
Solving a Freight Railcar Flow Problem Arising in
Russia
Ruslan Sadykov∗1, Alexander A. Lazarev2,3, Vitaliy Shiryaev4, and
Alexey Stratonnikov4

1 INRIA Bordeaux – Sud-Ouest,
351, cours de la Liberation, 33405 Talence, France
Ruslan.Sadykov@inria.fr

2 Institute of Control Sciences,
65 Profsoyuznaya street, 117997 Moscow, Russia
lazarev@ipu.ru

3 National Research University Higher School of Economics,
20 Myasnitskaya street, 101000 Moscow, Russia

4 JSC Freight One
Staraya Basmannaya st., 12 bld. 1, 105064 Moscow, Russia
{ShiryaevVV,StratonnikovAA}@pgkweb.ru

Abstract
We consider a variant of the freight railcar flow problem. In this problem, we need 1) to choose
a set of transportation demands between stations in a railroad network, and 2) to fulfill these
demands by appropriately routing the set of available railcars, while maximizing the total profit.
We formulate this problem as a multi-commodity flow problem in a large space-time graph. Three
approaches are proposed to solve the Linear Programming relaxation of this formulation: direct
solution by an LP solver, a column generation approach based on the path reformulation, and a
“column generation for extended formulations” approach. In the latter, the multi-commodity flow
formulation is solved iteratively by dynamic generation of arc flow variables. Three approaches
have been tested on a set of real-life instances provided by one of the largest freight rail trans-
portation companies in Russia. Instances with up to 10 millions of arc flow variables were solved
within minutes of computational time.
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1 Introduction

In Russia, the activity of forming and scheduling freight trains is separated by a regulation
from the activity of managing the fleet of freight railcars. A state company is in charge of
the first activity. Freight railcars are owned by several independent companies. Every such
company is quite limited in transportation decisions due to the separation of activities. A
company which owns a fleet of railcars can only accept or refuse a transportation demand.
Then it must assign railcars to accepted demands. In some cases, the company has a
possibility to slightly modify the execution date of a demand, which gives more flexibility to
the decision process but makes it more complicated.
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Thus, an operational plan of such a company is determined by 1) a set of accepted
transportation demands, 2) for each demand, its execution date and the set of cars assigned
to it, and 3) empty cars movements to supply each demand. As the company is commercial,
a reasonable criterion for the quality of an operational plan is the profit generated by it. The
profit is determined by the difference between the price collected for fulfilling transportation
demands and the costs paid to the state company for exploiting the railroad network.

In this paper, we study the problem of finding a most profitable operational plan for a
company which owns and manages a fleet of railcars. This problem was formulated by the
mathematical modeling department of one of the largest such companies in Russia.

For this problem, we are given a railroad network, a set of transportation demands, an
initial location of cars of different types. The network data consists of a set of stations,
travel times and costs between them. As it was mentioned above, the company does not
schedule trains. Thus, actual transportation of loaded and empty railcars is performed by
the state company, who charges predetermined costs per trip. Estimated travel times are
also determined and applied by the state company. Note that the transfer cost for an empty
car depends on the type of product type loaded previously to this car. This way, the state
increases attractiveness of the transportation of “socially important” products (for example,
coil). This custom is being vanished now, but it is still practiced for some car types.

The objective is, for a given period of time, to choose a set of demands to be met, totally
or partially, and, for each car, find a route which includes both loaded and empty transfers.

To solve the problem, we start from an integer multi-commodity flow model, which
has been proposed by Stratonnikov and Shiryaev [10]. The time horizon in this model is
discretized in periods of one day. This discretization choice is reasonable for Russia, as
distances are measured in thousands of kilometers, and the average speed of freight trains is
relatively low: about 300 kilometers per day (it tends to decrease further with a saturation
of the network).

This model has a very large size, and even solving its Linear Programming (LP) relaxation
using modern commercial solvers can take hours of computation time for real-life instances.
However, a solution of this LP relaxation allows one to obtain a very tight dual bound for
the objective function value. This fact has been also noticed for similar models considered
in [4, 7]. Therefore, we concentrate on solving the LP relaxation of this formulation, leaving
the problem of obtaining an integer solution out of the scope of the paper. In practice,
rounding a fractional solution in a straightforward way allows one to obtain an integer
solution with very small gap.

