
Mathematical Social Sciences 62 (2011) 7–13
Contents lists available at ScienceDirect

Mathematical Social Sciences

journal homepage: www.elsevier.com/locate/econbase

Single machine scheduling problems with financial resource constraints: Some
complexity results and properties
Evgeny R. Gafarov a, Alexander A. Lazarev a,b, Frank Werner c,∗
a Institute of Control Sciences of the Russian Academy of Sciences, Profsoyuznaya str. 65, Moscow, 117997, Russia
b Higher School of Economics – State University, Myasnitskaya str. 20, Moscow, 101990, Russia
c Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg, PSF 4120, 39016 Magdeburg, Germany

a r t i c l e i n f o

Article history:
Received 19 November 2010
Received in revised form
26 April 2011
Accepted 26 April 2011
Available online 5 May 2011

a b s t r a c t

We consider single machine scheduling problems with a non-renewable resource. These types of
problems have not been intensively investigated in the literature so far. For several problems of these
typeswith standard objective functions (namely theminimization ofmakespan, total tardiness, number of
tardy jobs, total completion time andmaximum lateness), we present some complexity results. Particular
attention is given to the problem of minimizing total tardiness. In addition, for the so-called budget
scheduling problem with minimizing the makespan, we present some properties of feasible schedules.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

In a resource-constrained scheduling problem, one wishes to
schedule the jobs in such a way that the given resource constraints
are fulfilled and a given objective function attains its optimal value.
We consider single machine scheduling problems with a non-
renewable resource. For example, money or fuel provides natural
examples of such a non-renewable resource. Such problems
with a non-renewable resource are also referred to as financial
scheduling problems. They are e.g. important for government-
financed organizations. To illustrate, it is usual for government-
financed organizations that they cannot or that they do not want
to begin a project before receiving all necessary payments. For
example, consider a road-building company. Each of the projects
of such a company is the construction of one road. The company
can work only on one project at the same time due to resource
constraints. However, at the beginning of a project, it must buy
materials, it has to pay subcontractors, etc. Usually, the company
wants to be sure that it will receive all money from the government
in time.

The research in the area of scheduling problems with a non-
renewable resource is rather limited. In Carlier and Rinnooy Kan
(1982), some polynomially bounded algorithms are presented for
scheduling problems with precedence constraints (not restricted
to singlemachine problems). Some results for preemptive schedul-
ing of independent jobs on unrelated parallel machines have been

∗ Corresponding author. Tel.: +49 391 6712025; fax: +49 391 6711171.
E-mail addresses: axel73@mail.ru (E.R. Gafarov), jobmath@mail.ru

(A.A. Lazarev), frank.werner@ovgu.de,
frank.werner@mathematik.uni-magdeburg.de (F. Werner).

0165-4896/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.mathsocsci.2011.04.004
presented in Slowinski (1984). Toker et al. (1991) have shown that
the problemofminimizing themakespanwith a unit supply of a re-
source at each time period is polynomially solvable. Janiak (1986);
Janiak et al. (2000) have considered single machine problems, in
which the processing times or the release times depend on the con-
sumption of a non-renewable resource.

Theproblemsunder consideration canbe formulated as follows.
We are given a set N = {1, 2, . . . , n} of n independent jobs that
must be processed on a single machine. Preemptions of a job are
not allowed. Themachine can handle only one job at a time. All the
jobs are assumed to be available for processing at time 0. For each
job j, j ∈ N , a processing time pj ≥ 0 and a due date dj are given. In
addition, we have one non-renewable resource G (e.g. money, fuel,
etc.) and a set of times {t0, t1, . . . , ty}, t0 = 0, t0 < t1 < · · · < ty,
of earnings of the resource. At each time ti, i = 0, 1, . . . , y, we
receive an amount G(ti) ≥ 0 of the resource. For each job j ∈ N , a
consumption gj ≥ 0 of the resource arises when the job is started.
Thus, we have
n−

j=1

gj =

y−
i=0

G(ti).

Let Sj be the starting time of the processing of job j. A schedule
S = (Sj1 , Sj2 , . . . , Sjn) describes the order of processing the jobs:
π = (j1, j2, . . . , jn). Such an order is uniquely determined by
a permutation (sequence) of the jobs of set N . A schedule S =

(Sj1 , Sj2 , . . . , Sjn) is feasible, if the machine processes nomore than
one job at a time and the resource constraints are fulfilled, i.e., for
each i = 1, 2, . . . , n, we have

i−
k=1

gjk ≤

−
∀l:tl≤Sji

G(tl).

http://dx.doi.org/10.1016/j.mathsocsci.2011.04.004
http://www.elsevier.com/locate/econbase
http://www.elsevier.com/locate/econbase
mailto:axel73@mail.ru
mailto:jobmath@mail.ru
mailto:frank.werner@ovgu.de
mailto:frank.werner@mathematik.uni-magdeburg.de
http://dx.doi.org/10.1016/j.mathsocsci.2011.04.004

8 E.R. Gafarov et al. / Mathematical Social Sciences 62 (2011) 7–13
Moreover, we will call the sequence π a schedule as well since
one can compute S = (Sj1 , Sj2 , . . . , Sjn) in O(n) time by applying a
list scheduling algorithm to the sequenceπ . Then Cjk(π) = Sjk +pjk
denotes the completion time of job jk in schedule π . If Cj(π) > dj,
then job j is tardy andwehaveUj = 1, otherwiseUj = 0.Moreover,
let Tj(π) = max{0, Cj(π)− dj} be the tardiness of job j in schedule
π .We denote by Cmax = Cjn(π) themakespan of scheduleπ and by
Lj(π) = Cj(π)− dj the lateness of job j in π . In this paper, notation
{π} denotes the set of jobs contained in sequenceπ . Notation i ∈ π
means i ∈ {π}.

