
Ann Oper Res (2013) 207:121–136
DOI 10.1007/s10479-012-1288-x

Single machine total tardiness maximization problems:
complexity and algorithms

Evgeny R. Gafarov · Alexander A. Lazarev ·
Frank Werner

Published online: 28 December 2012
© Springer Science+Business Media New York 2012

Abstract In this paper, we consider some scheduling problems on a single machine, where
weighted or unweighted total tardiness has to be maximized in contrast to usual minimiza-
tion problems. These problems are theoretically important and have also practical interpre-
tations. For the total weighted tardiness maximization problem, we present an NP-hardness
proof and a pseudo-polynomial solution algorithm. For the unweighted total tardiness max-
imization problem with release dates, NP-hardness is proven. Complexity results for some
other classical objective functions (e.g., the number of tardy jobs, total completion time) and
various additional constraints (e.g., deadlines, weights and/or release dates of jobs may be
given) are presented as well.

Keywords Scheduling · Single machine maximization problems · Complexity · Dynamic
programming

1 Introduction

Most scheduling problems consider the minimization of a specific objective function. For
instance, the minimization of makespan is a very popular optimization criterion. The min-
imization of a sum function such as total completion time, total tardiness or the number of

E.R. Gafarov · A.A. Lazarev
Institute of Control Sciences of the Russian Academy of Sciences, Profsoyuznaya st. 65,
117997 Moscow, Russia

E.R. Gafarov
e-mail: axel73@mail.ru

A.A. Lazarev
e-mail: jobmath@mail.ru

F. Werner (�)
Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg, PSF 4120, 39016 Magdeburg,
Germany
e-mail: frank.werner@mathematik.uni-magdeburg.de

mailto:axel73@mail.ru
mailto:jobmath@mail.ru
mailto:frank.werner@mathematik.uni-magdeburg.de

122 Ann Oper Res (2013) 207:121–136

tardy jobs are other typical optimization criteria. In this paper, we consider single machine
problems with an opposite criterion, namely we consider the maximization of total tardiness,
the maximization of the number of tardy jobs and the maximization of total completion time.

The problems under consideration can be formulated as follows. We are given a set
N = {1,2, . . . , n} of n independent jobs that must be processed on a single machine. Job
preemption is not allowed. The machine can handle only one job at a time. For each job
j ∈ N , a processing time pj > 0, a due date dj ≥ 0, a weight wj ≥ 0, a release date rj ≥ 0
(i.e., the earliest possible starting time) and/or a deadline Dj > 0 (i.e., the latest possible
completion time) can be given.

Each feasible schedule starts at time 0 and does not have any idle time between the
processing of the jobs (note that the maximization problem considered in this paper would
be trivial when allowing arbitrarily inserted idle times, since the maximal objective function
value can become arbitrarily large in this case). In particular, if release dates are given, it
is assumed that, without loss of generality, the smallest release date is equal to 0 and that
there exists a feasible schedule. Thus, a feasible solution is described by a permutation
π = (j1, j2, . . . , jn) of the jobs of the set N from which the corresponding schedule can
be uniquely determined by starting each job as early as possible. Let Sjk (π) = ∑k

l=1 pjl be
the starting time of job jk in the schedule resulting from the sequence π if release dates
are not defined. Moreover, let Cjk (π) = Sjk (π) + pjk be the completion time of job jk in
this schedule. If release dates are given, then Sjk (π) = max{rjk ,Cjk−1(π)}. If Cj(π) > dj ,
then job j is tardy and we have Uj(π) = 1, otherwise Uj(π) = 0. If Cj(π) ≤ dj , then
job j is on-time. Moreover, let Tj (π) = max{0,Cj (π) − dj } be the tardiness and Ej(π) =
max{0, dj − Cj(π)} be the earliness of job j according to the sequence π . We denote by
Cmax = Cjn(π) the makespan associated with the sequence π and by Lj(π) = Cj(π) − dj

