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Abstract

We propose a hybrid algorithm based on the ant colony optimization (ACO) meta-heuristic, in conjunction with four well-known
elimination rules, to tackle the NP -hard single-machine scheduling problem to minimize the total job tardiness. The hybrid algorithm
has the same running time as that of ACO. We conducted extensive computational experiments to test the performance of the hybrid
algorithm and ACO. The computational results show that the hybrid algorithm can produce optimal or near-optimal solutions quickly,
and its performance compares favourably with that of ACO for handling standard instances of the problem.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

We are given a set N of n independent jobs that must be processed on a single machine. Preemption of the jobs is not
allowed. The machine can handle only one job at a time. All the jobs are assumed to be available for processing at time
0. For each job j , j ∈ N , a processing time pj > 0 and a due date dj are given. A schedule � is uniquely determined
by a permutation of the elements of N . Define Tj (�) = max{0, cj (�) − dj } as the tardiness of job j under schedule �,
where cj (�) is the completion time of job j under schedule �. We seek to find an optimal schedule �∗ that minimizes
the total job tardiness, i.e., F(�) = ∑n

j=1 Tj (�). The problem is denoted by 1|| ∑ Tj and is known to be NP -hard in

the ordinary sense [1]. Lawler [2] presented an O(n4 ∑
pj ) time dynamic programming algorithm for the problem.

Szwarc et al. [3,4] designed enumeration algorithms to handle the special instances of the problem discussed in [5] for
n�500. It was shown in [6] that all known constructive and decomposition heuristics for non-paradoxical instances of
the problem can yield arbitrarily bad approximation ratios.

In this paper we propose a hybrid algorithm based on the ant colony optimization (ACO) meta-heuristic by Bauer et
al. [7], in conjunction with the four well-known Elimination Rules 1–4 for 1|| ∑ Tj introduced in [4,8,9]. We conducted
comprehensive computational experiments to compare the performance of the hybrid algorithm and ACO with respect
to the following measures: percentage of time that an optimal solution is found, relative error of the solution found,
and number of iterations needed to find an optimal solution, where one ant in ACO is equivalent to one iteration of the
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solution procedure. We tested both algorithms using three special cases of 1|| ∑ Tj , namely the special instances of
Potts and van Wassenhove [5], the case B-1 of Lazarev [8], and the canonical instances of Du and Leung [1].

The paper is organized as follows. We introduce in the next section Elimination Rules 1–4, and an exact algorithm
that solves the problem optimally. In the following section, we present the ACO algorithm. We then discuss our hybrid
algorithm, and present the results of the computational experiments in Sections 4–7. We conclude the findings in the
final section.

2. An exact solution algorithm

Without loss of generality, let d1 �d2 � · · · �dn; if dk = dk+1 then pk �pk+1. In other words, the jobs are first
sequenced in the earliest due date (EDD) order, and if there is a tie, then the jobs are sequenced in the shortest
processing time (SPT) order, i.e., the jobs that have the same due dates are sequenced in nondecreasing order of their
processing times.

We denote by I =〈{pj , dj }j∈N, t〉 an instance of the problem 1|| ∑ Tj with the job set N and parameters {pj , dj }j∈N

that must be processed from the start time t . Let (j1 → j2)� denote that job j1 precedes job j2 under schedule �. Let
j∗ denote the job with the largest processing time in N .

Let N = {1, 2, . . . , n} = {j1, . . . , jn}, where dj1 � · · · �djn . We denote by �k = (j1, . . . , jm−1, jm+1, . . . , jk,

j∗, jk+1, . . . , jn), j∗ = jm, m < k, the modified EDD sequence, where job j∗ is moved from its original position
m to position k.

