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1 Introduction

A single track network can be seen as an embryonic portion for any type of railway

network topology. In this paper, we consider a special core subcase with only two

stations. This subcase has practical significance and appears often in private railways,

e.g., when a company transports loads between two production centers.

The Single Track Railway Scheduling Problem with two stations (STRSP2) is

formulated as follows. Given a single track railway between two stations and a set

N ′ = N ′1
⋃

N ′2, N ′1
⋂

N ′2 = ∅ of n′ = |N ′| trains. Trains from the subset N ′1 go

from station 1 to station 2, and trains from the subset N ′2 go in the opposite direction.

|N ′1| = n′1 and |N ′2| = n′2, n
′

1+n′2 = n′. The track is divided on Q segments 1, 2, . . . , Q.

Trains from the set N ′1 traverse segments in an order 1→ 2→ . . .→ Q and trains from

the set N ′2 in the opposite order Q → Q − 1 → . . . → 1. At most only one train can

be on any track segment at a time1. If a train j′ ∈ N ′1 is on a track segment, then no

train i′ ∈ N ′2 can be on the track and vice versa. For each segment q, q = 1, 2 . . . , Q,

a traversing time pq is given, in which a train j′ ∈ N ′ traverses the segment, i.e., for

each segment q, q = 1, 2 . . . , Q, all the trains go with the same speed2. Let Sj′(Π) and
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1 A segment is circumscribed by two signals: one signal from each side, which will control
when a train either can or cannot proceed on that segment. This is a safety precaution. So,
there is no opportunity for trains to pass each other somewhere between segments.

2 This assumption is not far away from practice, since most trains travel at a maximal speed
allowed.



Cj′(Π), j′ ∈ N ′, be the start and completion times of the train j′ in a schedule Π,

i.e., Sj′(Π) is a departure time of the train j′ from the departure station and Cj′(Π)

is an arrival time to the destination station. Then in a feasible schedule we have:

- Cj′ ≥ Sj′ +
∑Q

q=1
pq, ∀j

′ ∈ N ′;

- for any i′ ∈ N ′1 and for any j′ ∈ N ′2 we have Ci′ ≤ Sj′ or Cj′ ≤ Si′ .

In addition, a due date dj′ , a weight wj′ > 0, a release date rj′ ≥ 0 (the earliest

possible starting time, i.e., Sj′ ≥ rj′) for each train j′ ∈ N ′ can be given. If Cj′(Π) >

dj′ , then train j′ is tardy and we have Uj′(Π) = 1. If Cj′(Π) ≤ dj′ , then train j′

is on-time and Uj′(Π) = 0. Moreover, let Tj′(Π) = max{0, Cj′(Π) − dj′} be the

tardiness of train j′ and Cmax(Π) = maxj′∈N ′{Cj′(Π)} is the makespan for schedule

Π. For the STRSP2 with release dates the objective is to find an optimal schedule Π∗

that minimizes the makespan Cmax taking into account release dates. This problem

is denoted STRSP2|rj |Cmax (similar to the traditional three-field notation α|β|γ for

scheduling problems proposed by Graham et al. [2], where α describes the resource

environment, β gives the activity characteristics and further constraints and γ describes

the objective function). In this paper, we deal with some extensions of STRSP2 with

different objective functions and further constraints. We minimize

- number of late trains STRSP2||
∑

Uj ;

- weighted number of late trains STRSP2||
∑

wjUj ;

- total completion time STRSP2|rj |
∑

Cj when release dates are given;

- weighted total completion time STRSP2||
∑

wjCj ;

- total tardiness STRSP2||
∑

Tj .

Similar problems arise on a river canal (inland waterways) with a chain of shipping

locks [1]. Although, this problem seems to be similar to STRSP2, there are obvious

differences between the problems.

To the best of our knowledge there are no publications for this set of STRSP2

problems, although they can be also easily reformulated as shop scheduling problems

with Q machines. A literature review on the single track railway scheduling problem

can be found, e.g., in [4].

2 Reduction of STRSP2 to a Single Machine Scheduling Problem

Denote pmax = maxq=1,2,...,Q{pq} and P =
∑Q

q=1
pq.

Lemma 1 Assume that for a train j′ ∈ N ′1 we have Cj′ = Sj′ + P and train i′ ∈ N ′1
is the next train which passes the track. Then, without violation of feasibility conditions

the train i′ can be scheduled as follows: Si′ = max{ri′ , Sj′ + pmax} and Ci′ = Si′ +P ,

i.e., the train i′ departs from the time point max{ri′ , Sj′ + pmax} and leaves without

incurring any idle-time.