To solve the LP relaxation faster, we devise two variants of the column generation
procedure, where columns represent railcar routes or flows of the railcars of the same type.
The first variant we tried is the classic Dantzig-Wolfe approach. In the second variant,
called “column generation for extended formulations” in [9], columns are disaggregated
into individual arc flow variables when added to the master. Thus, the master problem
is equivalent to the original multi-commodity flow model, but its variables are generated
dynamically. On almost all real-life instances provided by the company, either the first or
the second variant of the column generation approach significantly outperformed the solution
by a solver of the LP relaxation of the original multi-commodity model, preprocessed by a
problem-specific procedure.

To our knowledge, the closest model considered in the literature is the freight car flow
problem faced by a Brazilian logistics operator and described by Fukasawa et al. [4]. In
this paper, authors proposed a similar integer multi-commodity flow model and solved it
using a simple preprocessing and an Mixed Integer Programming (MIP) solver. The main
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difference with our model is the availability of a fixed train schedule. In their model cars
must be assigned to trains to be transported. In our model, we cannot rely on the train
schedule information, as it is very approximative and rarely respected in practice. Instead,
we use the normative travel times given by the state company which is in charge of forming
and scheduling trains. Additionally, Fukasawa et al. considered loading and unloading times,
which we neglect here because they are much smaller than the length of time periods.

Another similar car flow model has been considered by Holmberg et al. [5]. In this model,
one searches only for a flow of empty cars, the flow of loaded cars being fixed. Thus, a
heuristic iterative procedure is applied to optimize the total flow of cars.

A paper which is related to our research in terms of the solution approach applied is
due to Löbel [7], who considered a vehicle scheduling problem arising in public mass transit.
This problem is modeled by a multi-commodity flow model formulation, the LP relaxation
of which is solved by dynamically generating arc variables, as we do. With this approach,
Löbel was able to solve LP relaxations with millions of variables as we do for the freight car
flow problem.

2 Problem description

We give a detailed description of the variant of the freight car flow model considered here.
The problem is to find a feasible flow of railcars (i.e. a feasible route for each car) that
maximizes the profit by meeting a subset of the transportation demands.

The railroad network consists of a set of stations. Travel times and costs are known
for each “origin-destination” pair of stations. Times are measured in days and rounded up.
The cost for an empty car transfer depend on the type of the latest product this car has
transported, as explained in the introduction.

Number of cars, their initial locations and availability dates are known. Cars are divided
into types. The type of a car determines types of products which can be loaded on this car.
The route of a car consists of a sequence of alternating loaded and empty movements between
stations. Cars can wait at stations before and after fulfilling transportation demands. In this
case, a charge is applied. Daily rate of this charge depends on the demand before (or after)
the waiting period.

Each transportation demand is defined by a (maximum) number of cars compatible with
the product that should be taken from an origin station to a destination station. Some
demands can be fulfilled partially. In this case, the client communicates the minimum number
of cars which should be delivered. Thus, the total number of transported cars for every
accepted demand should be between the minimum and maximum number.

The client specifies the availability date of the product and the delivery due date which
cannot be exceeded. The demand transportation time is known. This allows us to determine
the latest date at which the transportation must start. The profit we gain for meeting the
demand depends on the date the transportation of a loaded car starts. In practice, the
contract is concluded for transportation of each car separately. Thus the profit we gain for
delivering cars with the product of a same demand at a certain date depends linearly on the
number of cars. Note that the profit function already takes into account the charges paid for
using the railroad network.

We now specify notations for the data of the problem. Following sets are given.
I — set of stations.
C — set of car types.
K — set of product types
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Q — set of demands
S — set of “sources” which specify initial state of cars.
T — set of periods (planning horizon).

For each station, i ∈ I we know sets W 1
i and W 2

i of standing daily rates for cars waiting
to be loaded and waiting after unloading.