We consider a subset of jobs N ′ ⊆ N that must be processed from time t ′ � t0. Let N ′ = {1, 2, . . . , n′}. Construct a
position list L(N ′, t ′) for the job j∗, the job with the largest processing time in N ′, as follows:

0. L(N ′, t ′) := {j∗, j∗ + 1, ..., n′}; dn′+1 : = + ∞;
1. FOR k : =j∗ + 1 TO n′ DO

IF t ′ + ∑k
j=1pj �dk+1 (Elimination Rule 1 [4,8])

THEN L(N ′, t ′) : =L(N ′, t ′)\{k};
FOR i : =j∗ + 1 TO n′ DO

IF di + pi > t ′ + ∑k
j=1pj (Elimination Rules 2 and 3 [4,8])

THEN L(N ′, t ′) : =L(N ′, t ′)\{k}.
FOR i : =j∗ TO k DO

IF F(�k) > F(�k+1) or F(�k)�F(�i ) (Elimination Rule 4 [9,10]) THEN L(N ′, t ′):=L(N ′, t ′)\{k}.

Proposition 1. (Lazarev [8])For all instances 〈{pj , dj }j∈N, t0〉, the list L(N, t0) is not empty.

Proposition 2. (Lazarev [8])For all instances 〈{pj , dj }j∈N, t0〉, there exists an optimal schedule �∗ such that (j →
j∗)�∗ for all j ∈ {1, 2, . . . , k}\{j∗} and (j∗ → j)�∗ for all j ∈ {k + 1, . . . , n} for some k ∈ L(N, t0).

Now we present Algorithm A by Lazarev [8], an exact solution algorithm for 1|| ∑ Tj , which is based on Elimination
Rules 1–4. Szwarc et al. [3] and Chang et al. [9] have applied similar ideas for constructing Algorithm A in designing
algorithms for 1|| ∑ Tj .

Procedure ProcL(N, t)

Input: An instance 〈{pj , dj }j∈N, t〉 with the job set N ={j1, j2, . . . , jn} and start time t, where dj1 �dj2 � · · · �djn ;

1. IF N = ∅ THEN �∗ := empty schedule, GOTO 6;
2. Find j∗ ∈ N ; construct the list L(N, t) for job j∗;
3. FOR ALL k ∈ L(N, t) DO:

�k := (ProcL(N ′, t ′), j∗, ProcL(N ′′, t ′′)), where
N ′ := {j1, . . . , jk}\{j∗}, t ′ : =t ,
N ′′ := {jk+1, . . . , jn}, t ′′ := t + ∑k

i=1pji
;

4. �∗: = arg mink∈L(N,t){F(�k, t)};
5. RETURN �∗.

Algorithm A

�∗ := ProcL(N, t0).
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It is known that Algorithm A has an exponential running time for several cases of the problem 1|| ∑ Tj [10]. The
running time of Algorithm A for instances of the problem with integer parameters is O(n4 ∑

pj ) [2,8].

3. ACO for 1|| ∑ Tj

We present the ACO algorithm by Bauer et al. [7] in this section. In each generation, each of the m ants constructs one
solution. An ant selects the jobs in the order in which they appear in a schedule. For the selection of a job, the ant uses
both heuristic and pheromone information. The heuristic information, denoted by �ij , and the pheromone information,
denoted by �ij , is an indicator of how good it seems to place job j in position i of the schedule. With probability q0,
where 0 < q0 < 1 is a parameter of the algorithm, the ant chooses the next job j from the set S of jobs that have not
been scheduled so far that maximizes [�ij ]�[�ij ]�, where � and � are constants that determine the relative influence of
the pheromone values and the heuristic values, respectively, on the decision of the ant. With probability 1 − q0, the ant
selects the next job j according to the probability distribution determined by

pij = [�ij ]�[�ij ]�∑
h∈S[�ih]�[�ih]�

.

The heuristic values �ij are computed according to the modified due date (MDD) rule, i.e., �ij =1/ max{T +pj , dj },
where T is the total processing time of all the jobs that have already been scheduled.

After an ant has selected the next job j , a local pheromone update is performed at element (i; j) of the pheromone
matrix according to �ij : =(1 − �)�ij + ��0 for some constant �, 0 < � < 1, where �0 = 1/mT EDD, and TEDD is the
total tardiness of the schedule that is obtained when the jobs are ordered according to the EDD rule. The value �0 is
also used to initialize the elements of the pheromone matrix.

