
Computers and Mathematics with Applications 58 (2009) 619–631

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

A graphical realization of the dynamic programming method for solving
NP-hard combinatorial problems
Alexander A. Lazarev a,∗, Frank Werner b
a Institute of Control Sciences of the Russian Academy of Sciences, Profsoyuznaya street 65, 117997 Moscow, Russia
b Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg, PSF 4120, 39016 Magdeburg, Germany

a r t i c l e i n f o

Keywords:
Dynamic programming
Exact algorithm
Graphical algorithm
Partition problem
Knapsack problem

a b s t r a c t

In this paper, we consider a graphical realization of dynamic programming. The concept is
discussed on the partition and knapsack problems. In contrast to dynamic programming,
the new algorithm can also treat problems with non-integer data without necessary
transformations of the corresponding problem. We compare the proposed method with
existing algorithms for these problems on small-size instances of the partition problem
with n ≤ 10 numbers. For almost all instances, the new algorithm considers on average
substantially less ‘‘stages’’ than the dynamic programming algorithm.

Crown Copyright© 2009 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic programming is a general optimization technique developed by Bellman. It can be considered as a recursive
optimization procedure which interprets the optimization problem as a multi-stage decision process. This means that the
problem is decomposed into a number of stages. At each stage, a decision has to be made which has an impact on the
decision to be made in later stages. By means of Bellman’s optimization principle [1], a recursive equation is set up which
describes the optimal criterion value at a given stage in terms of the optimal criterion values of the previously considered
stage. Bellman’s optimality principle can be briefly formulated as follows: Starting from any current stage, an optimal policy
for the subsequent stages is independent of the policy adopted in the previous stages. In the case of a combinatorial problem,
at some stage α sets of a particular size α are considered. To determine the optimal criterion value for a particular subset of
size α, one has to know the optimal values for all necessary subsets of size α − 1. If the problem includes n elements, the
number of subsets to be considered is equal to O(2n). Therefore, dynamic programming usually results in an exponential
complexity. However, if the problem considered is NP-hard in the ordinary sense, it is possible to derive pseudopolynomial
algorithms. The application of dynamic programming requires special separability properties.
In this paper, we give a graphical realization of the dynamic programmingmethodwhich is based on a property originally

given for the single machine total tardiness problem by Lazarev and Werner (see [2], Property B-1). This approach can
be considered as a generalization of dynamic programming. The new approach often reduces the number of ‘‘states’’ to
be considered in each stage. Moreover, in contrast to dynamic programming, it can also treat problems with non-integer
data without necessary transformations of the corresponding problem. However, the complexity remains the same as for a
problem with integer data in terms of the ‘‘states’’ to be considered.
In the following, we consider the partition and knapsack problems for illustrating the graphical approach. Both these

combinatorial optimization problems are NP-hard in the ordinary sense (see, e.g. [3–6]). Here, we consider the following
formulations of these problems.
Partition problem: Given is an ordered set B = {b1, b2, . . . , bn} of n positive numbers with b1 ≥ b2 ≥ · · · ≥ bn. We wish to
determine a partition of the set B into two subsets B1 and B2 such that

∗ Corresponding author.
E-mail addresses: jobmath@mail.ru (A.A. Lazarev), frank.werner@mathematik.uni-magdeburg.de (F. Werner).

0898-1221/$ – see front matter Crown Copyright© 2009 Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2009.06.008

http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:jobmath@mail.ru
mailto:frank.werner@mathematik.uni-magdeburg.de
http://dx.doi.org/10.1016/j.camwa.2009.06.008

620 A.A. Lazarev, F. Werner / Computers and Mathematics with Applications 58 (2009) 619–631∣∣∣∣∣∣
∑
bi∈B1

bi −
∑
bi∈B2

bi

∣∣∣∣∣∣→ min, (1)

where B1 ∪ B2 = B and B1 ∩ B2 = �.
One-dimensional knapsack problem: One wishes to fill a knapsack of capacity A with items having the largest possible total
utility. If any item can be put at most once into the knapsack, we get the binary or 0 − 1 knapsack problem. This problem
can be written as the following integer linear programming problem:

f (x) =
n∑
i=1

cixi → max

n∑
i=1

aixi ≤ A;

0 < ci, 0 < ai ≤ A, i = 1, 2, . . . , n;
n∑
i=1

ai > A;

xi ∈ {0, 1}, i = 1, 2, . . . , n.

(2)

Here, ci gives the utility and ai the required capacity of item i, i = 1, 2, . . . , n. The variable xi characterizes whether item
i is put into the knapsack or not.
We note that problems (1) and (2) are equivalent if

ci = ai = bi for i = 1, 2, . . . , n and A =
1
2

n∑
j=1

bj.

For the application of the graphical algorithm, the problem data may be arbitrary non-negative real numbers.
This paper is organized as follows. In Section 2, we consider the partition problem. First we explain the concept of

the graphical algorithm for this problem. Then we describe in Section 2.2 how the number of intervals (or points) to be
considered by the graphical algorithm can be reduced. The algorithm is illustrated by an example in Section 2.3. Then we
prove the optimality of the given algorithm and discuss some complexity aspects in Section 2.4. Computational results
for small-size instances are given in Section 2.5. In Section 3, we consider the knapsack problem. In Section 3.1, a brief
illustration of the application of dynamic programming to the knapsack problem is given. In Section 3.2, the graphical
algorithm is applied to the knapsack problem. An illustrative example for the graphical algorithm is given in Section 3.3.
Some complexity aspects are discussed in Section 3.4. Finally, we give some concluding remarks in Section 4.