Lemma 2 For any j′ and i′ belong to the same subset N ′1 or N ′2, in any feasible

schedule, we have |Sj′ − Si′ | ≥ pmax and |Cj′ − Ci′ | ≥ pmax.

Based on these properties, the following reduction to a single machine scheduling

problem is proposed.



Single machine scheduling problem A set N = N1

⋃
N2, N1

⋂
N2 = ∅ of n

independent jobs that must be processed on a single machine is given. Job preemption

is not allowed. The machine can handle only one job at a time. Processing times of jobs

are equal to p, ∀j ∈ N . For each job j ∈ N , a due date dj , a weight wj > 0, a release

date rj ≥ 0 (i.e., the earliest possible starting time) can be given. A feasible solution

is described by a permutation π = (j1, j2, . . . , jn) of the jobs of the set N from which

the corresponding schedule can be uniquely determined by starting each job as early as

possible. Let Sjk (π), Cjk (π) = Sjk (π) + p be the start and completion times of job jk
in the schedule resulting from the sequence π. If jk ∈ N1 and jk+1 ∈ N2, then between

jobs the machine has to be idle during a setup time st = st1. If jk ∈ N2 and jk+1 ∈ N1,

then between jobs the machine has to be idle during a setup time st = st2. There is no

setup time between processing of jobs from the same subset, i.e., st = 0. In a feasible

schedule Sjk+1
= max{rjk+1

, Cjk + st} holds. Objective functions are the same like for

STRSP2. If Cj(π) > dj , then job j is tardy and we have Uj(π) = 1, otherwise Uj(π) =

0. If Cj(π) ≤ dj , then job j is on-time. Moreover, let Tj(π) = max{0, Cj(π) − dj} be

the tardiness of job j and Cmax(π) = maxj∈N{Cj(π)} is the makespan. We note

these scheduling problems according to the traditional three-field notation α|β|γ, e.g.,

1|setup − times,N1, N2, pj = p, rj |Cmax for the single machine scheduling problem

with equal-processing-times, setup times and release dates minimizing makespan.

The problems STRSP2| − |− for the previously mentioned objective functions can

be reduced to 1|setup−times,N1, N2, pj = p,−|− problems as follows. Subset of trains

N ′1 corresponds to the subset of jobs N1, |N1| = |N
′

1|, and subset N ′2 of trains to the

subset N2, |N2| = |N ′2|, of jobs. Let q, q ∈ {1, 2, . . . , Q} be the index of segment

for which pq = pmax. Denote TAILleft =
∑q−1

l=1
pl, TAILright =

∑Q

l=q+1
pl. Then,

assume p = pmax, st1 = 2 · TAILright, st2 = 2 · TAILleft, if j ∈ N1, then release

date rj = rj′ + TAILleft, else rj = rj′ + TAILright. If j ∈ N1, then due date

dj = dj′ − TAILright, else dj = dj′ − TAILleft. Weights are the same.

A similar reduction can be made for other problem. Thus, instead of STRSP2 the

following 1|setup− times,N1, N2, pj = p,−|− problems can be considered:

1. 1|setup− times,N1, N2, pj = p, rj |Cmax;

2. 1|setup− times,N1, N2, pj = p, rj
∑

Cj ;

3. 1|setup− times,N1, N2, pj = p|
∑

wjCj ;

4. 1|setup− times,N1, N2, pj = p|
∑

Tj ;

5. 1|setup− times,N1, N2, pj = p|
∑

Uj ;

6. 1|setup− times,N1, N2, pj = p|
∑

wjUj .

Some results in equal-processing-time scheduling are presented in [3].

Definition 1. We call schedules for 1|setup − times,N1, N2, pj = p,−|− problems

left-shifted, if they are determined by starting each job as early as possible. Obviously,

for any afore mentioned problem there are optimal schedules which are left-shifted.

Definition 2. Let Θ = {t|t = rj+x1 ·p+x2 ·st1+x3 ·st2, j ∈ {1, 2, . . . , n}, x1, x2, x3 ∈
{0, 1, 2, . . . , n}, x2 + x3 ≤ x1}.

Notice that there are at most O(n4) values in set Θ.

Lemma 3 In all left-shifted schedules, job starting times belong to Θ.

3 Algorithms for the Problems with Ordered Subsets N1 and N2

Lemma 4 Problems 1-4 are solvable in O(n7) or in O(n6) time.



All the algorithms are based on the same properties of optimal solutions and use

the same search procedure.