After each ant has constructed a solution, the solution is further improved with a 2-opt strategy, i.e., a local search
procedure with pairwise swapping of jobs. The 2-opt strategy considers possible swaps between all pairs of jobs in the
constructed sequence.

The best solution found so far is then used to update the pheromone matrix. But before doing so, some old pheromone
values will decay according to �ij := (1 − �)�ij . The reason is that old pheromone values should not have too strong
an influence on the future. Then, for every job j in the schedule of the best solution found so far, some amount of
pheromone is added to element (i; j) of the pheromone matrix, where i is the position of job j in the schedule. The
amount of pheromone added is �/T ∗, where T ∗ is the total tardiness of the best found schedule, i.e., �ij := �ij +�/T ∗.
The algorithm stops when some stopping criterion is met, e.g., a certain number of generations has been reached or the
best found solution has not changed for several generations.

Computational results of the ACO algorithm were presented in [7], where the instances from [5] for n = 50 and 100
were tested. For n = 50, ACO generated an optimal solution for 609 out of the 625 tested instances. The relative error
was less than 0.08%. For n = 100, all 125 tested instances were solved optimally.

It is easy to show that the running time of ACO without local search is O(mn2). For each i (there is a total of n

positions), job j is chosen in O(n) time. Local search has a running time of O(n3), but the number of times local
search is applied is unknown. So ACO has a running time no less than O(mn3). In practice, the running time of ACO
does not exceed O(mn2).

4. A hybrid algorithm

We present in this section Algorithm H , a hybrid algorithm based on the ACO meta-heuristic by Bauer et al. [7], in
conjunction with Elimination Rules 1–4 [4,8–10].

In Algorithm H , each ant (i.e., each iteration) executes a modified version of Algorithm A, where the current job j∗
is randomly placed in position k ∈ L(N, t).

Procedure ProcL modified (N, t)

Input: An instance 〈{pj , dj }j∈N, t〉 with the job set N ={j1, j2, . . . , jn} and start time t , where dj1 �dj2 � · · · �djn ;

1. IF N = ∅ THEN �∗ := empty schedule, GOTO 6;
2. Find j∗ ∈ N ; construct the list L(N, t) for job j∗;
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3. Compute the array of probabilities for each i ∈ L(N, t):

�ij∗ = �ij∗/F (�i )∑
h∈L(N,t)�hj∗/F (�h)

,

where �i = (j1, . . . , jm−1, jm+1, . . . , ji , j
∗, ji+1, . . . , jn), j∗ = jm, m < i;

4. Choose k ∈ L(N, t) randomly according to probability �kj∗;
5. Update the local trail:

�kj∗ := (1 − �)�kj∗ + ��0,

where �0 = 1/(mT EDD), and TEDD is the total tardiness of schedule �EDD;
6. RETURN

�∗ := ProcL((N ′, t ′), j∗, ProcL(N ′′, t ′′)), where
N ′ := {j1, . . . , jk}\{j∗}, t ′ : =t ,
N ′′ := {jk+1, . . . , jn}, t ′′ := t + ∑k

i=1pji
.

Upon completing each iteration (recalling that 1 ant = 1 iteration), we update the “global trail” �ij according to

�ij := (1 − �)�ij + �/T ∗,

if job j is placed in position i of the best schedule found. Otherwise,

�ij := (1 − �)�ij ,

where � ∈ [0, 1] is a parameter of the algorithm, and T ∗ is the total tardiness of the best found schedule. After each
iteration (1 ant = 1 iteration), we invoke the 2-opt strategy.

It is easy to show that the running time of Algorithm H without local search is O(mn2). For each j∗ (there are a
total of n jobs), position k is chosen in O(n) time. Local search has a running time of O(n3), but the number of times
it is invoked is unknown. So Algorithm H has a running time no less than O(mn3). In other words, the running times
of Algorithms H and ACO are comparable.

5. Computational results for instances of Potts and van Wassenhove

In this section we present the computational results of applying ACO and Algorithm H to deal with instances of the
problem 1|| ∑ Tj comprising n = 4, ..., 70, 100 jobs that are generated using the schema given in [5].