2. Partition problem

2.1. Graphical algorithm

First, we explain the graphical realization of the dynamic programming method for the partition problem. We describe
the approach for an arbitrary step (or stage) α: first for α = 1 and then for α = 2, 3, . . . , n. In each step, we determine
function Fα(t) and best partitions (B1α(t); B

2
α(t)) for the set {b1, b2, . . . , bα} in dependence on parameter t by means of the

results of the previous step α− 1. The value Fα(t) describes the minimal function value (1) for including b1, b2, . . . , bα into
one of the current subsets B1 or B2 subject to the constraint that in steps α+ 1, α+ 2, . . . , n, altogether t more units of the
numbers bα+1, bα+2, . . . , bn are included into the corresponding set B1 than into the corresponding set B2. If t is negative, it
means that t more units are included into set B2 in the next steps.
In the initial step α = 1, we have

F1(t) =



−(t + b1), if −
n∑
j=1

bj ≤ t < −b1;

t + b1, if − b1 ≤ t < 0;
−(t − b1), if 0 ≤ t < b1;

t − b1, if b1 ≤ t ≤
n∑
j=1

bj

and

(B11(t); B
2
1(t)) =


(b1;�), if −

n∑
j=1

bj ≤ t < 0;

(�; b1), if 0 ≤ t ≤
n∑
j=1

bj.

A.A. Lazarev, F. Werner / Computers and Mathematics with Applications 58 (2009) 619–631 621

In order to perform an arbitrary step α, 2 ≤ α ≤ n, we remind that for each t from the interval

In1 =

[
−

n∑
j=1

bj,
n∑
j=1

bj

]
,

the sets B1α−1(t) and B
2
α−1(t) describe a best partition of the firstα−1 numbers b1, b2, . . . , bα−1 in dependence on parameter

t . Moreover, let B
1
α−1 and B

2
α−1 describe an arbitrary but fixed partition of the first α − 1 numbers. Thus, in step α − 1, we

have

B1α−1(t) ∪ B
2
α−1(t) = {b1, b2, . . . , bα−1} = B

1
α−1 ∪ B

2
α−1 for all t ∈ In1 .

Moreover, from step α − 1, we know the function values

Fα−1(t) =

∣∣∣∣∣∣
∑

bj∈B1α−1(t)

bj + t −
∑

bj∈B2α−1(t)

bj

∣∣∣∣∣∣ .
Function Fα−1(t) is piecewise-linear and, as we see later, it suffices to store those break points which are a local minimum
of this function:

tα−11 , tα−12 , . . . , tα−1mα−1 .

We give a more detailed discussion later when speaking about the properties of function Fα(t) determined in step α.
In step α, 2 ≤ α ≤ n, the current number bα is included into one of the sets B

1
α−1 or B

2
α−1. To this end, the algorithm

considers the following functions:

F 1α(t) =

∣∣∣∣∣∣
∑

bj∈B1α−1(t+bα)

bj + t + bα −
∑

bj∈B2α−1(t+bα)

bj

∣∣∣∣∣∣ ,
F 2α(t) =

∣∣∣∣∣∣
∑

bj∈B1α−1(t−bα)

bj + t − bα −
∑

bj∈B2α−1(t−bα)

bj

∣∣∣∣∣∣ .
Then, we construct function

Fα(t) = min {F 1α(t), F
2
α(t)}

= min
{
Fα−1(t + bα), Fα−1(t − bα)

}
,

for t ∈ In1 . Notice that we have shifted function Fα−1(t) to the left and to the right, respectively, by bα units.
Next, we determine B1α(t) and B

2
α(t) according to the best inclusion of number bα into one of the possible sets. More

precisely, for t ∈ In1 , if F
1
α(t) ≤ F

2
α(t), then

B1α(t) = B
1
α−1(t + bα) ∪ {bα} and B2α(t) = B

2
α−1(t + bα)

(i.e. bα is included into the first set), otherwise

B1α(t) = B
1
α−1(t − bα) and B2α(t) = B

2
α−1(t − bα) ∪ {bα}

(i.e. bα is included into the second set). This is analogous to the classical dynamic programming algorithm.
Next, we discuss some properties of function Fα(t). We have already mentioned that function Fα−1(t) is known from the

previous step by storing the local minimum break points

tα−11 , tα−12 , . . . , tα−1mα−1 .

To describe Fα(t), we use function Fα−1(t − bα) for

t ∈ BPα−1 := {tα−11 , tα−12 , . . . , tα−1mα−1},

i.e. at the points

tα−11 − bα, . . . , tα−1i − bα, . . . , tα−1mα−1 − bα,

and function Fα−1(t + bα) for t ∈ BPα−1, i.e. at the points

tα−11 + bα, . . . , tα−1i + bα, . . . , tα−1mα−1 + bα.

