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In this note, we consider a single machine scheduling problem with generalized total
tardiness objective function. A pseudo-polynomial time solution algorithm is proposed for
a special case of this problem. Moreover, we present a new graphical algorithm for another
special case, which corresponds to the classical problem of minimizing the weighted
number of tardy jobs on a single machine. The latter algorithm improves the complexity
of an existing pseudo-polynomial algorithm by Lawler. Computational results are presented
for both special cases considered.
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1. Introduction

Two classical single machine scheduling problems are
the problem of minimizing total tardiness and the prob-
lem of minimizing the number of tardy jobs which can be
formulated as follows.

We are given a set N = {1,2, . . . ,n} of n independent
jobs that must be processed on a single machine. Job pre-
emption is not allowed. The machine can handle only one
job at a time. All jobs are assumed to be available for pro-
cessing at time 0. For each job j ∈ N , a processing time
p j > 0 and a due date d j are given.

A feasible solution is described by a permutation π =
( j1, j2, . . . , jn) of the jobs of the set N from which the cor-
responding schedule can be uniquely determined by start-
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ing each job as early as possible. Let C jk (π) = ∑k
l=1 p jl be

the completion time of job jk in schedule π . If C j(π) > d j ,
then job j is tardy and we have U j = 1, otherwise U j = 0.
If C j(π) � d j , then job j is said to be on-time. Moreover,
let T j(π) = max{0, C j(π) − d j} be the tardiness of job j
in the schedule resulting from the sequence π . For the
problem of minimizing the number of tardy jobs 1‖∑

U j ,
the objective is to find an optimal job sequence π∗ that
minimizes the value

∑n
j=1 U j(π) and for the problem of

minimizing total tardiness 1‖∑
T j , the objective is to find

an optimal job sequence π∗ that minimizes the value∑n
j=1 T j(π).
Problem 1‖∑

U j can be solved in O (n log n) time by
Moore’s algorithm [1]. Problem 1‖∑

T j is NP-hard in the
ordinary sense [2,3]. A pseudo-polynomial dynamic pro-
gramming algorithm of time complexity O (n4 ∑

p j) has
been proposed by Lawler [4]. A summary of polynomi-
ally and pseudo-polynomially solvable special cases can be
found e.g. in [5].
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In this note, we consider a generalization of these two
problems. In addition to the above data, a quota of tardi-
ness b j � 0, a coefficient of normal penalty v j � 0 and a
coefficient of abnormal penalty w j � 0 are given for each
job j ∈ N . We define the generalized tardiness as follows:

GT j(π) =
⎧⎨
⎩

0, if C j(π) − d j � 0,

v j · (C j(π) − d j), if 0 < C j(π) − d j � b j,

w j, if b j < C j(π) − d j,

where w j � v jb j for all j ∈ N , and we define

F (π) =
n∑

j=1

GT j(π).

This means that, from a certain level of tardiness de-
scribed by parameter b j for job j, the penalty w j for ex-
ceeding the due date d j is constant and does no longer de-
pend on the concrete value of the tardiness. The objective
is to find an optimal job sequence π∗ that minimizes the
function F (π). We will denote this problem by 1‖∑

GT j .
It is obvious that this problem is NP-hard. For the special
case of b j = 0, we have the classical problem 1‖∑

w j U j
which is NP-hard in the ordinary sense [6]. For problem
1‖∑

w j U j , there exists a pseudo-polynomial solution al-
gorithm with time complexity O (ndmax) [7], where dmax
is the maximal due date of the jobs. Moreover, it is easy
to show that already the special case of problem 1‖∑

GT j
with b j ∈ Z+ is also NP-hard.

In this note, we consider a special case of the general-
ized total tardiness problem with

b j = p j, v j = 1, w j = p j, (1)

i.e., GT j(π) = min{max{0, C j(π) − d j}, p j} for all j ∈ N .
This problem corresponds to the minimization of late work
considered e.g. in [8,9]. In [9], a pseudo-polynomial algo-
rithm of complexity O (nUB) has been given, where UB de-
notes an upper bound on the total late work. An excellent
overview of recent developments on problems with total
late work criteria has been given by Sterna [10]. In Sec-
tion 3, we give a pseudo-polynomial algorithm with time
complexity O (ndmax) for this special case which can be re-
alized by a graphical algorithm in a more efficient way.
In Section 3, we present another pseudo-polynomial al-
gorithm with time complexity O (ndmax) for the problem
1‖∑

w j U j and its graphical modification, which improves
the running time and the complexity of the latter algo-
rithm. Some computational results with the graphical vari-
ants of the two algorithms are presented in Section 4.

2. A solution algorithm for the special case (1)

In this section, we present an exact pseudo-polynomial
algorithm for the special case (1).