For each demand q ∈ Q we know:
iq ∈ I — origin station
jq ∈ I — destination station
kq ∈ K — type of product to be transported
Cq ⊆ C — set of car types, which can be used for this demand
nmax
q — number of cars needed to fullfil the demand
nmin
q — minimum number of car needed to partially fullfil the demand
rq ∈ T — demand availability, i.e. the period starting from which the transportation of
the product can start
∆q — maximum delay for starting the transportation
ρqt — profit from delivery of one car with the product, transportation of which started
at period t, t ∈ [rq, rq + ∆q]
dq ∈ Z+ — transportation time of the demand
w1
q ∈W 1

i1q
— daily standing rate charged for one car waiting before loading the product

at origin station
w2
q ∈W 2

i2q
— daily standing rate charged for one car waiting after unloading the product

at destination station
For each car type c ∈ C, we can obtain set Qc of demands, which a car of type c can fulfill.

For each source s ∈ S, we are given:
~is ∈ I — station where cars are located
~cs ∈ C — type of cars
~rs ∈ T — period, starting from which cars can be used
~ws ∈W 2

is
— daily standing rate charged for cars

~ks ∈ K — type of the latest delivered product
~ns ∈ N — number of cars in the source

For each car type c ∈ C, we can obtain set of sources Sc = {s ∈ S : ~cs = c}.
Additionally, functionsM(c, i, j, k) and D(c, i, j) are given which specify cost and duration

of transportation of one empty car of type c ∈ C from station i ∈ I to station j ∈ I under
condition, that the type of the latest delivered product is k ∈ K (for the cost).

3 Mathematical model

We represent movements of cars of each type c ∈ C by commodity c. For each commodity
c ∈ C, we introduce a directed graph Gc = (Vc, Ac). Set Vc of vertices is divided into two
subsets V 1

c and V 2
c which represent respectively states in which cars stand at a station before

being loaded and after being unloaded. A vertex v1w
cit ∈ V 1

c represents stay of cars of type c
waiting to be loaded at station i ∈ I at daily rate w ∈ W 1

i at period t ∈ T . Flow balance
b(v1w

cit ) of this vertex is zero. A vertex v2wk
cit ∈ V 2

c represents stay of cars of type c after being
unloaded at station i ∈ I at daily rate w ∈W 2

i at period t ∈ T . Here k ∈ K is the type of
unloaded product. Flow balance b(v2wk

cit ) of this vertex is determined as follows:

b(v2wk
cit ) =

{
~ns, ∃s ∈ Sc :~is = i, ~rs = t, ~ws = w,~ks = k,

0, otherwise.
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Additionally, there is a single terminal vertex with flow balance equal to −
∑
s∈Sc

~ns.
There are three types of arcs in Ac: waiting, empty transfer, and loaded transfer arcs.
A waiting arc aαwkcit represents waiting of cars of type c from period t ∈ T to t + 1 at
station i ∈ I at daily rate w ∈Wα

i before being loaded (α = 1) or after being unloaded
(α = 2). k ∈ K is the type of unloaded product in case α = 2. This arc goes from vertex
vαwkcit to vertex vαwkc,i,t+1, or to the terminal vertex if t+ 1 6∈ T . Cost of this arc is w.
An empty transfer arc aw′w′′kcijt represents a transfer of empty cars of type c waiting at
station i ∈ I at daily rate w′ ∈ W 2

i to station j ∈ I where they will wait at daily rate
w′′ ∈W 1

j , such that the type of latest unloaded product is k ∈ K, and transfer starts at
period t ∈ T . This arc goes from vertex v2w′k

cit to vertex v1w′′
cjt′ , or to the terminal vertex if

t′ 6∈ T , where t′ = t+D(c, i, j). Cost of this arc is M(c, i, j, k).
A loaded transfer arc acqt represents transportation of the product of demand q ∈ Q by
cars of type c starting at period t ∈ T ∩ [rq, rq + ∆q]. This arc goes from vertex v1w1

q

ciqt
to

vertex v2w2
qkq

c,jq,t+dq
, or to the terminal vertex if {t+ dq} 6∈ T . The cost of this arc is −ρqt.

A small example of graph Gc is depicted in Figure 1. In this example, there is only one
“before” vertex and one “after” vertex for each time period and each station. In real-life
examples, there are several rows of “before” and “after” vertices for each station.