622 A.A. Lazarev, F. Werner / Computers and Mathematics with Applications 58 (2009) 619–631

This givesmα ≤ 2mα−1 points, and we will demonstrate that it suffices to consider only these points in step α. We arrange
these numbers in non-decreasing order in a set BPα , i.e. we have

BPα := {tα1 , t
α
2 , . . . , t

α
mα }

with tα1 < t
α
2 < · · · < t

α
mα (note that possibly a part of points may occur repeatedly but each of such points need to be

considered only once so thatmα < 2mα−1 is possible).
Considering now the intervals

[tαj , t
α
j+1), j = 1, 2, . . . ,mα − 1,

we compare the graphs of both functions Fα−1(t+ bα) and Fα−1(t− bα). In each of these intervals, the function Fα−1(t+ bα)
(and, correspondingly, Fα−1(t − bα)) is defined by the same single equation of a piecewise-linear function. Note that two
piecewise-linear functions |t − a| and |t − b| intersect (or coincide) in this interval at most at one point. Moreover, the
piecewise-linear function Fα(t) obeys the equation Fα(t) =

∣∣t − tαi ∣∣ in the interval[
tαi +

tαi−1 − t
α
i

2
, tαi +

tαi+1 − t
α
i

2

)
, i = 2, 3, . . . ,mα − 1,

i.e. its graph touches the t-axis at the point tαi . Thismeans that these break points are localminimumpoints (in the following
denoted as min-break points) and also the zeroes of function Fα(t). As a consequence from the above discussion, function
Fα(t) consists of segments having alternately the slopes−1 and+1.
Moreover, the same fixed partition

(
B
1
α; B

2
α

)
is chosen for all t from the whole interval[

tαi +
tαi−1 − t

α
i

2
, tαi +

tαi+1 − t
α
i

2

)
,

that is, we have

Bkα(t
′) = Bkα(t

′′) for all t ′, t ′′ ∈
[
tαi +

tαi−1 − t
α
i

2
, tαi +

tαi+1 − t
α
i

2

)
for k = 1, 2 and i = 2, 3, . . . ,mα − 1. The local maximum break points of function Fα(t) characterize the values of
parameter t , where the chosen partition (B

1
α; B

2
α) may change (notice that function Fα(t) has alternately local minimum

and local maximum break points).
Thus, it suffices to store the min-break points of function Fα(t)

tα1 , t
α
2 , . . . , t

α
mα ,

together with the corresponding best partial partitions in a tabular form, i.e.mα ≤ 2 ·mα−1 points are considered in step α.
Finally, the partition (B1n(0); B

2
n(0)) obtained in the last step α = n is an optimal solution of the problem. The optimal

objective function value is equal to Fn(0).

2.2. Reduction of the considered intervals

Next, we describe how the intervals (and points) to be considered can be reduced. We remind that the numbers in set B
are arranged in non-increasing order: b1 ≥ b2 ≥ · · · ≥ bn. Moreover, without loss of generality, we assume in the rest of
Section 2 that

b1 <
n∑
j=2

bj

(otherwise, we have a trivial case and B1 = {b1} and B2 = {b2, b3, . . . , bn} is obviously an optimal solution).
Since in step n, one has to calculate the value of the objective function and to determine the corresponding partition only

at point t = 0, it suffices to calculate in step n−1 the function values Fn−1(t) only at the points t ∈ Inn = [−bn, bn]. Similarly,
in step n − 2, it suffices to calculate the function values Fn−2(t) in the interval Inn−1 = [−bn − bn−1, bn + bn−1], and so on.
Consequently, it suffices to consider in step α only the interval

Inα+1 =

[
−

n∑
j=α+1

bj,
n∑

j=α+1

bj

]
instead of the interval

In1 =

[
−

n∑
j=1

bj,
n∑
j=1

bj

]
.

If one takes into account that Fα(t), α = 1, 2, . . . , n, is an even function, it suffices to store only half of the min-break
points and the corresponding best partitions in a table for a practical realization of the algorithm.

A.A. Lazarev, F. Werner / Computers and Mathematics with Applications 58 (2009) 619–631 623

Fig. 1. Function values F1(t).

Fig. 2. Transformation of the function F1(t).

2.3. Example

Let us consider an example with n = 4 and B = {100, 70, 50, 20}. Note that the numbers are given in non-increasing
order.
Step 1. We make the arrangement for b1 = 100. We have to consider the two points 0 − 100 and 0 + 100. Due to∑n
j=1 bj = 240, the function values are compared for the three intervals [−240,−100), [−100, 100), and [100, 240]. Taking

into account the described reduction of the intervals, it suffices to consider only the intervals [−140,−100), [−100, 100)
and [100, 140] due to

∑4
j=2 bj = 140.

For the interval [−140, 0), we get the optimal partition B11(t) = {b1}, B
2
1(t) = �; and for the interval [0, 140], we get

the optimal partition B11(t) = �, B
2
1(t) = {b1}, i.e. in the max-break point t = 0 the optimal partition changes. The results

of the calculations and function F1(t) are shown in Fig. 1. The following information is stored:

t −100 100

(B11(t); B
2
1(t)) (b1;�) (�; b1)

Remember that it suffices to store only ‘‘half’’ of the table and thus, one column can be dropped.
Step 2.Wemake the arrangement for b2 = 70.We have to consider the four points−100−70 = −170,−100+70 = −30,
100−70 = 30 and 100+70 = 170. Thus, in our calculations we have to take into account the five intervals [−240,−170),
[−170,−30), [−30, 30), [30, 170) and [170, 240]. Again, due to the reduction of the intervals it suffices to consider only
three intervals: [−70,−30), [−30, 30), and [30, 70] due to