The single machine problem with a non-renewable resource
and the minimization of the makespan Cmax is denoted as 1|NR|
Cmax. The corresponding problem of minimizing total tardiness∑n

j=1 Tj(π) is denoted as 1|NR|
∑

Tj. In a similar way, we use the
notations 1|NR|

∑
Cj, 1|NR|

∑
Uj and 1|NR|Lmax for the problems

of minimizing total completion time, the number of tardy jobs and
maximum lateness.

The rest of this paper is organized as follows. In Section 2, we
present some complexity results for the single machine problems
mentioned above. In Section 3, we consider problem 1|NR|

∑
Tj

and prove that this problem is NP-hard even for the special case
of equal processing times. We also investigate some properties
of further special cases of this problem. The budget scheduling
problem of minimizing the makespan is considered in Section 4.

2. Some complexity results

In Table 1, we summarize the complexity results derived in
this section. In this table, we refer to the partition and 3-partition
problems which are as follows.
Partition problem.

A set N = {b1, b2, . . . , bn} of numbers is given with b1 ≥ b2 ≥

· · · ≥ bn > 0 and bi ∈ Z+, i = 1, 2, . . . , n. Does there exist a
subset N ′

⊆ N such that−
i∈N ′

bi =
1
2

n−
i=1

bi?

It is known that this problem is NP-complete in the ordi-
nary sense (Garey and Johnson, 1979). There exists a pseudo-
polynomial algorithm for this problem (Garey and Johnson, 1979).

The 3-partition problem is to decide whether a given set of
integers can be partitioned into triplets that all have the same sum.
More precisely:
3-Partition problem.

A set N = {b1, b2, . . . , bn} of n = 3m positive integers is given,
where

∑n
i=1 bj = mB and B

4 < bj < B
2 , j = 1, 2, . . . , n. Does there

exist a partition of N intom subsets N1,N2, . . . ,Nm such that each
subset contains exactly three numbers and the sumof the numbers
in each subset is equal, i.e.,−
bj∈N1

bj =

−
bj∈N2

bj = · · · =

−
bj∈Nm

bj = B?

The 3-partition problem is NP-complete in the strong sense
(Garey and Johnson, 1979).

Theorem 1. The problems 1|NR|Cmax, 1|NR, dj = d|
∑

Tj, 1|NR|
∑

Uj and 1|NR|Lmax are NP-hard in the strong sense, and the problem
1|NR|

∑
Cj is NP-hard.

Proof. For all problems except the last one, we give reductions
from the 3-partition problem.

1. First, we consider the problem 1|NR|Cmax. Given the instance
of the 3-partition problem, we define an instance of problem
1|NR|Cmax as follows. There are n jobs with gj = pj = bj, j =

1, 2, . . . , n. The times of earnings of the resource are given by
{t0, t1, . . . , tm−1} = {0, B, 2B, . . . , (m − 1)B} and G(t0) =

G(t1) = · · · = G(tm−1) = B. It is obvious that Cmax = mB if
and only if the answer for the 3-partition problem is ‘‘YES’’. In
this case, there are no idle times in an optimal schedule.

2. For the problems 1|NR, dj = d|
∑

Tj, 1|NR|
∑

Uj and 1|NR|Lmax,
we define in addition to the above data dj = d = mB for
j = 1, 2, . . . , n. Then

∑
Tj = 0 holds if and only if the answer

for the 3-partition problem is ‘‘YES’’. Similarly, we have
∑

Uj =

0 and Lmax = 0 if and only if the answer for the 3-partition
problem is ‘‘YES’’.

3. Finally, we prove the NP-hardness of the problem 1|NR|
∑

Cj.
It is known that the problem 1|rj|

∑
Cj is NP-hard in the strong

sense (Lenstra et al., 1977).
The reduction from the problem 1|rj|

∑
Cj to the problem 1|NR|∑

Cj can be described as follows. For the problem 1|rj|
∑

Cj,
there are given n jobs with r1 ≤ r2 ≤ · · · ≤ rn. We consider
the following instance of the problem 1|NR|

∑
Cj. There are n

jobs and the times of earnings of the resource are given by t1 =

r1, t2 = r2, . . . , tn = rn. Moreover, let G(ti) = gi = 10i−1, i =

1, 2, . . . , n. If there are several jobs l, l+ 1, . . . ,m− 1,m, with
the same release date, then we assume G(tl) =