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

station 1

station 2

station 3

· · · · · · · · · · · ·

· · · · · · · · · · · ·

“before” vertex (∈ V 1
c )

“after” vertex (∈ V 2
c )

waiting arc

empty transfer arc

loaded transfer arc

time

Figure 1 An example of graph Gc

We denote as Acq the set of all loaded transfer acs related to demand q ∈ Qc: Acq =
{acq′t ∈ Ac : q′ = q}. Also we denote as δ+(v) and δ−(v) the sets of incoming and outgoing
arcs for vertex vc.

From now on, graph Gc is assumed to be trivially preprocessed: we remove vertices with
degree two (replacing appropriately incident arcs), and remove every vertex (together with
incident arcs) such that there is no path from any source to it or there is no path from it to
the terminal vertex.

For each commodity c ∈ C and for each arc a ∈ Ac, we define an integer variable xa
which represents the flow size of commodity c along arc a. Cost of arc a is denoted as g(a).
Additionally, for each demand q ∈ Q, we define a binary variable yq which indicates whether
demand q is accepted or not.

Now we are able to present a multi-commodity flow formulation (MCF ) for the problem.
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min
∑
c∈C

∑
a∈Ac

g(a)xa (1)

∑
c∈Cq

∑
a∈Acq

xa ≤ nmax
q yq ∀q ∈ Q (2)

∑
c∈Cq

∑
a∈Acq

xa ≥ nmin
q yq ∀q ∈ Q (3)

∑
a∈δ−(v)

xa −
∑

a∈δ+(v)

xa = b(v) ∀c ∈ C, v ∈ Vc (4)

xa ∈ Z+ ∀c ∈ C, a ∈ Vc (5)
yq ∈ {0, 1} ∀q ∈ Q (6)

Constraints (2) and (3) specify that the number of cars assigned to accepted demand q

should be between nmin
q and nmax

q . Constraints (4) are flow conservation constraints for each
commodity. As formulation (MCF ) generalizes the standard multi-commodity flow problem
(where variables y are fixed to one), our problem is NP-hard in the strong sense.

The formulation (MCF ) was tested in [10]. The main difficulty was to solve the LP relax-
ation of the problem, which we denote as (MCF )LP . Even after non-trivial problem-specific
preprocessing, solution time of (MCF )LP for typical real-life instances by a modern LP
solver on a modern computer is more than one hour. Therefore, our research is concentrated
on accelerating the resolution of (MCF )LP .

4 A column generation approach

A classic approach to solve multi-commodity flow formulations is to apply the column
generation procedure. Instead of working with arc variables, one uses variables of one the
following types.

A “path variable” determines the flow size of a commodity along a path from one of the
source nodes to a sink node of this commodity.
A “tree variable” specifies whether the flow of a certain size from a single source of a
commodity goes along a fixed (directed) tree with fixed flow sizes along its arcs. Leaves
of this tree are sink nodes of this commodity.
A “flow enumeration variable” specifies whether the flow of a single commodity is equal
to a fixed flow.

We now reformulate (MCF ) using path variables, and then using flow enumeration
variables. The reformulation which uses the tree variables was not tried, as there is only one
sink per commodity.

4.1 Path reformulation
For each commodity c ∈ C and each source s ∈ Sc, we denote as Ps the set of paths going
from the corresponding source vertex in Vc to the terminal vertex of graph Gc. Each such
path represents a route for cars originating at source s. For a path p ∈ Ps, we introduce
a variable λp which determines the flow size along path p (or number of cars taking this
route). Let Apathp be the set of arcs taken by a path p ∈ Ps and gpathp be the cost of the path:
gp =

∑
a∈Apath

p
g(a). Let also Qpathp be the set of demands “covered” by path p. The path

reformulation (PTH) of (MCF ) is the following.
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min
∑
c∈C

∑
s∈Sc

∑
p∈Ps

gpathp λp (7)

∑
c∈Cq

∑
s∈Sc

∑
p∈Ps: q∈Qpath

p

λa ≤ nmax
q yq ∀q ∈ Q (8)

∑
c∈Cq

∑
s∈Sc

∑
p∈Ps: q∈Qpath

p

λa ≥ nmin
q yq ∀q ∈ Q (9)

∑
p∈Ps

λp = ~ns ∀c ∈ C, s ∈ Sc (10)

λp ∈ Z+ ∀c ∈ C, s ∈ Sc, p ∈ Ps
yq ∈ {0, 1} ∀q ∈ Q

Constraints (8) and (9) are rewritten constraints (2) and (3). Constraints (10) guarantee
that a route is assigned to every car in each source.