∑4
j=3 bj = 70. Now we get the optimal partition B

1
2(t) =

{b1}, B22(t) = {b2} for all t from the interval [−70, 0) and the optimal partition B
1
2(t) = {b2}, B

2
2(t) = {b1} for all t from the

interval [0, 70]. In fact, we do not consider thewhole intervals, but immediately construct the function F2(t) by including the
points t = −30 and t = 30 and their corresponding partitions into the table. The partitions B12(t) = {b1}, B

2
2(t) = {b2} and

B12(t) = {b2}, B
2
2(t) = {b1} correspond to the points t = −30 and t = 30, respectively. Fig. 2 illustrates the transformation

of function F1(t) to the functions F 12 (t) and F
2
2 (t).

The results of the calculations and function F2(t) are shown in Fig. 3 (for a better illustration, we give function F2(t) not
only for the interval [−70, 70] but for a larger interval including all min-break points). To execute the next step, it suffices
to store the information only at the point t = 30 (note that point t = −30 can be disregarded):

t 30

(B12(t); B
2
2(t)) (b2; b1)

624 A.A. Lazarev, F. Werner / Computers and Mathematics with Applications 58 (2009) 619–631

Fig. 3. Function F2(t).

Fig. 4. Function F3(t).

Step 3. We make the arrangement for the number b3 = 50. We have to consider the four points −30 − 50 = −80,
−30+ 50 = 20, 30− 50 = −20 and 30+ 50 = 80. Due to the possible interval reduction, it suffices to consider only one
interval: [−20, 20] due to

∑4
j=4 bj = 20. The results of the calculations and function F3(t) are given in Fig. 4. The following

information is stored for the point t = 20 (point t = −20 can be disregarded):

t 20

(B13(t); B
2
3(t)) (b1; b2, b3)

We have again only one max-break point t = 0 in the interval [−20, 20].
Step 4. We obtain the two optimal ‘‘symmetric’’ solutions: B14(0) = {b1, b4} = {100, 20}, B

2
4(0) = {b2, b3} = {70, 50} and

B14(0) = {b2, b3} = {70, 50}, B
2
4(0) = {b1, b4} = {100, 20}.

Thus, we have considered 2 (t = −100 and t = 100)+2(t = −30 and t = 30)+2(t = −20 and t = 20)+1(t = 0) = 7
points (using that functions Fα(t) are even, we can disregard 3 points whereas the dynamic programming algorithm [1]
(with a reduction of intervals) would require 281+ 141+ 41+ 1 = 464 points. The best known exact partition algorithm
Balsub [6, p. 83] requires O(nbmax) operations and finds a solution with 2 · (n/2) · (bmax + 1) = 404 operations, where
bmax = max1≤i≤n {bi} = 100.

2.4. Proof of optimality and some complexity aspects

First, we prove that the graphical algorithm finds an optimal solution.

Theorem 1. In step α = n, the graphical algorithm determines an optimal partition B1n(0) and B
2
n(0).

Proof. We show that the algorithm determines an optimal partition B1α(t) and B
2
α(t) for the subset {b1, b2, . . . , bα} for each

point

t ∈ Inα+1 =

[
−

n∑
j=α+1

bj,
n∑

j=α+1

bj

]
in each step α = 1, 2, . . . , n. For α = n, we define Inn+1 := {0}. The proof is done by induction.
(1) Obviously, in step α = 1 we get the optimal partition B11(t) and B

2
1(t) for each point

t ∈ In2 =

[
−

n∑
j=2

bj,
n∑
j=2

bj

]
.

A.A. Lazarev, F. Werner / Computers and Mathematics with Applications 58 (2009) 619–631 625

(2) Let us assume that in step α − 1, 2 ≤ α ≤ n, we have found some optimal partition B1α−1(t) and B
2
α−1(t) for each

point

t ∈ Inα =

[
−

n∑
j=α

bj,
n∑
j=α

bj

]
.

(3) We show that in step α, the algorithm also provides an optimal partition B1α(t) and B
2
α(t) for each point

t ∈ Inα+1 =

[
−

n∑
j=α+1

bj,
n∑

j=α+1

bj

]
.

Let us assume the opposite, i.e. for some point t ∈ Inα+1, the algorithm has constructed two partitions(
B1α−1(t + bα) ∪ {bα}; B

2
α−1(t + bα)

)
and (

B1α−1(t − bα); B
2
α−1(t − bα) ∪ {bα}

)
from which the algorithm selects the partition having the value

Fα(t) = min{F 1α(t), F
2
α(t)}.