∑m
j=l gj =∑m

j=l 10
j−1. Note that we have

k−
i=1

gk = 1 ·
10k

− 1
10 − 1

< 10k
= gk+1, 1 ≤ k < n,

i.e., for any feasible schedule, we have Sk+1 ≥ tk+1 = rk+1.
It is obvious that there is a one-to-one correspondence between
feasible schedules for both problems and the corresponding
objective function values. Therefore, the problem 1|NR|

∑
Cj

is NP-hard. Here we proved only NP-hardness in the ordinary
sense, since the maximal length MAX(I) of the input of this
special instance I is not bounded from above by a polynomial
in the length of the input of the original instance. �

Theorem 2. The problem 1|NR, dj = d|
∑

Tj is not in APX, where
APX is the class of optimization problems that allow polynomial-time
approximation algorithms with an approximation ratio bounded by a
constant.

Proof. For the proof, it suffices to note that the special case of the
problem 1|NR, dj = d|

∑
Tj with the optimal value

∑
Tj = 0 is

NP-hard in the strong sense. �

3. Problem 1|NR|
∑

Tj

The classical scheduling problem 1 ‖
∑

Tj is NP-hard in the
ordinary sense (Du and Leung, 1990; Lazarev and Gafarov, 2006).
A dynamic programming algorithm of pseudo-polynomial time
complexity O(n4 ∑

pj) has been proposed by Lawler (1977). The
state-of-the-art algorithmsby Szwarc et al. (1999) can solve special
instances (Potts and Van Wassenhove, 1982) of this problem for
n ≤ 500 jobs. Some polynomially solvable special cases for the
problem 1 ‖

∑
Tj have been given, e.g., by Lazarev and Werner

(2009).
We start this section with the consideration of sub-problem

1|NR, pj = p|
∑

Tj with equal processing times. Then in the second
subsection, we give a proof of NP-hardness for the special case
1|NR, dj = d, gj = g|

∑
Tj. In the last subsection, we present some

properties of problem 1|NR|
∑

Tj with arbitrary processing times.

3.1. Special case 1|NR, pj = p|
∑

Tj

For this special case, we can present the following trivial result.

E.R. Gafarov et al. / Mathematical Social Sciences 62 (2011) 7–13 9
Table 1
An overview on the complexity results.

Obj. func. Special case NP-hardness, solution algorithm

Cmax NP-hard in the strong sense (reduction from the 3-partition
problem, see Theorem 1)∑

Uj NP-hard in the strong sense (Theorem 1)
Lmax NP-hard in the strong sense (Theorem 1)∑

Cj NP-hard (reduction from problem 1|rj|
∑

Cj , see Theorem 1)∑
Tj dj = d NP-hard in the strong sense (reduction from the 3-partition

problem, see Theorem 1)∑
Tj gj = g NP-hard (problem 1 ‖

∑
Tj is a sub-case)∑

Tj pj = p NP-hard (reduction from the partition problem, see Theorem 4)
(in addition:
1 ‖

∑
Tj ∝ 1|pj = p,G(t) = 1, t = 0, 1, . . . |

∑
Tj)a∑

Tj dj = d, gj = g NP-hard (reduction from the partition problem, see Theorem 6)∑
Tj pj = p, g1 ≤ g2 ≤ · · · ≤ gn , d1 ≤ d2 ≤ · · · ≤ dn Polynomially solvable (see Lemma 1), optimal solution:

π∗
= (1, 2, . . . , n)

a The notation P1 ∝ P2 means that problem P1 can be polynomially reduced to P2.
Remark 1. For the problem 1|NR, pj = p|
∑

Tj, there exists an
optimal schedule which has the structure π = (π1, π2, . . . , πy),
where the jobs in the partial schedule πi, i = 1, 2, . . . , y, (for the
definition of y, see the description of this problem in Section 1) are
processed in EDD (earliest due date) order.

In addition, we obtain the following polynomially solvable case.

Lemma 1. For the special case of the problem 1|NR, pj = p|
∑

Tj
with g1 ≤ g2 ≤ · · · ≤ gn, d1 ≤ d2 ≤ · · · ≤ dn, the schedule
π∗

= (1, 2, . . . , n) is optimal.

Proof. The proof of polynomial solvability of this special case
is trivial. For the two sequences π = (π1, k, l, π2) and π ′

=

(π1, l, k, π2), where l < k, we have
n−

j=1

Tj(π) −

n−
j=1

Tj(π ′) ≥ (Tk(π) + Tl(π)) − (Tk(π ′) + Tl(π ′))

≥ 0

since Cl(π
′) ≤ Ck(π), Ck(π

′) ≤ Cl(π) and dl ≤ dk. �

Next, we consider a more specific situation, namely a sub-
problem denoted as 1|NR : αt = 1, pj = p|

∑
Tj (see below).

After provingNP-hardness of this special case,we consider another
special case denoted as 1|NR,G(t) = M, pj = p|

∑
Tj and derive a

relation between these two sub-problems. Then we give a proof of
NP-hardness for problem 1|NR, pj = p|

∑
Tj.