The instances were generated as follows: for each job j , a processing time pj ∈ Z was randomly chosen from the
uniform distribution [1, 100], and a due date from the uniform distribution⎡

⎣ n∑
j=1

pj (1 − T F − RDD/2),

n∑
j=1

pj (1 − T F + RDD/2)

⎤
⎦ ,

where T F is the tightness factor and RDD is the relative due date. Both of the values T F and RDD were taken from
the set {0.2, 0.4, 0.6, 0.8, 1.0}. For each combination of (T F , RDD), we generated 100 instances, i.e., a total of 2500
instances were generated for each n.

We did not consider trivial instances where F(�EDD) = 0. We used the following parameter settings: � = 1, � = 2,
and � = 0.1. For the heuristic information �ij , we used the MDD rule.

For each instance, the exact Algorithm A returned an optimal value Fopt. In applying ACO, ants were allowed to
continue to run when the optimal solution was not found. The number of ants was constrained by m�100. ACO could
run up to 10 times for each instance when the optimal solution was not obtained. The best total tardiness value FACO
found was recorded, and the relative error (FACO − Fopt)/Fopt was computed. The same experimental approach was
taken to test Algorithm H .

In this way, we obtained computational results to compare the performance of ACO and Algorithm H with respect
to the following measures: percentage of time that an optimal solution is found, relative error of the solution found,
and number of iterations needed to find an optimal solution. The results are presented in Table 1.
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Table 1
Computational results for instances of Potts and van Wassenhove

n Not opt. ACO Not opt H. Rel. ACO Rel. H. Ants ACO Ants H.

19 2 0 0.22 0 1.6164 1.4004
20 1 0 0.58 0 1.6064 1.4204
22 1 0 0.16 0 1.626 1.4844
28 2 0 0.09 0 1.9704 1.6688
34 1 0 0.15 0 2.2212 1.9568
36 0 1 0 0.04 2.2332 2.154
37 1 1 0.38 0.01 2.4796 2.102
40 1 0 0.04 0 2.6036 2.2424
42 1 1 0.05 0.01 2.7888 2.4092
43 1 1 0.07 0.06 2.7316 2.3656
44 3 0 0.04 0 2.8464 2.3784
45 2 0 0.68 0 2.9736 2.4728
46 1 0 0.03 0 3.1624 2.4088
47 2 0 0.01 0 3.248 2.5152
48 9 0 0.56 0 3.4516 2.5196
49 3 1 0.15 0.08 3.4252 2.7
50 9 1 0.35 0.29 3.716 2.6336
51 8 0 0.22 0 3.8412 2.7768
52 4 1 0.04 0.07 3.5816 2.86
53 4 2 0.03 0.42 3.8948 2.9668
54 9 3 0.1 0.29 4.0324 2.9924
55 8 2 0.11 0.06 4.1048 3.0496
56 9 1 0.83 0.01 4.2916 3.0064
57 7 0 0.23 0 4.1568 3.158
58 14 0 0.17 0 4.71 3.3724
59 14 4 0.24 0.1 4.81 3.3372
60 11 1 0.22 0.01 4.7268 3.4224
61 18 2 1.26 0.02 5.3032 3.5216
62 10 2 0.26 0.01 5.0964 3.5032
63 17 7 0.16 0.08 5.3016 3.5728
64 15 6 0.57 0.46 5.2388 3.6504
65 18 7 0.1 0.14 5.548 3.6604

100 36 0 0.31 0 27.35 4.66

The first column records the number of jobs n. The second and third columns show the number of instances for which
ACO and Algorithm H could not find an optimal solution, respectively. The relative errors of ACO and Algorithm H

are shown in columns 4 and 5, respectively, while the average numbers of iterations needed to solve the instances by
ACO and Algorithm H are shown in the last two columns, respectively.

For n=100, we considered 617 instances, whereas for each n, 4�n�70, we considered 2500 instances. In the table
only rows for which the number of non-optimal solutions greater than 0 are shown.

The results show that both ACO and Algorithm H could produce an optimal solution for more than 99% of the
instances. Algorithm H could not find an optimal solution for less than 0.44% of the total number of instances
considered, and its relative error was less than 0.46%. On the other hand, the relative error of ACO was up to 1.26%
for n= 61, and the number of instances for which ACO could not optimally solve was greater than 1% of the instances
considered for n = 70. We thus expect that the superiority of the performance of Algorithm H over ACO will become
more significant as n grows.