Lemma 1. There exists an optimal job sequence π for the spe-
cial case (1) that can be represented as a concatenation (G, H),
where all jobs j ∈ H are tardy and GT j(π) = p j . For all jobs
i ∈ G, we have 0 � GTi(π) < pi . All jobs from the set G are pro-
cessed in EDD (earliest due date) order and all jobs from the set
H are processed in LDD (last due date) order.
Proof. 1) Assume that there exists an optimal job se-
quence π∗ = (π1, j,π2). If GT j(π) = p j , then sequence
π ′ = (π1,π2, j) is optimal, too. Thus, there exists an opti-
mal sequence of the type π = (G, H), where all jobs j ∈ H
are tardy and GT j(π) = p j . For all jobs i ∈ G , we have
0 � GTi(π) < pi .

2) We consider an optimal job sequence π = (G, H),
where all jobs j ∈ H are tardy and GT j(π) = p j . For all
jobs i ∈ G , we have 0 � GTi(π) < pi . Now we prove that
all jobs i ∈ G are processed according to EDD order.

Assume that there exists an optimal sequence π =
(π1,α,β,π2), where jobs α,β ∈ G and dα > dβ . Then in-
equalities Cα(π) − dα < pα and Cβ(π) − dβ < pβ hold.

We consider sequence π ′ = (π1, β,α,π2). Denote C =
Cβ(π) = Cα(π ′). Then

F (π) − F
(
π ′) = (

GTα(π) − GTα

(
π ′))

+ (
GTβ(π) − GTβ

(
π ′))

= −min
{

pα,max{0, C − dα}}
+ min

{
pα,max{0, C − dβ}} � 0

and sequence π ′ is optimal as well.
3) We consider an optimal job sequence π = (G, H),

where all jobs j ∈ H are tardy and GT j(π) = p j . For all
jobs i ∈ G , we have 0 � GTi(π) < pi . Now, we prove that
all jobs j ∈ H can be processed in an LDD order in an op-
timal sequence. For all jobs j ∈ H , we have d j �

∑n
l=1 pl −∑

k∈H pk , otherwise, if d j >
∑n

l=1 pl − ∑
k∈H pk , then se-

quence π ′ = (G, j, H \ { j}) is better, and we have a con-
tradiction. Therefore, the jobs from H can be processed in
any order. �

The following algorithm is based on Lemma 1.

Algorithm 1.

1. Enumerate the jobs according to non-increasing due
dates: d1 � d2 � · · · � dn .

2. π1(t) := (1), F1(t) := min{p1,max{0, p1 + t −d1}} for all
t ∈ Z ∩ [0,

∑n
j=2 p j];

3. FOR l := 2 TO n DO
FOR t := 0 TO

∑n
j=l+1 p j (t ∈ Z ) DO

π1 := (l,πl−1(t + pl)), π2 := (πl−1(t), l);
F (π1) := min{pl,max{0, pl + t − dl}} + Fl−1(t + pl);
F (π2) := Fl−1(t)+min{pl,max{0,

∑l
j=1 p j +t −dl}};

Fl(t) := min{F (π1), F (π2)};
πl(t) := arg min{F (π1), F (π2)}.

4. πn(0) is an optimal sequence with the objective func-
tion value Fn(0).

πl(t) represents the best partial sequence of the jobs
1,2, . . . , l when the first job starts at time t , and Fl(t) de-
notes the corresponding generalized total tardiness.

Theorem 1. Algorithm 1 constructs an optimal sequence for the
special case (1) in O (n

∑
p j) time.
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Proof. We prove the theorem indirectly. Assume that there
exists an optimal sequence of the form π∗ = (EDD, LDD),
where F (π∗) < F (πn(0)) = Fn(0).

Let π ′ := π∗ . For each l = 1,2, . . . ,n, we successively
consider the part π̄l ∈ π ′, {π̄l} = {1, . . . , l} of the se-
quence. Let π ′ = (πα, π̄l,πβ). If π̄l �= πl(t = ∑

i∈πα
pi)

(for the notation, see the last row in Step 3 of Algo-
rithm 1), then π ′ := (πα,πl(

∑
i∈πα

pi),πβ). It is obvious
that F ((πα, π̄l,πβ)) � F ((πα,πl(

∑
i∈πα

pi),πβ)). Analo-
gously, step by step, we modify the partial sequences π̄l
corresponding to the subsequent values l. At the end, we
have F (π∗) � F (π ′) = Fn(0). Thus, sequence πn(0) is also
optimal.

Obviously, the time complexity of Algorithm 1 is equal
to O (n

∑
p j). �

We can improve the running time of Algorithm 1, if for
each l = 1,2, . . . ,n, we consider only the interval [0,dl] in-
stead of [0,

∑n
j=l+1 p j] since for each t � dl , job l is tardy

in any partial sequence πl , where πl(t) represents a partial
sequence of the jobs 1,2, . . . , l when the first job starts at
time t . Moreover, for t � dl , we have GTl = pl . Thus, the
partial sequence π2 := (πl−1(t), l) (for the notation, see
the first row in Step 3 of Algorithm 1) is optimal. The
time complexity of the modified Algorithm 1 is equal to
O (ndmax).