Now assume that this partition is not optimal, i.e. we assume that for this point t , there exists a partition (B
1
α; B

2
α) such

that

min


∣∣∣∣∣∣

∑
bj∈B1α−1(t+bα)

bj + t + bα −
∑

bj∈B2α−1(t+bα)

bj

∣∣∣∣∣∣ ,
∣∣∣∣∣∣

∑
bj∈B1α−1(t−bα)

bj + t − bα −
∑

bj∈B2α−1(t−bα)

bj

∣∣∣∣∣∣


>

∣∣∣∣∣∣∣
∑
bj∈B

1
α

bj + t −
∑
bj∈B

2
α

bj

∣∣∣∣∣∣∣
is satisfied. Let bα ∈ B

1
α . Then∣∣∣∣∣∣

∑
bj∈B1α−1(t+bα)

bj + t + bα −
∑

bj∈B2α−1(t+bα)

bj

∣∣∣∣∣∣ >
∣∣∣∣∣∣∣
∑

bj∈B
1
α\{bα}

bj + t + bα −
∑
bj∈B

2
α

bj

∣∣∣∣∣∣∣ ,
but the partition (B1α−1(t + bα); B

2
α−1(t + bα)) obtained in step α − 1 for the point t + bα is not optimal since the partition

(B
1
α \ {bα}; B

2
α) has a better objective function value which yields a contradiction.

A similar proof can be given for the case bα ∈ B
2
α. �

Next, we give some comments on the complexity of the suggested graphical algorithm.
(1) There exists a class of integer instances, where the number of min-break points grows exponentially. For example,

let B = {b1, b2, . . . , bn} = {M,M − 1,M − 2, . . . , 1, 1, . . . , 1}, where M > 0 is a sufficiently large number and there are
M(M + 1)/2 + 1 numbers 1 contained in set B, that is, we have n = M + M(M + 1)/2. The complexity of the graphical
algorithm for this instance is O(2M).
(2) There exists a class of non-integer instances B = {b1, b2, . . . , bn}, where the number of min-break points grows

exponentially, too. For example, if there exists no set of numbers λi = ±1, i = 1, 2, . . . , n, such that λ1b1+ · · · + λnbn = 0
holds, then the number of min-break points in this example grows as O(2n).
Next, we briefly discuss the situation when the problem data are changed as follows. We consider an instance with

b′j = Kbj + εj, where |εj| � K , j = 1, 2, . . . , n, and K > 0 is a sufficiently large constant. In this case, the complexity of the
dynamic programming algorithm is O(Kn

∑
bj). For the Balsub [6] algorithm with a complexity of O(nbmax), this ‘‘scaling’’

also leads to an increase in the complexity by factorK . However, the complexity of the graphical algorithm remains the same.
In general, the graphical algorithmdetermines an optimal solutionwith the samenumber of operations for all points of some
cone in the n-dimensional space, provided that the parameters of the instance are represented as a point (b1, b2, . . . , bn) in
the n-dimensional space.

626 A.A. Lazarev, F. Werner / Computers and Mathematics with Applications 58 (2009) 619–631

Table 1
Results for the instances of the first group.

1 2 3 4 5 6 7 8 9 10

4 123410 9 307 328 20 443 640 2 63684
5 1086008 16 444 512 40 564 1000 2 337077
6 8145060 29 542 738 60 687 1440 4 1140166
7 53524680 48 633 1004 140 811 1960 11 2799418
8 314457495 76 725 1312 212 933 2560 23 5348746
9 1677106640 115 814 1660 376 1053 3240 83 8488253
10 8217822536 168 905 2050 500 1172 4000 416 11426171

Table 2
Results for the instances of the second group.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

4 8 1463 1591 16 2196 3080 4 2 6 1310 1604 20 2207 3200 10504 8970
5 16 2191 2490 40 2797 44675 8 3 17 2482 3102 40 2811 5000 6641 3642
6 29 2700 3586 60 3401 6570 12 4 26 2884 3932 60 3418 7176 3000 3170
7 50 3145 4881 140 4006 8729 15 6 54 3353 6794 136 4029 9800 1101 88
8 87 3600 6362 216 4617 11056 19 8 82 3849 7039 220 4645 12112 333 377
9 149 4050 8059 464 5241 13644 52 21 144 4109 11803 476 5232 16200 86 1
10 245 4499 9930 656 5815 16730 24 10 240 4732 12410 676 5854 18840 18 3

2.5. Computational results

Two algorithms described in [6] (namely the standard dynamic programming algorithm and the Balsub algorithm) have
been compared with the above graphical algorithm. The complexity of the dynamic programming algorithm is determined
by the total number of states to be considered. For the graphical algorithm, the complexity is determined by the number∑n

α=1mα of min-break points that have to be stored. In the following, we always give the total numbers of min-break
points obtained within the interval In1 (i.e. without a reduction of the intervals). Notice that, using the reduction of intervals
described in Section 2.2, these numbers and thus the complexity will even reduce further. We have run two groups of
experiments. Results of the experiments are presented in Tables 1 and 2.
In the first group, we have generated instances for n = 4, 5, . . . , 10, where all integer values of the data of the problem

satisfy the inequalities 40 ≥ b1 ≥ b2 ≥ · · · ≥ bn ≥ 1. The results obtained are given in Table 1, where the first column
shows the value of n, the second column gives the total number of instances solved for the particular value of n (this
number is equal to the number of possibilities of choosing n numbers simultaneously from bmax + n − 1 numbers, where
bmax = 40). Columns three to five give the average complexity of the graphical, the Balsub and the dynamic programming
algorithms, respectively. Columns six to eight present the maximal complexity of the graphical, the Balsub and the dynamic
programming algorithms, respectively. The ninth column gives the number of instances for which the complexity of the
Balsub algorithm is smaller than that of the graphical algorithm, and the tenth column gives the number of instances for
which the complexity of the dynamic programming algorithm is smaller than that of the Balsub algorithm. For all instances,
the complexity of the graphical algorithm is essentially smaller than the complexity of the dynamic programming algorithm.
In the second part of experiments, we generated for n = 4, 5, . . . , 10 groups of 20000 instances with uniformly chosen

numbers bi ∈ [1, 200], i = 1, 2, . . . , n. Then 1000 · n instances {b′1, b
′

2, . . . , b
′
n} were solved for each instance in the

n-dimensional space in the neighborhood of point (b1, b2, . . . , bn) such that each component can differ by at most r =
100+ n so that

bi − (100+ n) ≤ b′i ≤ bi + (100+ n), i = 1, 2, . . . , n.