6. Computational results for instances of case B-1

In this section we present the computational results of applying ACO and Algorithm H to tackle instances of a
special case B-1 of the problem 1|| ∑ Tj . For this case, we have:{

p1 �p2 � · · · �pn,

d1 �d2 � · · · �dn,

dn − d1 �pn.

(1)
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Table 2
Computational results for instances of case B-1

n Not opt. ACO Not opt H. Rel. ACO Rel. H. Ants ACO Ants H.

7 1 0 0.67 0 1.38 1.044
26 0 3 0 0.01 1.381 1.871
27 0 1 0 0.01 1.429 1.707
31 0 4 0 0.01 1.354 1.929

It was reported in [11] that this case is the “hardest” for Algorithm A, i.e., it requires frequent execution of Elimination
Rules 1–4. Instances of this case were also called “hard” instances in [6]. This case has been shown to be NP -hard
in the ordinary sense [12]. It has been shown that the exact algorithms proposed in [4,8–10] for this case each have a
running time of O(2n/2).

We tested instances with n = 4, . . . , 100 jobs. For each n, we considered 1000 instances of case B-1. The values of
pj were randomly sampled from the uniform distribution [1, 500], while the due dates dj were randomly chosen from
the uniform distribution [X, X + pn], where X ∈ [0,

∑
pj − pn].

The experimental approach discussed in Section 4 was applied to treat the instances in this section. We used the
exact Algorithm B-1 [8] modified for integer instances to obtain the optimal solutions, which has a running time of
O(n

∑
pj ). The results are presented in Table 2. In the table only rows for which the number of non-optimal solutions

is greater than 0 and the relative error is greater than 0.01% are shown.
The results show that ACO found the optimal solutions for all of the instances considered, except for n = 7, while

Algorithm H found the optimal solutions for 99% of the instances. However, the relative error of Algorithm H was
no larger than 0.01%. In general, both algorithms required fewer than three ants (iterations) to produce the optimal
solutions. Therefore, we may conclude that the performance of Algorithm H is only marginally inferior to that of ACO.

7. Computational results for canonical DL-instances

In this section we consider another NP -hard case, known as the canonical DL-instances [1], of the problem 1|| ∑ Tj .
It has also been shown that the exact algorithms presented in [4,8,9] for the canonical DL-instances each have a running
time of O(2n/2).

First, consider the even–odd partition (EOP) problem: Given a set of 2n∗ positive integers B = {b1, b2, . . . , b2n∗},
where bi �bi+1, i=1, 2, . . . , 2n∗−1, is there a partition of B into two subsets B1 and B2 such that

∑
bi∈B1

bi=∑
bi∈B2

bi ,
and such that for each i = 1, . . . , n, B1 (and hence B2) contains exactly one number of {b2i−1, b2i}?

We generated instances of EOP for n∗ = 4, . . . , 40. Let �i = b2i−1 − b2i , i = 1, . . . , n∗. The values of �i were
randomly chosen from the uniform distribution [1, 50]. For each n∗ and each set of �i values generated, we constructed
an instance of EOP as follows: b2n∗ := 1, b2n∗−1 := b2n∗ + �∗

n, b2i := b2i+1 + 1, b2i−1 := b2i + �i , i := 1, ..., n∗ − 1.
We then converted the EOP instance to a canonical DL-instance for each n∗, with the job set N = {V1, V2, . . . ,

V2n∗ , W1, W2, . . . , Wn∗+1}, where |N | = 3n∗ + 1. Let b = (4n∗ + 1)�. Denote � = 1
2

∑n∗
i=1(b2i−1 − b2i ). Let a2i−1 =

b2i−1 + (9n∗2 + 3n∗ − i + 1)� + 5n∗(b1 − b2n∗) and a2i = b2i + (9n∗2 + 3n − i + 1)� + 5n(b1 − b2n∗), i = 1, . . . , n∗.
Define the job due dates and processing times as follows:

pVi
= ai, i = 1, 2, . . . , 2n∗,

pWi
= b, i = 1, 2, . . . , n∗ + 1,

dVi
=

{
(j − 1)b + � + (a2 + a4 + ... + a2i ) if i = 2j − 1,

dV2j−1 + 2(n∗ − j + 1)(a2j−1 − a2j ) if i = 2j, j = 1, 2, . . . , n∗,

dWi
=

{
ib + (a2 + a4 + ... + a2i ) if i = 1, 2, . . . , n∗,
dWn∗ + � + b if i = n∗ + 1.