In order to solve the LP relaxation (PTH)LP of formulation (PTH), we apply the column
generation procedure. On each iteration of it, the formulation (PTH)LP with a restricted
number of variables λ (which we will call the restricted master) is solved, and optimal primal
and dual solutions are obtained. Let πmax, πmin, and µ be the vectors of optimal dual
solution values corresponding to constraints (8), (9), and (10). Then the pricing problem is
solved which determines whether there exists a variable with a negative reduced cost absent
from the restricted master. The reduced cost ḡpathp of a variable λp, p ∈ Ps, s ∈ Sc, c ∈ C is
computed as

ḡpathp =
∑

a∈Apath
p

g(a) +
∑

q∈Qpath
p

(πmax
q − πmin

q )− µs. (11)

The problem of finding a variable λ with the minimum reduced cost can be solved by
a sequence of shortest path problems between each source s ∈ Sc and the terminal vertex
for every commodity c ∈ C. To accelerate the solution of the pricing problem, instead of
searching the shortest path separately for each source, in each graph Gc, we can find a
minimum cost in-tree to the terminal vertex from every source in Sc. As directed graphs Gc
are acyclic (each arc except those from V 2

c to V 1
c induces a time increase), the complexity of

this procedure is linear in the number of arcs for each graph Gc.
This procedure is quite fast, but its disadvantage consists in significant demand “overcov-

ering”. This means that many generated paths contain arcs corresponding to same demands,
i.e. much more cars are assigned to these demands than needed. This has a bad impact on
the convergence of column generation.

Therefore, we developed an iterative procedure which heuristically constructs a solution
to the original problem with demand profits modified by the current dual solution values.
Then all paths which constitute this solution are added to the master. On each iteration,
we search for a shortest path tree and then remove covered demands and cars assigned to
them for the next iteration. The heuristic stops when either all demands are covered, or all
cars are assigned, or maximum number of iterations is reached. The latter is a parameter
which we denote as nbPricIter. This procedure for commodity c ∈ C is formally presented
in Algorithm 1. This procedure can be viewed as a heuristic for generating additional paths
to be added to the master for the convergence acceleration.

ATMOS’13
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Algorithm 1: Path generation iterative pricing procedure for graph Gc
foreach demand q ∈ Qc do uncovCarsq ← nmax

q ;
foreach source s ∈ Sc do remCarss ← ~ns;
iter ← 0;
repeat

Find an in-tree to the terminal from sources s ∈ Sc, remCarss > 0;
Sort paths p in this tree by non-decreasing of their reduced cost ḡpathp ;
foreach path p in this order do

minCars← min{uncovCarsq | q ∈ Qpathp };
if ḡp < 0 and minCars > 0 then

Add variable λp to the restricted master;
s← the source of p;
remCarss ← remCarss −min{remCarss,minCars};
foreach q ∈ Qpathp do

uncovCarsq ← uncovCarsq −min{remCarss,minCars};

iter ← iter + 1;
until uncovCarsq = 0, ∀q ∈ Qc, or remCarss = 0, ∀s ∈ Sc, or iter =nbPricIter ;

4.2 Flow enumeration reformulation

Each car type defines a commodity c ∈ C. We define by Fc the set of all fixed solutions
(fixed flows) for commodity c. For a flow f ∈ Fc, we introduce a binary variable ωf which
specifies whether cars of type c are routed according to flow f or not. Let fa be the size of
flow f along arc a ∈ Ac and gflowf be the cost of the flow: gflowf =

∑
a∈Ac

fa · g(a). The
commodity reformulation (FEN) of (MCF ) is the following

min
∑
c∈C

∑
f∈Fs

gflowf ωf (12)

∑
c∈Cq

∑
f∈Fc

∑
a∈Acq

faωf ≤ nmax
q yq ∀q ∈ Q (13)

∑
c∈Cq

∑
f∈Fc

∑
a∈Acq

faωf ≥ nmin
q yq ∀q ∈ Q (14)

∑
f∈Fc

ωf = 1 ∀c ∈ C (15)

ωf ∈ {0, 1} ∀c ∈ C, f ∈ Fc
yq ∈ {0, 1} ∀q ∈ Q

Constraints (13) and (14) are rewritten constraints (2) and (3). Constraints (15) guarantee
that exactly one flow is assigned to commodity c ∈ C.