Now we consider the situation, where the times of earnings of
the resource are given by {t1, t2, . . . , ty} = {1, 2, . . . ,

∑
gj}, t1 =

1, t2 = 2, . . . , ty =
∑

gj, and G(ti) = 1 for i = 1, 2, . . . , y. This
condition is denoted as αt = 1 (Toker et al., 1991). Therefore, we
can denote this problem as 1|NR : αt = 1, pj = p|

∑
Tj.

Theorem 3. The problem 1|NR : αt = 1, pj = p|
∑

Tj is NP-hard.

Proof. We give the following reduction from the problem 1 ‖∑
Tj. Given an instance of the problem 1 ‖

∑
Tj with processing

times p′

j and due dates d′

j for j = 1, 2, . . . , n, we construct an
instance of problem 1|NR : αt = 1, pj = p|

∑
Tj as follows. Let

gj = p′

j, pj = 0 and dj = d′

j for j = 1, 2, . . . , n. Then both problems
are equivalent. �

It can be noted that the special case 1|NR : αt = 1, pj = 0|
∑

Tj
can be solved in O(n4 ∑

gj) time by Lawler’s algorithm (Lawler,
1977) sincewe obtain a problem1 ‖

∑
Tj with processing times gj.

Later in Theorem 4, we will present another NP-hardness proof for
the problem 1|NR : pj = p|

∑
Tj. The reason for this is as follows.

Let I be an instance of the problem 1|NR : pj = p|
∑

Tj and x be a
string of the form
‘‘p, d1, d2, . . . , dn, g1, g2, . . . , gn, t0, t1,
. . . , ty,G(t0),G(t1), . . . ,G(ty)’’,

encoding the instance I under a reasonable encoding scheme e.
According to the definition in Garey and Johnson (1979), we have
LENGTH[I] = n + y. In fact, the string x consists of 2n + 2y + 3
numbers. However, if we consider the problem1|NR : αt = 1, pj =

0|
∑

Tj as a special case of the problem 1|NR : pj = p|
∑

Tj
and use the same encoding scheme, then LENGTH[I] = n + y =

n +
∑

gj, i.e., the length of the input is pseudo-polynomial. Since,
as mentioned above, the problem 1|NR : αt = 1, pj = 0|

∑
Tj can

be solved in O(n
∑

gj) time by Lawler’s algorithm, the complexity
of this algorithm would polynomially depend on the input length
LENGTH[I] = n +

∑
gj. For this reason, we consider sub-problem

1|NR : αt = 1, pj = p|
∑

Tj as a separate problem and use the
encoding scheme e′, in which we present an instance as a string

‘‘p, d1, d2, . . . , dn, g1, g2 . . . , gn’’,

i.e., LENGTH[I] = n.
We consider the sub-case of problem 1|NR, pj = p|

∑
Tj, where

the times of earnings of the resource are given by t1 = M, t2 =

2M, . . . , tn = nM and G(ti) = M for all i = 1, 2, . . . , n, where
M =

∑
gj

n such that M ∈ Z+. We denote this special case by
1|NR,G(t) = M, pj = p|

∑
Tj.

Two instances of problems 1|NR : αt = 1, pj = p|
∑

Tj and
1|NR,G(t) = M, pj = p|

∑
Tj are called corresponding, if all

parameters dj, pj, gj, j = 1, 2, . . . , n, for the two instances are the
same.

Now we investigate a relation between the values of the
objective function

∑
Tj for two corresponding instances. First,

we show that these two instances can have different optimal
sequences (see Lemma 2). Then we consider the special case of
dj = 0 for j = 1, 2, . . . , n such that the objective function∑

Tj turns into the special case of
∑

Cj, and we investigate the
difference between the function values of the same sequence for
the two problems mentioned above (see Lemmas 3 and 4).

Lemma 2. There exist two corresponding instances of the problems
1|NR : αt = 1, pj = p|

∑
Tj and 1|NR,G(t) = M, pj = p|

∑
Tj

which have different optimal schedules.

Proof. We consider an instance with n = 2 jobs and p1 = p2 =

1, g1 = 1, g2 = 5, d1 = 7, d2 = 6. For problem 1|NR : αt =

1, pj = p|
∑

Tj, we have
∑

Tj(π1) = 0 and
∑

Tj(π2) = 1,
where π1

= (2, 1) and π2
= (1, 2). On the other hand, for the

problem 1|NR,G(t) = M, pj = p|
∑

Tj, we have
∑

Tj(π1) = 2
and

∑
Tj(π2) = 1. Thus, the above two instances have different

optimal schedules. �

10 E.R. Gafarov et al. / Mathematical Social Sciences 62 (2011) 7–13
Now, let dj = 0 for j = 1, 2, . . . , n. For two corresponding
instances of problems 1|NR : αt = 1, pj = 1|

∑
Cj and

1|NR,G(t) = M, pj = 1|
∑

Cj, let Cj(π) be the completion time
of job j according to the job sequence π for the first problem and
C ′

j (π) be the completion time of the same job according to π for
the second problem. Then we can prove the following lemma.