For a practical realization of the algorithm, we can use
the idea from [11,12] resulting in a graphical algorithm
with the same complexity but often reducing the running
time of Algorithm 1 (a brief sketch of this graphical ap-
proach is described for another special case in Section 3,
where it reduces the complexity).

We also note that the well-known algorithm by Lawler
[4] for problem 1‖∑

T j with time complexity O (n4 ∑
p j)

is not exact for the special case (1) since the known rule
by Emmons (if di < d j, pi < p j , then i → j) [4] does not
hold.

3. A graphical algorithm for the special case 1‖∑
w j U j

We can propose a similar algorithm for the special case
1‖∑

w j U j . The following lemma is an immediate conse-
quence from [1,7].

Lemma 2. There exists an optimal job sequence π for problem
1‖∑

w j U j that can be represented as a concatenation (G, H),
where all jobs j ∈ H are tardy and all jobs i ∈ G are on-time.
All jobs from the set G are processed in EDD (earliest due date)
order and all jobs from the set H are processed in LDD (last due
date) order.

Note that in an optimal sequence, the on-time jobs can
be scheduled in EDD order while the tardy jobs can be
scheduled in arbitrary order [1,7]. The following algorithm
for problem 1‖∑

w j U j is based on Lemma 2.

Algorithm 2.

1. Enumerate the jobs according to non-increasing due
dates: d1 � d2 � · · · � dn .
2. π1(t) := (1). For each t ∈ Z ∩ [0,
∑n

j=2 p j], we compute:
if p1 + t − d1 > 0, then F1(t) := w1 else F1(t) := 0;

3. FOR l := 2 TO n DO
FOR t := 0 TO

∑n
j=l+1 p j (t ∈ Z ) DO

π1 := (l,πl−1(t + pl)), π2 := (πl−1(t), l);
If pl + t − dl > 0, then F (π1) := wl + Fl−1(t + pl)

else F (π1) := Fl−1(t + pl);
If

∑l
j=1 p j + t − dl > 0, then F (π2) := Fl−1(t) + wl

else F (π2) := Fl−1(t);
Fl(t) := min{F (π1), F (π2)};
πl(t) := arg min{F (π1), F (π2)}.

4. πn(0) is an optimal sequence with the objective func-
tion value Fn(0).

Analogously to the proof of Theorem 1, we can prove
the following theorem.

Theorem 2. Algorithm 2 constructs an optimal sequence for
problem 1‖∑

w j U j in O (n
∑

p j) time.

Analogously to the modification of Algorithm 1, we can
propose a modification of Algorithm 2, where for each
l = 1,2, . . . ,n, we consider only the interval [0,dl − pl]
instead of [0,

∑n
j=l+1 p j] since for each t > dl − pl , job l

is tardy in any partial sequence πl(t) and the partial se-
quence π2 := (πl−1(t), l) is optimal. Thus, the time com-
plexity of the modified Algorithm 2 is equal to O (ndmax).

Using the idea of the graphical approach from [11,12],
we obtain an exact algorithm, which improves the running
time and the complexity of Algorithm 2. The idea of such
a modified graphical algorithm is as follows.

In each step of the graphical algorithm, we store func-
tion Fl(t) in tabular form as given in Table 1, where t1 <

t2 < · · · < tm and W1 < W2 < · · · < Wm .
The above data means the following. For each value t ∈

(tk, tk+1], 1 � k < m, we have an optimal partial sequence
πk = (G, H) = (EDD, LDD) and the objective function value
Fl(t) = Wk = ∑

j∈H w j . The points tk are called the break
points, i.e., we have Fl(t′) < Fl(t′′) for t′ � tk < t′′ .

In the next step l + 1, we transform function Fl(t)
into functions F 1(t) and F 2(t) according to Step 3 of Al-
gorithm 2 in O (m) operations. In each of the tables for
F 1(t) and F 2(t), we have at most m + 1 break points.
Then we compute a new table of the function Fl+1(t) =
min{F 1(t), F 2(t)} in O (m) operations. In the new ta-
ble of function Fl+1(t), there are at most 2m + 2 break
points (usually, this number is smaller). In fact, we do
not consider all points t from the interval [0,min{dl − pl,∑n

j=l+1 p j}], but only points from the interval in which
the objective function value changes.