LP relaxation (FEN)LP of formulation (FEN) can also be solved by the column genera-
tion procedure. The pricing problem here decomposes into the minimum cost flow problems
for each commodity c ∈ C.

Our computational results showed that, solving (FEN)LP by column generation is
not practical due to convergence problems. However, in the next section, we present a
modification of this approach, which is computationally much more efficient.
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5 A “column generation for extended formulations” approach

We adapt here the hybrid approach, reviewed under the name “column generation for
extended formulations” (CGEF) in [9]. The idea is to solve formulation (MCF )LP iteratively
by generating arc flow variables dynamically. On each iteration, we generate columns (single
commodity flows) for formulation (FEN)LP , and translate them into arc flow variables
which are added to formulation (MCF )LP .

In the CGEF approach, on each iteration, we first solve the formulation (MCF )LP with
a restricted number of variables x. We will also call this formulation the restricted master.
Then, we verify whether there are variables x with a negative reduced cost absent from the
restricted master. However, we do not do it by enumeration, but by using the same pricing
problem as in classic column generation for solving formulation (FEN)LP . If a pricing
problem solution with a negative reduced cost is found, we add to the restricted master
variables x which are positive in this solution (some of them can be already in the restricted
master).

As a consequence of the theorem proved in [9], we know that, if an arc flow variable x is
absent from the restricted master and has a negative reduced cost in the current solution of
the restricted master, there exists a pricing problem solution with a negative reduced cost
where this variable is positive. Therefore, if there are no pricing problem solutions with a
negative reduced cost, the current solution of the restricted master is optimal for (MCF )LP .

When solving formulation (MCF )LP by the CGEF approach, the pricing problem is
decomposed to a sequence of min-reduced-cost flow problems for each commodity c ∈ C, as
in the column generation approach for solving the commodity reformulation (FEN)LP . Let
πmax
q and πmin

q be the vectors of optimal dual solution values corresponding to constraints
(2), (3). Then, the reduced cost ḡflowf of a flow f ∈ Fc is computed as

ḡflowf =
∑
a∈Ac

fa · g(a) +
∑
q∈Qc

∑
a∈Acq

fa · (πmax
q − πmin

q ). (16)

Note that dual values corresponding to flow conservation constraints (4) are not taken into
account when solving the pricing problem, as explained in [9]: this follows from the fact that
these constraints are satisfied by the pricing problem solution.

On each iteration, for each commodity c ∈ C, the pricing problem generates a flow f ∈ Fc
with the minimum reduced cost. If this cost is negative, variables x corresponding to arcs on
which flow f is positive, are added to the restricted master. Otherwise, the current solution
of the restricted master is optimal for (MCF )LP , and we stop.

6 Numerical results

The test instances were provided to us by the mathematical modeling departement of JSC
Freight One, which is one of the largest freight rail transportation companies in Russia.

We have numerically tested the following three approaches for solving formulation
(MCF )LP on these real-life instances.
1. Direct solution of (MCF )LP by the Clp LP solver [1]. Before applying the LP solver the

formulation is preprocessed by a non-trivial problem specific procedure. This procedure
is not public and it was not available to us. Moreover, the open-source solver Clp was
specifically modified to better tackle formulation (MCF )LP . Thus, this approach was
applied inside the company. We tried to solve (MCF )LP with only trivial preprocessing
by the default version of both LP solvers Clp and Cplex [2], but our solution times on a
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comparable computer were significantly larger. Therefore, for the comparison, we use the
solution times communicated to us by the company. We denote this approach as Direct.

2. Solution of the path reformulation (PTH)LP by column generation. The pricing problem
here is solved by the iterative shortest path tree procedure presented in Algorithm 1. The
effect of applying the iterative pricing procedure was significant. After preliminary tests,
the parameter nbPricIter was set to 5. For better convergence of the column generation
procedure, the following improvements are applied.