Lemma 3. For two corresponding instances of the problems 1|NR :

αt = 1, pj = 1|
∑

Cj and 1|NR,G(t) = M, pj = 1|
∑

Cj, we have

n∑
j=1

C ′

j (π)

n∑
j=1

Cj(π)

< 2. (1)

Proof. First, we show that inequality

C ′

j (π) − Cj(π) ≤ M − 1 (2)

holds for each job j, j = 1, 2, . . . , n. We denote S ′

j (π) = C ′

j (π) −

pj = C ′

j (π) − 1.
Let π = (1, 2, . . . , i, i + 1, . . . , j, . . . , n). Then there exists a

natural number k such that

Si−1(π) < (k − 1)M ≤ Su(π) < kM

for u = i, i + 1, . . . , j. In addition, it is obvious that

S ′

u(π) < (k + 1)M

for u = i, i + 1, . . . , j. If the jobs i, i + 1, . . . , j are processed from
time kM in schedule π for problem 1|NR,G(t) = M, pj = 1|

∑
Cj,

then Si(π) > (k − 1)M and

S ′

j (π) − kM =

−
l∈{i,i+1,...,j−1}

pl = j − i < Sj(π) − (k − 1)M.

Thus, inequality (2) holds.
Moreover, we have Cmax(π) ≥ nM + 1 since t = nM is the last

time of earnings of the resource, i.e., nM is a lower bound for Cmax
and C ′

max. Hence, we get
n−

j=1

C ′

j (π) −

n−
j=1

Cj(π) ≤ n(M − 1) < Cmax(π) <

n−
j=1

Cj(π).

Therefore, inequality (1) holds. �

Lemma 4. There exists an instance of the problems 1|NR : αt =

1, pj = 1|
∑

Cj and 1|NR,G(t) = M, pj = 1|
∑

Cj for which we
have
n∑

j=1
C ′

j (π)

n∑
j=1

Cj(π)

≈ 2 −
1
n
.

Proof. Let us consider the following instance. There are given n
jobs with gj = 1, j = 1, 2, . . . , n − 1 and gn = nM − (n − 1),
where M = n3 ∑

j∈N\{n} gj. For schedule π = (1, 2, . . . , n), using
inequality (2) in the proof of Lemma 3, we obtain

n−1−
j=1

C ′

j (π) −

n−1−
j=1

Cj(π) = (n − 1)(M − 1).

Moreover, we have

Cn = Cmax = C ′

n = nM + 1.
This yields

n−
j=1

Cj(π) = 2 + 3 + · · · + n + nM + 1

=
n(n + 1)

2
− 1 + nM + 1.

Let n be fixed. Then we obtain

lim
M→∞

n∑
j=1

C ′

j (π)

n∑
j=1

Cj(π)

= lim
M→∞

(n − 1)(M − 1) +
n(n+1)

2 + nM
n(n+1)

2 + nM

=
2n − 1

n

= 2 −
1
n
. �

Now we consider the sub-case of the problem 1|NR, pj = p|∑
Tj, where the number of times of earnings of the resource given

by t0, t1, . . . , ty is less than or equal to n, i.e., y ≤ n (we remind the
discussion after the proof of Theorem 3).

Theorem 4. The special case 1|NR, pj = p|
∑

Tj, where the number
of times of earnings of the resource given by t0, t1, . . . , ty is less than
or equal to n, is NP-hard.

Proof. The reduction is done from the partition problem. We
consider an instance of the scheduling problem with n jobs and
pj = 0, gj = bj for all j = 1, 2, . . . , n. Two times of earnings of the
resource t0 = 0 and t1 = M are given,whereM = (n

∑n
j=1 bj)

2 and
G(t0) = G(t1) =

1
2

∑n
j=1 bj. In addition, the due dates dj = M − gj

for j = 1, 2, . . . , n are given.
Then all optimal schedules have the form π = (E, F) with the

following property. For all jobs j ∈ E, we have

Cj(π) = 0, Tj(π) = 0,
−
j∈E

gj ≤
1
2

n−
j=1

bj

and for all jobs j ∈ F , we have

Cj(π) = M, Tj(π) = M − dj = gj.

Then the instance of the partition problem has an answer ‘‘YES’’
if and only if in an optimal schedule π of the problem 1|NR, pj =

p|
∑

Tj, we have

n−
j=1

Tj(π) =
1
2

n−
j=1

bj. �

As an immediate corollary of Theorem 4 we obtain that the
general problem 1|NR, pj = p|

∑
Tj without the above additional

condition is NP-hard which is the result presented in Table 1.

3.2. Special case 1|NR, dj = d, gj = g|
∑

Tj

In this subsection, a proof of NP-hardness for the special case
1|NR, dj = d, gj = g|

∑
Tj is presented.