For this case we used the exact pseudo-polynomial Algorithm B-1 canonical [12] for canonical-DL instances to
obtain the optimal solutions for the instances considered, which has a running time of O(n∗�). The experimental
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Table 3
Computational results for canonical DL-instances

n Not opt. ACO Not opt H. Rel. ACO Rel. H. Ants ACO Ants H.

16 1 0 < 0.01 0 4.92 3.4
19 2 3 < 0.01 < 0.01 10.3 11.64
22 2 2 < 0.01 < 0.01 7.66 8.22
25 4 4 < 0.01 < 0.01 16.28 16.44
28 6 4 < 0.01 < 0.01 19.2 15.24
31 0 3 0 < 0.01 8.16 15.66
34 1 1 < 0.01 < 0.01 8.8 9.44
37 1 0 < 0.01 0 7.12 7.58

Table 4
Computational results for canonical DL-instances (without local search)

n Not opt. ACO Not opt H. Rel. ACO Rel. H. Ants ACO Ants H.

13 50 26 13.46 0.01 100 58.2
16 50 35 0.77 0.03 100 73.82
19 50 43 3.29 2.78 100 88.06
22 50 46 2.86 2.05 100 93.52
25 50 49 2.03 1.58 100 98.02
28 50 50 2.97 2.49 100 100
31 50 49 3.48 2.02 100 98.48
34 50 49 2.85 1.67 100 98.4
37 50 49 1.71 1.41 100 98.02

settings followed those discussed in Section 4. For each n∗, where n∗ = 4, . . . , 40, the number of jobs was n = 3n∗ +
1 = 13, 16, . . . , 121, and we considered 50 instances. Both Algorithm H and ACO were applied to deal with the
instances. The results are presented in Table 3. In the table only rows for which the number of non-optimal solutions
is greater than 0 are shown.

The performance of both algorithms was largely comparable. It is noted that when 3n∗ + 1 = 25 or 28, the number
of instances for which the algorithms could not find an optimal solution was greater than 10% of the instances tested.
But the relative errors were all less than 0.01%, and the number of iterations required to obtain the optimal solutions
were all fewer than 20.

It can be assumed that the chance of finding an optimal canonical DL-schedule is approximately O(1/2n∗
) [1]. This

is because for each pair of V2i−1 and V2i , i = n∗, . . . , 1, there exist two orders with almost identical probabilities:
V2i−1 is processed in position 2i − 1 and V2i in position 3n∗ + 1 − (i − 1) of an optimal schedule, and vice versa.

We repeated the experiments without the 2-opt strategy for both algorithms. The results are shown in Table 4. In the
table only rows for which the number of non-optimal solutions is greater than 0 are shown.

The results show that both algorithms achieved a “good” performance only with the aid of local search. But the number
of local search executed may be exponential. For 3n∗ + 1�40, none of the solutions obtained by both algorithms was
optimal.

8. Conclusions

Our computational results show that Algorithm H performs better than ACO for the instances generated by the
schema of [5]. For 99.5% of the instances considered for this case, Algorithm H found the optimal solutions. The
relative error was less than 0.5%, and the average number of iterations needed was fewer than 5 (i.e., 5 ants).

For the “hard” instances of case B-1, Algorithm H performs marginally inferior to ACO. But Algorithm H found
the optimal solutions for 99% of the instances considered, and its relative error was no larger than 0.01%.

For the NP -hard case of [1], both ACO and Algorithm H perform comparably and could achieve a “good” perfor-
mance only with the aid of local search.
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