N(t) ⊆ N the set of demands serviced at the time instant t. We call
the value ρ(t) =

∑

j∈N(t)
qj1 the level of the resource loading at the time instant t. Let us consider

the values of t for which ρ(t) < Q1/2. We demonstrate that over the interval [0, Cmax(LSt)) there
can be at most two such intervals [t1, t2), [t3, t4), 0 � t1 < t2 < t3 < t4 � Cmax(LSt) over which
ρ(t) < Q1/2.

Let us assume that on the contrary there exist three intervals [t1, t2), [t3, t4), and [t5, t6), 0 �
t1 < t2 < t3 < t4 < t5 < t6 � Cmax(LSt), where ρ(t) < Q1/2 is satisfied and consider two cases:

(1) Let the demand j ∈ N(t′) be serviced at some point t′ ∈ [t3, t4) with the level of loading
ρ(t′) < Q1/2. At that, t2 � Sj < t4, that is, the demand j is not serviced at any point of the
interval [t1, t2). Since ρ(t′) < Q1/2, we see that qj1 < Q1/2. Then, however, according to the
algorithm LSt servicing of the demand j must be started not later than at the instant t1 because
ρ(t1) < Q1/2. We arrive at contradiction.

Similar reasoning is carried out for the demand j ∈ N(t′), where t2 � Sj < t6 at the point
t′ ∈ [t5, t6) with the loading level ρ(t′) < Q1/2;

(2) Let there exist no demand j serviced at some point t′ ∈ [t3, t4) for which t2 � Sj < t4 and
no demand i matrix at some point t′ ∈ [t5, t6) for which t2 � Si < t6. Otherwise, see Item 1.

Then, there exists a point t∗ ∈ [t1, t2) such that N(t′) = N(t∗) ∀t′ ∈ [t3, t4), is satisfied and
N(t′′) ⊆ N(t∗) for some point t′′ ∈ [t5, t6) (see Fig. 9).

Let us consider the demand j ∈ N(t′), t′ ∈ [t4, t5), j /∈ N(t∗). Such a demand exists because
ρ(t′) � Q1/2 by our assumption. Yet, according to the algorithm LSt servicing of the demand j
then must be started not later than at the instant t3 (see Fig. 9). We arrive at contradiction.

Thus, we proved that over the interval [0, Cmax(LSt)) there can be at most two intervals [t1, t2),
[t3, t4), 0 � t1 < t2 < t3 < t4 � Cmax(LSt), over which ρ(t) < Q1/2 is satisfied.

Additionally, if there exists a second interval [t3, t4), then ∀t ∈ [t3, t4) satisfied is N(t) ⊆ N(t∗)
for some point t∗ ∈ [t1, t2). In what follows, the interval [t1, t4) will be considered “entirely.”
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Fig. 9. Drawing 1 for the proof of Theorem 2.
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Fig. 10. Drawing 2 for the proof of Theorem 2.

We show that the length of such interval t2 − t1 � pmax. We assume that on the contrary
t2 − t1 > pmax. Then, there exists a demand j, Fj = Sj + pj = t2, for which Sj = t2 − pj �
t2−pmax > t2− (t2− t1) = t1, that is, Sj > t1. Since ρ(Sj) < Q1/2, we get qj1 < Q1/2. Yet then by
the algorithm LSt servicing of the demand j must be started not later than at the instant t1 because
ρ(t1) < Q1/2. We arrive at contradiction. Consequently, the length of the interval t2 − t1 � pmax

(is satisfied also for the interval [t1, t4) : t4 − t1 � pmax).
We represent schematically the resulting load of the equipment as three units X1, X2, and X3 (see

Fig. 10). The fragments X1, X2, and X3 “lie” within the intervals [0, t1), [t1, t2), and [t2, Cmax(LSt)),
respectively.

The total area of the three figures X1,X2, and X3 will be called the utilized resource volume

denoted by V . Obviously, V =
n∑

j:=1
p1qj1. Correspondingly, by the nonutilized resource volume is

meant Ve = Q1Cmax(LSt) − V .
Obviously, the solution determined by the algorithm LSt can be improved from the standpoint

of the objective function if the resources are utilized “more reasonably” without idling, that is, if Ve

(and, correspondingly, Cmax) are reduced.
Let us consider an example I ′ obtained from the original example I by reducing pj for dome

demands j ∈ N . If j ∈ N(t′) is satisfied for some demand j ∈ N and some point t′ ∈ [t1, t2), then
we assume that p′j = pj − (max(t1, Sj)−min(Fj , t2)). For the rest of the demands, we assume that
p′j = pj.
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Let us consider the schedule S′ = (S′
1, S

′
2, . . . , S

′
n) for the example I ′:

S′
j = Sj, Sj < t1;

S′
j = t1, Sj ∈ [t1, t2];

S′
j = Sj − (t2 − t1), Sj > t2,

that is, for the schedule S′ the fragment X2 (see Fig. 10) was reduced and the fragment X3 was
shifted to the point t1.