We give the following reduction from the partition problem.
Denote M =


n

∑n
j=1 bj

n. Let us consider the following instance
with the set of jobs N = {1, 2, . . . , 2n + 1}:

E.R. Gafarov et al. / Mathematical Social Sciences 62 (2011) 7–13 11


p2n+1 = 1,
p2i = Mn−i+1, i = 1, 2, . . . , n,
p2i−1 = p2i + bi, i = 1, 2, . . . , n,

d =

n−
i=1

p2i +
1
2

−
bj,

g = 1,
t0 = 0, G(t0) = n,
t1 = d, G(t1) = 1,

t2 = t1 +

−
bj + 1, G(t2) = 1,

t3 = t2 + p2n + bn, G(t3) = 1,
· · · · · ·

ti = ti−1 + p2(n−i+3) + bn−i+3, G(ti) = 1,
· · · · · ·

tn+1 = tn + p4 + b2, G(tn+1) = 1.

(3)

It is obvious that there are at least n+1 tardy jobs in any feasible
schedule. We define a canonical schedule as a schedule of the form

(V1,1, V2,1, . . . , Vi,1, . . . , Vn,1, 2n + 1,
Vn,2, . . . , Vi,2, . . . , V2,2, V1,2),

where

{Vi,1, Vi,2} = {2i − 1, 2i}, i = 1, 2, . . . , n.

Moreover, let π = (E, F) and for two partial schedules E and F ,
we have |{E}| = n and |{F}| = n + 1. Note that in any canonical
schedule, all jobs in sub-sequence F are tardy, the last job in sub-
sequence E can be tardy or on-time while all other jobs in sub-
sequence E are on-time.

Theorem 5. For instance (3), there exists an optimal schedule which
is canonical.

Proof. Without loss of generality, assume that n > 2 and
∑

bj > 2.

(1) Let us first prove that job V1,2 (i.e., one of the jobs 1 or 2) is
the last job in an optimal schedule. Assume that there exists an
optimal schedule π = (π1, V1,1, π2, V1,2, π3, j). Denote P1 =∑

i∈N\{V1,1,V1,2}
pi. It is obvious that CV1,2(π) > 2Mn > tn+1.

Moreover, 2Mn
− tn+1 > 2P1.

Then, for schedule π ′
= (π1, V1,1, π2, π3, j, V1,2), we have

2n+1−
j=1

Tj(π) −

2n+1−
j=1

Tj(π ′) ≥ (TV1,2(π) − TV1,2(π
′))

+ (Tj(π) − Tj(π ′))

> −P1 + (CV1,2(π) − tn+1)

> −P1 + 2Mn
− tn+1 > P1 > 0.

Thus, schedule π is not optimal, and the job V1,2 is the last job
in an optimal schedule.

(2) We prove that in an optimal schedule π = (E, F), the job
V1,1 belongs to sub-sequence E with |{E}| = n. Assume that
π = (π1, π2, V1,1, π3, V1,2), where π1 = E. It is obvious that
d− P1 > 0 and CV1,2(π)− tn+1 > 2Mn

+ d− tn+1 > 2Mn
− P1.

Let us consider schedule π ′
= (V1,1, π1, π2, π3, V1,2). For each

job i ∈ {π1}


{π2}


{π3}, we have Ti(π ′) − Ti(π) < P1.
Moreover, TV1,2(π) − TV1,2(π

′) > Mn
− P1. Then

2n+1−
j=1

Tj(π) −

2n+1−
j=1

Tj(π ′) > Mn
− P1 − (2n − 1)P1 > 0,

sinceMn > 1
2M · P1 > 2nP1. Thus, in an optimal schedule π =

(E, F), the job V1,1 belongs to sub-sequence E with |{E}| = n.
(3) Let us show that there exists an optimal schedule π = (E, F),
where the job V1,1 is the first job.
(3.1) First, we prove that in an optimal schedule, only one of

the jobs V2,1 and V2,2 can be in sub-sequence E. In
contradiction, without loss of generality, assume that
π = (V2,1, V2,2, π1, V1,1, j, π2, V1,2), where {V2,1, V2,2}


{π1}


{V1,1} = {E} and j is the first job in sub-sequence

F . From the previous item, it is obvious that there exists
an optimal schedule, where V1,1 is sequenced on position
n since the job V1,1 belongs to E with |{E}| = n. Denote
P =

∑
i∈{V2,1,V2,2}


{π1}


{V1,1}

pi.
If P − pV2,2 ≤ d, then the schedule π ′

= (V1,1, V2,1,
π1, V2,2, j, π2, V1,2) is also optimal, and the job V1,1 is the
first job.
Otherwise, if P − pV2,2 > d, then Tj(π) > pV2,2 and
TV1,1(π) > pV2,2 . Let us consider the schedule π ′

= (V2,1,

π1, V1,1, j, V2,2, π2, V1,2). It is easy to show that CV2,2(π
′)

= Cj(π) < d + 2pV2,2 . Thus, we have
2n+1−
j=1

Tj(π) −

2n+1−
j=1

Tj(π ′) > 0.