In the graphical algorithm, in each step l = 1,2, . . . ,n,
we have to consider at most min{2l,dl − pl,

∑n
j=l+1 p j,∑l

j=1 w j, Fopt} break points. Thus, the time complexity of

Table 1
Function Fl(t).

t t1 t2 . . . tm

Fl(t) W1 W2 . . . Wm

Optimal partial sequence π1 π2 . . . πm
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Fig. 1. Computational results.
the graphical algorithm is O (n min{dmax,2n, Fopt}), where
Fopt is the optimal objective function value.

Note that the running time of the algorithm is the same
for the instance with the parameters {p j,d j, w j, j ∈ N}
and for the instance with the parameters {p′

j = p j ×
106 ± 1, d j × 106, w j}. This is in contrast to usual dynamic
programming, where the running time for the second in-
stance is larger than for the first one. Moreover, the graph-
ical algorithm can also solve instances with p j /∈ Z .

Finally, we only note that a numerical example for il-
lustrating the graphical algorithm for the single machine
total tardiness maximization problem has been presented
in [12].

4. Computational results

We have implemented the versions of the graphical al-
gorithm for both problems.
For the special case (1) of the problem 1‖∑
GT j , we

have used the following set of instances, based on Potts
and Van Wassenhove’s scheme [13]. The processing times
are randomly generated from the interval [1,100], and the
due dates are randomly generated from the interval[

n∑
j=1

p j(1 − TF − RDD/2),

n∑
j=1

p j(1 − TF + RDD/2)

]
.

The parameters TF (average tardiness factor) and RDD
(relative range of due dates) are taken from the set
{0.2,0.4,0.6,0.8,1}. For each combination of the param-
eters (TF,RDD) and n ∈ {4,5,6, . . . ,50}, 100 instances
were generated, i.e., 2500 instances for each value of
n ∈ {4,5,6, . . . ,50}. For each instance, we have computed
the minimal (NBP-MIN), average (NBP-AVE) and maximal
(NBP-MAX) number of break points. The results are sum-
marized in Fig. 1(a). The results show that NBP-AVE is sub-
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stantially smaller than NBP-MAX and that NBP-AVE grows
approximately until 3500 for the large instances. Roughly
speaking, NBP-AVE grows approximately as n2.

For the problem 1‖∑
w j U j , we have run two sets

of instances for testing the graphical variant of Algo-
rithm 2. The first set is as follows. The processing times
are randomly generated from the interval [pmin, pmax],
the weights are randomly generated from the interval
[1, wmax], and the due dates are randomly generated from
the interval [p j, p j + mmax]. The following values of the
parameters were used:

(pmin, pmax): (0,100), (25,75)

wmax: 1,10,100
mmax: 50,200,350,500,650

For each combination of the parameters and n ∈ {4,5, . . . ,

50}, a series of 2500 test instances were generated.
The second set is generated as follows. The processing

times are randomly generated from the interval [0,100],
the weights are randomly generated from the interval
[1, wmax], and the due dates are randomly generated from
the interval [p j, p j + Kn]. The following values of parame-
ters were used:

wmax: 10,99

K : 1,5,10,20

For each combination of the parameters and n ∈ {4,5, . . . ,

50}, a series of 2500 test instances has been generated.
For each instance, we have computed the minimal

(NBP-MIN), average (NBP-AVE) and maximal (NBP-MAX)
number of break points. Fig. 1(b) (instances with pmin =
25, pmax = 75, wmax = 10,mmax = 50) and Fig. 1(c) (in-
stances with pmin = 25, pmax = 75, wmax = 10,mmax = 50)
present the results for two representative variants of the
first set, and Fig. 1(d) (instances with wmax = 10, K = 1)
and Fig. 1(e) (instances with wmax = 10, K = 10) present
the results for two representative variants of the second
set. For the instances of the first type presented here,
the number of break points only moderately increases,
and NBP-AVE is lower than 1000 even for the large prob-
lems. For both variants, even NBP-MAX grows less that n2.
Figs. 1(d) and 1(e) demonstrate the influence of the pa-
rameter K on the number of break points. For K = 10, the
number of break points is roughly ten times as large as
for K = 1. While for the instances with K = 1, NBP-MAX
grows approximately as n2, the number of break points is
usually larger than n2 for the instances with K = 10.
From our detailed results we report the following addi-
tional observations. It follows that, as expected, the lengths
of the intervals considered has the strongest influence on
the number of break points. The largest numbers of break
points were observed for instances with mmax = 650 in the
first set and for instances with K = 20 in the second set.
We have also observed that in the first set of instances in
the case of wmax = 1, i.e., w j = 1 for all j ∈ N , the number
of break points may substantially differ from those for the
other test series. For instance, the average number of break
points in the series with wmax = 1,mmax = 50 is much
smaller than the average number of break points for the
case wmax = 10,mmax = 50. When mmax is large, e.g. when
mmax = 500 or mmax = 650, the number of break points in
the series with wmax = 1 is considerably smaller than in
the series with other values of wmax.
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