Obviously, the schedule S′ is admissible for the example I ′ and is constructed by the algo-
rithm LSt. We denote by Cmax(LSt) the value of the objective function for the example I ′ under
the schedule S′ and by C

∗
max, the optimal value of the objective function for the example I ′. Then,

Cmax(LSt) = Cmax(LSt)− (t2− t1), C
∗
max � C∗

max, where C∗
max is the optimal value of the objective

function for the original example I.
For the schedule S′ ∀t ∈ [0, Cmax(LSt)), ρ(t) > Q1/2 is satisfied. Then, V > Ve for the

example I ′, and, consequently, 2C∗
max > Cmax(LSt). We get 2C∗

max � 2C∗
max > Cmax(LSt) =

Cmax(LSt) − (t2 − t1) � Cmax(LSt) − pmax and denote by C∗
max(pmtn) the optimal value of the

objective function for the problem with demand servicing interrupts.

Theorem 3. 2C∗
max(pmtn) > C∗

max − pmax.

Proof. We continue the proof of the above theorem. Since 2C∗
max(pmtn) � 2C∗

max(pmtn) �
Cmax(LSt) � Cmax(LSt)− pmax, we obtain from that 2C∗

max(pmtn) � Cmax(LSt)− pmax � C∗
max −

pmax.

5. SCHEDULING FOR PARALLEL MACHINES

In the present section we consider a special case of RCPSP of parallel machine scheduling.
Given are n demands, the graph of precedence relations, and the durations pj of demand servicing.
The demands are to be serviced on m identical parallel machines. The objective function Cmax

is the common instant of completing all demands. For the given special case there exists a single
cumulative resource of power Q1 = m, and at that qj1 = 1, j = 1, . . . , n. We denote the problem
of parallel machine scheduling by PMS or Pm|prec|Cmax as is customary in the scheduling theory.
This problem is NP -hard in the strong sense [15]. Graham [16] demonstrated that the simple
scheduling algorithm works rather well here. We denote by Cmax(LS) the value of the objective
function obtained by the scheduling algorithm (List Scheduling). Then, Cmax(LS)/C∗

max � 2 − 1
m ,

where C∗
max is the optimal value of the objective function.

Let us consider the PMS problem with demand servicing interrupts Pm|prec, pmtn|Cmax and
denote by C∗

max(pmtn) the optimal value of its objective function.
The following fact supports Hypothesis 1 that was put forward by the present authors.

Theorem 4. C∗
max � 2C∗

max(pmtn).

Proof. As was proved in [16],

Cmax(LS) �
∑

pj

m
+ CP,

where CP is the length of the critical path, that is, the upper bound of Cmax(LS) for the problem
Pm|prec|Cmax is smaller than the sum of two simple lower estimates for the same problem.
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One can readily show that C∗
max(pmtn) �

∑
pj

m
and C∗

max(pmtn) � CP . Consequently,

Cmax(LS) � 2C∗
max(pmtn).

Therefore, Hypothesis 1 is true for the problem Pm|prec|Cmax. This result was first obtained
by R.L. Graham who, unfortunately, did not publish it [15].

6. CONCLUSIONS

The present paper considered the problem of project scheduling with regard for the resource
constraints and its special cases. The objective function lies in minimizing the total project exe-
cution time. The existing lower estimates of the objective function were subjected to comparative
analysis. Calculation of the most efficient Mingozzi lower estimate was shown to be an NP -hard
problem.

It as hypothesized that for the considered problem without demand servicing interrupts the
optimal value of the objective function is at most twice as great as the optimal value of the objective
function for the corresponding problem with interrupts. Proofs of the hypothesis were given for the
cases of the problem with parallel machines and without the precedence relations in the demand
servicing. Proofs or disproofs of the hypothesis under consideration will give the following results:

—if the hypothesis is true, then solution of the problem with interrupts will establish the lower
estimate LB = Cmax(S′) and the unattainable upper estimate UB = 2Cmax(S′) for RCPSP without
interrupts. The upper estimate may be used in the branch-and-bound method for effective rejection
of the “bad” solutions. The other way round, by determining Cmax(S∗) for RCPSP we get the
upper estimate for PRCPSP ;

—if the hypothesis is not true and we get Cmax(S∗) ≈ O(n)Cmax(S′), that is, an n-fold difference,
then the “best known” lower estimate LBM used in the branch-and-bound method may deviate
from Cmax(S∗) by the factor of O(n). In this case, method like branch-and-bound (branch &
bounds, Constraint Programming, and so on) with the lower estimate LBM prove to be ineffective.
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