Now it is easy to show that for the schedule π ′′
= (V1,1,

π1, V2,1, j, V2,2, π2, V1,2), we have
2n+1−
j=1

Tj(π ′′) =

2n+1−
j=1

Tj(π ′)

since
∑

i∈{V2,1}


{π1}


{V1,1}
pi − d < pV2,1 , and so the job

V1,1 is the first job.
(3.2) If {V2,1, V2,2} ∉ E, then all jobs from sub-sequence E are

not tardy in any schedule of the type π = (E, F), where
V1,2 ∈ F . Thus, the job V1,1 is the first job as well.

(4) Now we consider only optimal schedules of the type π =

(V1,1, π1, π2, V1,2). We use the same three steps (1)–(3) to
prove that there exists an optimal schedule of the type π =

(V1,1, V2,1, π
′

1, π
′

2, V2,2, V1,2).
(5) Then, by induction, we assume that there exists an optimal

schedule of the type π = (V1,1, V2,1, . . . , Vi−1,1, π1, π2, Vi−1,2,
. . . , V2,2, V1,2), i ≥ 3, and we prove according to steps (1)–(3)
that there exists an optimal schedule

π = (V1,1, V2,1, . . . , Vi−1,1, Vi,1, π
′

1,

π ′

2, Vi,2, Vi−1,2, . . . , V2,2, V1,2).

Thus, the theorem has been proven. �

We note that in a canonical schedule, there are either n + 1 or
n+2 tardy jobs (job Vn,1 can be tardy or on-time). Moreover, as we
prove in the following theorem, in an optimal canonical schedule,
there are only n+ 1 tardy jobs and thus, all jobs in sub-sequence E
are on-time.

Theorem 6. The instance of the partition problem has an answer
‘‘YES’’ if and only if in an optimal canonical schedule, the equality−
j∈E

pj = d

holds.

Proof. For a canonical schedule π , we have
2n+1−
j=1

Tj(π) = TVn,1 + T2n+1 +

n−
i=1

TVi,2

= TVn,1 + T2n+1 +

n−
i=1

(tn−i+2 + p2i + φ(i)bi),

12 E.R. Gafarov et al. / Mathematical Social Sciences 62 (2011) 7–13
where

φ(i) =


1, if Vi,2 = V2i−1,
0, if Vi,2 = V2i.

In addition, inequalities 0 ≤ TVn,1 ≤
1
2

∑
bi and 1 ≤ TV2n+1 ≤

1
2

∑
bi + 1 hold. In fact, we want to minimize the value

TVn,1 + T2n+1 +

n−
i=1

φ(i)bi.

We attain the minimal value

TVn,1 + T2n+1 +

n−
i=1

φ(i)bi = 0 + 1 +
1
2

n−
i=1

bi

if and only if CVn,1 = d, i.e.,−
j∈E

pj = d. �

Thus, the special case 1|NR, dj = d, gj = g|
∑

Tj is NP-hard.

3.3. Properties of the problem 1|NR|
∑

Tj

We complete this section with some comments about the
problem of minimizing total tardiness with arbitrary processing
times. For this problem 1|NR|

∑
Tj, Lawler’s proposition (Lawler,

1977)

min(C∗

j , dj) ≤ d′

j ≤ max(C∗

j , dj)

holds. However, the well-known elimination rule by Emmons
(Szwarc et al., 1999), i.e.,

pj > pi, dj ≥ di ⇒ (i → j)

does not hold. Here, the notation (i → j) means that there exists
an optimal schedule in which the processing of job i precedes the
processing of job j.

Let us consider an instance with n = 3 jobs and p1 = p >
1, p2 = p3 = 1, d1 = d2 = d3 = p + 2, g1 = 3, g2 = g3 = 2, and
G(0) = 3,G(p) = 4. For all optimal schedules of this instance, we
have (j → i), pj > pi, dj ≥ di. Therefore, we cannot use the exact
pseudo-polynomial algorithm by Lawler (1977) for the problem
1 ‖

∑
Tj to solve the problem 1|NR|

∑
Tj.

4. Budget scheduling problems with makespan minimization

A budget scheduling problem is a financial scheduling problem
described in this paper, where instead of the values gj, values g−

j ≥

0 and g+

j ≥ 0 are given. The value g−

j has the same meaning as gj
in the financial scheduling problem. However, at the completion
time of job j, one has additional earnings g+

j of the resource.
If we have g−

j ≥ g+

j for all j = 1, 2, . . . , n, then the new
instance with gj = g−

j − g+

j is not equivalent to the original one.
Let G =

∑n
j=1(g

−

j − g+

j). If
∑

∀t G(t) < G + max g−

j , then not all
sequences (schedules) π are feasible. For example, let n = 2 and
g−

1 = 100, g+

1 = 3, g−

2 = 3, g+

2 = 2 and
∑

∀t G(t) = 100. Then
schedule (1, 2) is feasible but schedule (2, 1) is not feasible.

We denote this problem as 1|NR, g−

j , g+

j |Cmax. It is obvious that
this problem is NP-hard in the strong sense (since the financial
scheduling problem is a special case of the budget scheduling
problem).