The restricted master is initialized with paths according to which cars stay at their
initial locations during all the planning horizon.
Stabilization by dual prices smoothing [8] is applied.
The restricted master is cleaned up every 10 iterations by deleting all columns with a
positive reduced cost.

The column generation approach was implemented in C++ programming language using
the BaPCod library [11] and Cplex as LP solver. We denote this approach as ColGen.

3. The solution of (MCF )LP by the CGEF approach. The pricing problem here is solved
using the minimum cost flow solver Lemon [3]. To improve convergence of the algorithm,
the master is initialized with the full set of waiting arcs. Note that in distinction to
Direct only a trivial procedure was applied to preprocess the formulation. This approach
was also implemented in the same manner as the previous one. We denote this approach
as ColGenEF.

The approach Direct was run on a computer with a processor Intel Xeon X5677 3.47 GHz,
the approaches ColGen and ColGenEF were run on a computer with a processor Intel
Xeon X5460 3.16 GHz in a single thread mode.

The first test set consists of 3 instances. Characteristics of these instances and results for
3 tested approaches for these instances are presented in Table 1.

The difference in performance of the approaches Direct and ColGenEF on instances
x3 and x3double can be explained by the problem specific preprocessing. Although we are
not aware of preprocessing details, we know that it is based on similarities between car types.
For instance 5k0711q in which there is only one car type, difference between two approaches
is much smaller. Note that this instance has been artificially created from the real-life one
by merging car types into one.

The second test set consists of instances with larger planning horizon length. These
instances contain 1’025 stations, up to 6’800 demands, 11 car types, 12’651 cars, and 8’232

Table 1 The first set of instances: characteristics and numerical results.

Instance name x3 x3double 5k0711q
Number of stations 371 371 1’900
Number of demands 1’684 3’368 7’424
Number of car types 17 17 1
Number of cars 1’013 1’013 15’008
Number of sources 791 791 11’215
Time horizon, days 37 74 35
Total number of vertices, thousands 62 152 22
Total number of arcs, thousands 794 2’846 1’843
Solution time for Direct 20s 1h34m 55s
Solution time for ColGen 22s 7m53s 8m59s
Solution time for ColGenEF 3m55s >2h 43s
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Figure 2 Solution times for test instances with larger planning horizon length.

sources. The planning horizon length is from 80 to 180 days. The graph ∪c∈CGc for the
largest instance contains about 300 thousands nodes and 10 millions arcs. For these instances,
the two best approaches are Direct and ColGenEF. The comparison of their solution
times is presented in Figure 2. The approach ColGen is two to three times slower than
Direct.

An important observation is that the algorithm ColGenEF generally converges in less
than 10 iterations (and always in less than 15 iterations). The restricted master on the final
iteration contains only about 3% of the arc flow variables of formulation (MCF ).

7 Conclusions and perspectives

We have formulated a freight car flow problem variant as a multi-commodity flow problem in
a large space-time graph. Three approaches for solving the LP relaxation of this formulation
has been tested on a set of real-life instances provided by one of the largest freight rail
transportation companies in Russia.

Computational results show that the classic column generation approach is the best for
instances with relatively small number of sources (different initial locations of cars). For other
instances, approaches based on the multi-commodity formulation produce better results.
Problem-specific preprocessing based on similarities between car types is an important
ingredient, which allows a modern LP solver to tackle quite efficiently instances with a
relatively small time horizon length. The best approach for instances with larger time
horizon length is solving the multi-commodity formulation by dynamically generating arc
flow variables (the “column generation for extended formulations” approach). Even without
applying problem-specific preprocessing, it outperforms the direct resolution approach, and
this advantage increases with the increase of the time horizon length. It is likely that the
combination of the CGEF approach with problem-specific preprocessing will produce even
better results. Such a combination could be used to produce better solutions by shortening
the time period length.

The most important research direction for the future is to obtain integer solutions for the
problem either by a branch-and-bound (or branch-and-price) methods or by heuristics based
on the fractional solution obtained by the approaches proposed here. Simple heuristics can
be based on rounding. Experiments conducted inside the company show that this approach
already produces good results, as the LP relaxation solutions are almost integer. Column
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generation based heuristics of the “diving” type [6] are likely to produce better results.
Note that the problem studied in this paper does not incorporate some practical consid-

erations. Some of them can be easily modeled by enlarging the space-time graph used in the
current approaches. These considerations are the following.