Denote the subset N1 = {j1, j2, . . . , jn1} and N2 = {i1, i2, . . . , in2}.

Lemma 5 For each of the above mentioned problems there is an optimal schedule in

which jobs are processed in the following special order:

- for the problems 1|setup−times,N1, N2, pj = p, rj |Cmax and 1|setup−times,N1, N2, pj =

p, rj |
∑

Cj jobs are ordered according to non-decreasing release dates, i.e., rj1 ≤
rj2 ≤ . . . ≤ rjn1

and ri1 ≤ ri2 ≤ . . . ≤ rin2
;

- for the problem 1|setup − times,N1, N2, pj = p|
∑

wjCj jobs in each subset are

ordered according to non-increasing weights, i.e., wj1 ≥ wj2 ≥ . . . ≥ wjn1
and

wi1 ≥ wi2 ≥ . . . ≥ win2
;

- for the problem 1|setup − times,N1, N2, pj = p|
∑

Tj jobs in each subset are

ordered according to non-decreasing due dates, i.e., dj1 ≤ dj2 ≤ . . . ≤ djn1
and

di1 ≤ di2 ≤ . . . ≤ din2
.

4 Problems with Partially Ordered Subsets

Lemma 6 For the problem 1|setup − times,N1, N2, pj = p|
∑

wjUj , there is an op-

timal left-shifted schedule, where on-time jobs from the same subset N1 or N2 are

ordered according to non-decreasing due dates, i.e., dj1 ≤ dj2 ≤ . . . ≤ djn1
and

di1 ≤ di2 ≤ . . . ≤ din2
.

Lemma 7 Assume, that the jobs are ordered according to Lemma 6. For the problem

1|setup−times,N1, N2, pj = p|
∑

Uj , there is an optimal left-shifted schedule and such

indexes x, 1 ≤ x ≤ n1 and y, 1 ≤ y ≤ n2, that only jobs jx, jx+1, . . . , jn1 , iy, iy+1, . . . , in2

are on-time and processed according to the order given by Lemma 6.

So, for the problem 1|setup − times,N1, N2, pj = p|
∑

Uj , we have to choose indexes

x and y, such that x+ y → max and jobs jx, jx+1, . . . , jn1 , iy, iy+1, . . . , in2 can all be

processed on-time at the beginning of a schedule. Thus, we have to take into account at

most (n1+1) log(n2+1) pairs (x, y). For each of the pairs we solve the problem 1|setup−

times,N1, N2, pj = p|
∑

Tj with set of jobs {jx, jx+1, . . . , jn1 , iy, iy+1, . . . , in2} by a

modification of Algorithm 1. If
∑

Tj(π
∗) = 0, then pair (x, y) is feasible. We can

conclude the following (see Lemma 8).

Lemma 8 The problem 1|setup−times,N1, N2, pj = p|
∑

Uj can be solved in O(n7 log n)

time.

For the problem 1|setup − times,N1, N2, pj = p|
∑

wjUj , a dynamic programming

polynomial time algorithm is suggested. This algorithm based on the following as-

sumptions. Note jobs in N = {H1, H2, . . . , Hn}, where wH1
≤ wH2

≤ . . . ≤ wHn
.

If wHk
= wHk+1

, then dHk
≤ dHk+1

. Jobs from N1 and N2 are noted and ordered

according to Lemma 6. Let Hn ∈ N2 and Hn = ik. For Hn a position in a sched-

ule is defined by a pair (t, l), where t ∈ Θ is the starting time of the job, the index

l = 0, 1, . . . , n1 means that on-time jobs from the subset {j1, j2, . . . , jl} precede the job

Hn in a schedule and on-time jobs from the subset {jl+1, jl+2, . . . , jn1} are scheduled

after Hn. A position (−, n1 + 1) means that the job Hn is late and processed at the

end of schedule from time T ∈ Θ.

Then, for each position (t, l) among O(n4) possible, we can decompose the initial

problem into two independent subproblems:



- with a set of jobs Nleft = {j1, j2, . . . , jl, i1, i2, . . . , ik−1} which have to be processed

in interval [0, t);

- with a set of jobs Nright = {jl+1, jl+2, . . . , jn1 , ik+1, ik+2, . . . , in2} which have to

be processed in interval [t+ p, T );

The running time of the Algorithm is O(n15).

5 Conclusion

We suppose that running times of Algorithms can be substantivally reduced after their

more detailed analysis. Another question arises as for single machine equal-processing-

time scheduling problems without setup-times and precedence relations: ”Are there

problems with equal processing time of jobs, which are NP-hard?”
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