Remark 2. If there exists a feasible schedule for an instance of
problem 1|NR, g−

j , g+

j , g−

j > g+

j |Cmax, then the schedule π =

(1, 2, . . . , n) with g+

1 ≥ g+

2 ≥ · · · ≥ g+
n is feasible as well.
If inequality g−

j > g+

j does not hold for all j = 1, 2, . . . , n, then
we can use the following list scheduling algorithm for constructing
a feasible schedule.

Algorithm A. First, all jobs j ∈ N with g+

j − g−

j ≥ 0 are scheduled.
In particular, schedule among these jobs the job with the minimal
value g−

j , if there ismore than one jobwith this property, select the
job with the largest value g+

j − g−

j . If all jobs j with g+

j − g−

j ≥ 0
have been sequenced, schedule the remaining jobs according to
non-increasing values g+

i .

Moreover, we can give the following remark concerning the
possibility of approximation of the problem under consideration.

Lemma 5. The problem 1|NR, g−

j , g+

j |Cmax is in APX.

Proof. Denote the set of times of earnings of the resource by
{t1, t2, . . . , tl−1, tl, . . . , tk}. Assume that for the times {t1, t2, . . . ,
tl−1, tl} of earnings of the resource, there already exists a feasible
schedule, but for the set {t1, t2, . . . , tl−1}, there is no feasible
schedule. Then tl is a lower bound for the optimal objective
function value C∗

max. In addition,
∑n

j=1 pj is also a lower bound for
C∗
max. We can construct a feasible job sequence (schedule) π using

Algorithm A, where all jobs are processed from time tl without idle
times. Thus, we obtain

Cmax(π) = tl +
n−

j=1

pj ≤ 2C∗

max. �

5. Concluding remarks

In this paper, we have considered single machine financial
and budget scheduling problems. For the first class of problems
with a non-renewable resource, we presented various complexity
results. Then we considered several special cases of the problem
of minimizing total tardiness. In addition, we presented some
properties of feasible solutions for the budget scheduling problem
of minimizing the makespan.

For future research, it is interesting to derive several elimination
rules and properties of optimal solutions for the above mentioned
single machine problems since most of the problems considered
are NP-hard in the strong sense and thus the construction of
pseudo-polynomial algorithms seems to be impossible. Another
direction of future research is the consideration of shop and
parallel machine problems with a non-renewable resource.

Acknowledgment

The research was partially supported by DAAD (Deutscher
Akademischer Austauschdienst): A/08/80442/Ref. 325.

References

Carlier, J., Rinnooy Kan, A.H.G., 1982. Scheduling subject to nonrenewable-resource
constraints. Oper. Res. Lett. 1 (2), 52–55.

Du, J., Leung, J.Y.-T., 1990. Minimizing total tardiness on one processor is NP-hard.
Math. Oper. Res. 15, 483–495.

Garey, M.R., Johnson, D.S., 1979. Computers and Intractability: The Guide to the
Theory of NP-Completeness. Freeman, San Francisco.

Janiak, A., 1986. One-machine scheduling problems with resource constraints.
In: System Modelling and Optimization. Springer, Berlin, Heidelberg,
pp. 358–364.

Janiak, A., Potts, C.N., Tautenhahn, T., 2000. Single maschine scheduling with
nonlinear resource dependencies of release times. In: Abstract 14th Workshop
on Discrete Optimization. Holzhau, Germany, May 2000.

Lawler, E.L., 1977. A pseudopolynomial algorithm for sequencing jobs to minimize
total tardiness. Ann. Discrete Math. 1, 331–342.

Lazarev, A.A., Gafarov, E.R., 2006. Special case of the single-machine total tardiness
problem is NP-hard. J. Comput. System Sci. Int. 45 (3), 450–458.

E.R. Gafarov et al. / Mathematical Social Sciences 62 (2011) 7–13 13
Lazarev, A.A., Werner, F., 2009. Algorithms for special cases of the single machine
total tardiness problem and an application to the even–odd partition problem.
Math. Comput. Modelling 49 (9–10), 2061–2072.

Lenstra, J.K., Rinnooy Kan, A.H.G., Brucker, P., 1977. Complexity of machine
scheduling problems. Ann. Discrete Math. 1, 343–362.

Potts, C.N., Van Wassenhove, L.N., 1982. A decomposition algorithm for the single
machine total tardiness problem. Oper. Res. Lett. 1, 363–377.
Slowinski, R., 1984. Preemptive scheduling of independent jobs on paral-
lel machines subject to financial constraints. European J. Oper. Res. 15,
366–373.

Szwarc, W., Della Croce, F., Grosso, A., 1999. Solution of the single machine total
tardiness problem. J. Sched. 2, 55–71.

Toker, A., Kondakci, S., Erkip, N., 1991. Scheduling under a non-renewable resource
constraint. J. Oper. Res. Soc. 42 (9), 811–814.

	Single machine scheduling problems with financial resource constraints: Some complexity results and properties
	Introduction
	Some complexity results
	Problem 1 |NR|Tj
	Special case 1 |NR, pj = p |Tj
	Special case 1 |NR, dj = d, gj = g |Tj
	Properties of the problem 1 |NR|Tj

	Budget scheduling problems with makespan minimization
	Concluding remarks
	Acknowledgment
	References