Waiting rates for cars are generally not linear but progressive. When a car arrives to
a station, the owner should pay an initial rate for every standing day. After a certain
period of time this rate increases. This increase can happen several times. In other words,
the daily waiting rate in every station is a non-decreasing function of the current stay
duration.
There is a set of special stations where cars can stay for a lower rate (although there is a
fix rate for putting cars there). A car can go to one of this stations between fulfilling
two demands in order to pay less for waiting. Note that it is advantageous to use these
stations only if a sufficiently long planning horizon is considered.
There is a compatibility function between two consecutive types of loaded products. This
means that even if a car type is suitable for a demand, a car of this type may not be
able to fulfill it because the type of previously loaded product is incompatible with the
product type of the demand. For example, the petrol cannot be loaded to a car after the
oil, but the oil can be put after the petrol. Also, there are special stations where cars can
be washed for a fee. After washing a car, the type of product previously loaded to it is
“nullified”.
When a demand is not selected, a penalty payment may be due.

There exists however a problem extension which cannot be solved by the approaches presented.
As mentioned in the introduction, transportation times and costs between each pair of stations
are communicated by the state company which is in charge of forming and scheduling trains.
In this paper, we considered that they depend only on the origin and destination stations.
However, in practice usually they also depend on the size of the group of cars sent together.
The larger this group is, the faster and with smaller unitary cost it will be delivered to the
destination. It seems that exact solution of real-life instances of this extension of the problem
is out of reach of modern optimization tools.

References
1 Clp – COIN-OR Linear Programming Solver. https://projects.coin-or.org/Clp.
2 IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/integration/

optimization/cplex-optimizer/.
3 LEMON Graph Library. https://lemon.cs.elte.hu/trac/lemon.
4 Ricardo Fukasawa, Marcus Poggi de Aragão, Oscar Porto, and Eduardo Uchoa. Solving the

freight car flow problem to optimality. Electronic Notes in Theoretical Computer Science,
66(6):42–52, 2002. ATMOS 2002.

5 Kaj Holmberg, Martin Joborn, and Jan T. Lundgren. Improved empty freight car distri-
bution. Transportation Science, 32(2):163–173, 1998.

6 Cédric Joncour, Sophie Michel, Ruslan Sadykov, Dmitry Sverdlov, and François Vander-
beck. Column generation based primal heuristics. Electronic Notes in Discrete Mathematics,
36:695–702, 2010.

7 Andreas Löbel. Vehicle scheduling in public transit and lagrangean pricing. Management
Science, 44(12):1637–1649, 1998.

8 Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and Francois Vanderbeck. In-out separa-
tion and column generation stabilization by dual price smoothing. In 12th International
Symposium on Experimental Algorithms, volume 7933 of Lecture Notes in Computer Sci-
ence, pages 354–365. 2013.

https://projects.coin-or.org/Clp
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
https://lemon.cs.elte.hu/trac/lemon


R. Sadykov, A. A. Lazarev, V. Shiryaev, and A. Stratonnikov 67

9 Ruslan Sadykov and François Vanderbeck. Column generation for extended formulations.
EURO Journal on Computational Optimization, 1(1-2):81–115, 2013.

10 Alexey Stratonnikov and Vitaly Shiryaev. A large-scale linear programming formulation
for railcars flow management (in Russian). In Fifth Russian conference on Optimization
Problems and Economic Applications, Omsk, Russia, July 2012.

11 François Vanderbeck. BaPCod — a generic Branch-And-Price Code. https://wiki.
bordeaux.inria.fr/realopt/pmwiki.php/Project/BaPCod.

ATMOS’13

https://wiki.bordeaux.inria.fr/realopt/pmwiki.php/Project/BaPCod
https://wiki.bordeaux.inria.fr/realopt/pmwiki.php/Project/BaPCod

	Introduction
	Problem description
	Mathematical model
	A column generation approach
	Path reformulation
	Flow enumeration reformulation

	A ``column generation for extended formulations'' approach
	Numerical results
	Conclusions and perspectives