If an instance with a large number of min-break points (which characterizes the complexity of the graphical algorithm) to
be considered occurs in the neighborhood of the current instance data, then we ‘‘pass to this instance’’ and find an instance
with a large complexity of the algorithm in the new neighborhood of this instance. The process stops when one fails to find
‘‘more difficult instances’’ in the neighborhood. The results obtained are given in Table 2.
Column one gives the value of n, columns two to four give the average complexity of the graphical, Balsub, and the

dynamic programming algorithms, respectively, for the ‘‘initial instance’’. Columns five to seven present the maximal
complexity of the algorithm for the ‘‘initial instance’’. Columns eight and nine present the maximal and average numbers
of passages from the ‘‘initial to the final instance’’ in the graphical algorithm. Columns ten to twelve show the average
complexity of the algorithms under consideration at the ‘‘final instances’’. Columns thirteen to fifteen show the maximal
complexity of the algorithms considered at the ‘‘final instances’’. Finally, columns sixteen and seventeen give the numbers
of instances for which the complexity of the dynamic programming algorithm is smaller than that of the Balsub algorithm
at the initial and final instances, respectively.
Among all ‘‘initial’’ and ‘‘final’’ instances, there were only 38 instances with n = 4 and two instances with n = 5 among

the ‘‘final’’ instances, where the graphical algorithm had to consider more states (i.e. min-break points) than the Balsub
algorithm.

A.A. Lazarev, F. Werner / Computers and Mathematics with Applications 58 (2009) 619–631 627

Table 3
Application of the dynamic programming algorithm.

t g1(t) x(t) g2(t) x(t) g3(t) x(t) g4(t) x(t)

0 0 (0,,,) 0 (0, 0,,) 0 (0, 0, 0,) 0 (0, 0, 0, 0)
1 0 (0,,,) 0 (0, 0,,) 0 (0, 0, 0,) 0 (0, 0, 0, 0)
2 5 (1,,,) 5 (1, 0,,) 5 (1, 0, 0,) 5 (1, 0, 0, 0)
3 5 (1,,,) 7 (0, 1,,) 7 (0, 1, 0,) 7 (0, 1, 0, 0)
4 5 (1,,,) 7 (0, 1,,) 7 (0, 1, 0,) 7 (0, 1, 0, 0)
5 5 (1,,,) 12 (1, 1,,) 12 (1, 1, 0,) 12 (1, 1, 0, 0)
6 5 (1,,,) 12 (1, 1,,) 12 (1, 1, 0,) 12 (1, 1, 0, 0)
7 5 (1,,,) 12 (1, 1,,) 12 (1, 1, 0,) 12 (1, 1, 0, 0)
8 5 (1,,,) 12 (1, 1,,) 13 (0, 1, 1,) 13 (0, 1, 1, 0)
9 5 (1,,,) 12 (1, 1,,) 13 (0, 1, 1,) 13 (0, 1, 1, 0)

3. Knapsack problem

Recall that in the binary knapsack problem we are given a knapsack with capacity A and n items i = 1, 2, . . . , n with
utility values ci and weights ai:

f (x) =
n∑
i=1

cixi → max

n∑
i=1

aixi ≤ A;

0 < ci, 0 < ai ≤ A, i = 1, 2, . . . , n;
n∑
i=1

ai > A;

xi ∈ {0, 1}, i = 1, 2, . . . , n.

The variable xi characterizes whether item i is put into the knapsack or not.

3.1. Illustration of dynamic programming

The dynamic programming algorithm based on Bellman’s optimality principle [1,5] is considered to be the most efficient
one. It is assumed that all parameters are integer: A; ai ∈ Z+, i = 1, 2, . . . , n. In step α, α = 1, 2, . . . , n, the function values

gα(t) = max
xα∈{0,1}

{
cαxα + gα−1(t − aαxα)

}
, aαxα ≤ t ≤ A,

are calculated for each integer point (i.e. ‘‘state’’) 0 ≤ t ≤ A. Here, we have g0(t) = 0 for all integers t with 0 ≤ t ≤ A. For
each point t , a corresponding best (partial) solution (x1(t), x2(t), . . . , xα(t)) is stored.
The algorithm is illustrated by the example from [7, p. 125–129]:{f (x) = 5x1 + 7x2 + 6x3 + 3x4 → max

2x1 + 3x2 + 5x3 + 7x4 ≤ 9;
xi ∈ {0, 1} , i = 1, . . . , 4.

(3)

The resultswith the dynamic programming algorithm are summarized in Table 3. Therefore, for t = 9,we get the optimal
solution

x(13) = (x1(13), x2(13), x3(13), x4(13)) = (0, 1, 1, 0)

and the corresponding optimal objective function value g4(9) = 13. The complexity of the algorithm is O(nA).

3.2. Graphical approach

We describe the modifications of the graphical algorithm. In an arbitrary step α, 2 ≤ α ≤ n, function gα(t) is now
defined for all real t with 0 ≤ t ≤ A. In particular, gα(t) is a step function, i.e. it is a discontinuous function with jumps. We
assume that the function values gα−1(tj) = fj, j = 1, 2, . . . ,mα−1 are known from the previous step α−1. Here, t1 is the left
boundary point to be considered and t2, t3, . . . , tmα−1 are the jump points of function gα−1(t) from the interval [0, A]. These
function values can be stored in a tabular form as follows:

t t1 t2 . . . tmα−1
g(t) f1 f2 . . . fmα−1

628 A.A. Lazarev, F. Werner / Computers and Mathematics with Applications 58 (2009) 619–631

As a consequence, for t ∈ [tj, tj+1), we have gα−1(t) = fj for all j = 1, 2, . . . ,mα−1 − 1. Note that t1 = 0 and f1 = 0 for all
α = 1, 2, . . . , n. In the initial step α = 1, we get

g1(t) =
{
0, if 0 ≤ t < a1,
c1, if a1 ≤ t ≤ A.

Similarly to dynamic programming, function gα(t) can be obtained from function gα−1(t) in the following way:
g1(t) = gα−1(t);

g2(t) =
{
g1(t), if 0 ≤ t < aα,
cα + gα−1(t − aα), if aα ≤ t ≤ A.

Then
gα(t) = max{g1(t), g2(t)}

and for the corresponding solution component, we get

xα(t) =
{
1, if g2(t) > g1(t),
0, otherwise.

In the last step (α = n), we have an optimal solution of the problem for each point t ∈ Rwith 0 ≤ t ≤ A:
x(t) = (x1(t), x2(t), . . . , xn(t)).

Consider an arbitrary step α with 2 ≤ α ≤ n, The graph of g2(t) can be constructed from the graph of gα−1(t) by an
‘‘upward’’ shift by cα and a ‘‘right’’ shift by aα . Function g2(t) can be stored in a tabular form as follows:

t t1+ aα t2+ aα . . . tmα−1 + aα
g(t) f1 + cα f2 + cα . . . fmα−1 + cα

The graph of function g1(t) corresponds to that of gα−1(t). Consequently, in order to construct
gα(t) = max{g1(t), g2(t)},

one has to consider at most 2mα−1 points (intervals) obtained by means of the points chosen from the set
{t1, t2, . . . , tmα−1 , t1 + aα, t2 + aα, . . . , tmα−1 + aα}

belonging to the interval [0, A]. The number of points does not exceed A for aj ∈ Z+, j = 1, 2, . . . , n. For the integer example,
the number of intervals considered by the graphical algorithm in step α, therefore, does not exceed min{O(nA),O(nfmax)},
where fmax = max1≤i≤mα {fi}. Thus, the worst case complexity is the same as for the dynamic programming algorithm.

3.3. Example

We use again instance (3) to illustrate the graphical algorithm by an example.
Step 1. As the result, we get the following table:

t 0 2

g1(t) 0 5
x(t) (0,,,) (1,,,)

Step 2. Due to a2 = 3, one has to consider the intervals obtained from the boundary points 0, 2, 0 + 3, 2 + 3 in order to
construct the function g2(t). The dashed lines in Fig. 5 give function g2(t). As the result, we get:

t 0 2 3 5

g2(t) 0 5 7 12
x(t) (0, 0,,) (1, 0,,) (0, 1,,) (1, 1,,)

Step 3. To construct function g3(t), one has to consider the intervals obtained from the boundary points 0, 2, 3, 5, 0+5, 2+
5, 3 + 5 due to a3 = 5. The point 5 + 5 > 9 need not to be considered. The results of the calculations and function g3(t)
are shown in Fig. 6. Several fragments g2(t) (shown by the bright line) are ‘‘absorbed’’ and do not influence the values g3(t).
In the third step of the algorithm, we obtain the following results:

t 0 2 3 5 8

g3(t) 0 5 7 12 13
x(t) (0, 0, 0,) (1, 0, 0,) (0, 1, 0,) (1, 1, 0,) (0, 1, 1,)

Step 4. The results of the calculations and the objective function g4(t) are depicted in Fig. 7. One has to consider the intervals
resulting from the boundary points 0, 2, 3, 5, 8, 0+7, 2+7 in order to construct function g4(t). The points 3+7, 5+7, 8+7

A.A. Lazarev, F. Werner / Computers and Mathematics with Applications 58 (2009) 619–631 629

g

Fig. 5. Functions g1(t) and g2(t) (dashed lines).

g

Fig. 6. Function g3(t).

need not to be considered since they are larger than A = 9. Therefore, it suffices to consider five points. As the result, we
obtain the following table:

t 0 2 3 5 8

g4(t) 0 5 7 12 13
x(t) (0, 0, 0, 0) (1, 0, 0, 0) (0, 1, 0, 0) (1, 1, 0, 0) (0, 1, 1, 0)

3.4. Some complexity aspects of the graphical algorithm

The complexity of the graphical algorithm for solving the knapsack problem is determined by the total number of jump
points

∑n
α=1mα − n to be considered. Notice that there aremα − 1 jump points and the left boundary point in each step α.

630 A.A. Lazarev, F. Werner / Computers and Mathematics with Applications 58 (2009) 619–631

g

Fig. 7. Function g4(t).

For the example presented in Section 3.3, the graphical algorithm stored 12 jump points: 1 in the first step (t = 2), 3 in
the second step (t = 2, 3, 5), 4 in the third step (t = 2, 3, 5, 8), and 4 in the last step (t = 2, 3, 5, 8), too. In contrast, the
dynamic programming algorithm would consider 4× 9 = 36 points. Consequently, for the example at hand the number of
required steps is substantially reduced.
One can see that for the example considered in Section 3.3, in steps 3 and 4 the number of intervals to be considered

is not doubled. One can conjecture that the average number of necessary operations of the graphical algorithm (i.e. total
number of jump points) will be polynomial for a substantial number of instances.
To minimize the number of new intervals to be considered in each step α, the source data must be ordered such that
c1
a1
≥
c2
a2
≥ · · · ≥

cn
an
.

In this case, the functions g2(t)will be ‘‘absorbed’’ more effectively.
Moreover, the graphical algorithm takes the specific properties of the problem indirectly into account. The dynamic

programming algorithm disregards the fact that the least preferable item in the above example is that with number 4 (see
the quotient c4/a4). In the graphical algorithm, one can see that function g2(t) does not affect g4(t) in step 4. Thus, heuristic
considerations can be taken into account and may reduce the complexity of the algorithm.
Moreover, we also note that for ci = 2, i = 1, 2, . . . , n, and n ≥ 4, the example from [4,8]

n∑
i=1

cixi → max

n∑
i=1

2xi ≤ 2
[n
2

]
+ 1

(4)

can be solved by the graphical approach in O(n) operations. In the general case, i.e. for arbitrary ci, i = 1, 2, . . . , n, the
proposed algorithm solves example (4) with O(n log n) operations. An algorithm based on the branch and bound method
needs O(2

n
√
n) operations to solve this example, when ci = 2 for all i = 1, . . . , n.

4. Conclusions

The concept of the graphical approach is a natural generalization of the dynamic programming method. This algorithm
can also treat instances with non-integer data without increasing the number of required operations (in terms of min-break
or jump points to be considered). For small-size problems, it turned out to be superior to the standard algorithms in terms
of the average and maximum complexity, i.e. the average and maximal number of ‘‘states’’ (break points for the partition
problem and jump points for the knapsack problem) to be considered.
Note that the complexity of the graphical algorithm is the same for the following instances of the partition problemwith

n = 3 : {1, 3, 2}; {1, 100, 99} and {10−6, 1, 1− 10−6}. In contrast, the complexity of the dynamic programming algorithm

A.A. Lazarev, F. Werner / Computers and Mathematics with Applications 58 (2009) 619–631 631

strongly differs for the above small instances. In particular, the third instance requires a scaling of the data since integer
‘‘states’’ are considered. However, this considerably increases the complexity.
For further research, it will be interesting to compare the graphical algorithm with the existing dynamic programming-

based algorithms on benchmark problems with larger size. In addition, a comparison with branch and bound algorithms is
of interest, too. More precisely, one can compare the number of nodes of the branching tree with the number of points to
be considered by the graphical algorithm.

Acknowledgments

This work has been supported by DAAD (Deutscher Akademischer Austauschdienst A/08/08679, Ref. 325) and the
program of Presidium of Russian Academy of Sciences N 29 ‘‘The mathematical theory of control’’. The authors would like
to thank Dr. E.R. Gafarov for valuable discussions of the results obtained.

References

[1] R. Bellman, Dynamic Programming, Princeton Univ. Press, Princeton, 1957.
[2] A. Lazarev, F. Werner, Algorithms for special cases of the single machine total tardiness problem and an application to the even-odd partition problem,
Mathematical and Computer Modelling 49 (9–10) (2009) 2061–2072.

[3] A.A. Korbut, J.J. Finkelstein, Discrete Programming, Nauka, Moscow, 1969, (in Russian) (In German: Korbut A.A., Finkelstein, J.J., Diskrete Optimierung,
Berlin: Akademie-Verlag, 1971).

[4] J.J. Finkelstein, Approximative Methods and Applied Problems of Discrete Programming, Nauka, Moscow, 1976, (in Russian).
[5] Ch. Papadimitrou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Prentice Hall, Englewood Cliffs, 1982.
[6] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems, Springer, New York, 2004.
[7] I.Kh. Sigal, A.P. Ivanova, Introduction to Applied Discrete Programming, Fizmatlit, Moscow, 2007, (in Russian).
[8] N.N. Moiseev (Ed.), State-of-the-Art of the Operations Research Theory, Nauka, Moscow, 1979, (in Russian).

	A graphical realization of the dynamic programming method for solving N P -hard combinatorial problems
	Introduction
	Partition problem
	Graphical algorithm
	Reduction of the considered intervals
	Example
	Proof of optimality and some complexity aspects
	Computational results

	Knapsack problem
	Illustration of dynamic programming
	Graphical approach
	Example
	Some complexity aspects of the graphical algorithm

	Conclusions
	Acknowledgments
	References