the lateness of job j according to π .
For the single machine problem of maximizing the weighted total tardiness, the objec-

tive is to find an optimal sequence π∗ that maximizes the total weighted tardiness, i.e.,
F(π) = ∑n

j=1 wjTj (π). We denote this problem by 1(no-idle)||max
∑

wjTj (‘no-idle’
means that there is no machine idle time in a feasible schedule (Aloulou et al. 2007)) ac-
cording to the traditional three-field notation α|β|γ for scheduling problems proposed by
Graham et al. (1979) and adapted by Aloulou et al. (2007), where α describes the machine
environment, β gives the job characteristics and further constraints and γ describes the ob-
jective function. For the single machine total tardiness maximization problem subject to
given release dates the objective is to maximize F(π) = ∑n

j=1 Tj (π), and the notation is
1(no-idle)|rj |max

∑
Tj . The problems with deadlines or release dates to maximize total

weighted completion time or the number of tardy jobs considered in this paper are denoted
by 1(no-idle)|rj |max

∑
wjCj , 1(no-idle)|Dj |max

∑
wjCj and 1(no-idle)|Dj |max

∑
Uj .

On the one side, the investigation of problems with an opposite optimization criterion
itself is an important theoretical task (Aloulou et al. 2007). Algorithms for such maximiza-
tion problems can be used to compute parts of optimal schedules for the original problems,
or to cut bad sub-problems in the branching tree of branch-and-bound algorithms (Gafarov
et al. 2010a, 2012). In Aloulou and Artigues (2010), maximization problems were used for
solving bi-criteria problems using branch and bound algorithms. On the other side, such
problems separately have practical interpretations (for the problem 1(no-idle)||max

∑
Tj ,

they have been discussed e.g. in Aloulou et al. 2007, Gafarov et al. 2012) and applications.
Next, we mention some related results from the literature. Both the problems

1(no-idle)||max
∑

Ej and 1(no-idle)||max
∑

Tj were considered by Lawler and Moore
(1969), where a pseudo-polynomial algorithm with time complexity O(ndmax) was pre-
sented for the problem 1(no-idle)||max

∑
wjTj , where dmax is the maximal due date. In

Ann Oper Res (2013) 207:121–136 123

Aloulou et al. (2007), Gafarov et al. (2010a, 2010b), the complexity of single machine
scheduling problems with classical objective functions and opposite optimization criteria
has been investigated.

Other models with semi-active and non-delay schedules have been considered in Aloulou
et al. (2004, 2007). In a semi-active schedule, a job cannot be started earlier without chang-
ing the job sequence or violating the feasibility. Such problems are denoted as 1(sa)||γ .
A schedule is called non-delay if the machine does not stand idle at any time when there
is a job available for processing at this time (Baker 1974). Such problems are denoted
as 1(nd)||γ . If no release dates are given, then both the problems 1(no-idle)||maxf and
1(nd)||maxf are equivalent. To show the difference between the two types of schedules,
let us consider an instance with two jobs 1 and 2 and r1 = 0, r2 = 5, p1 = 4, p2 = 2.
For the job sequence π = (1,2), we have C1 = 4 < 5 = S2 in a non-delay schedule. So,
for this instance, there does not exist a no-idle schedule. However, such an instance can be
reduced in O(n logn) time to an instance for which there is a feasible no-idle schedule in
the following way. Renumber the jobs according to the order r1 ≤ r2 ≤ · · · ≤ rn. If for a job
sequence π = (1,2, . . . , n), we have Ck < rk+1 in the corresponding non-delay schedule,
then we can modify the release dates as follows: r ′

i = ri − (rk+1 −Ck), i = k + 1, . . . , n. So,
an nd problem can be easily reduced to a no-idle one in polynomial time.

It is known (Aloulou et al. 2007) that solving a problem in polynomial time when restrict-
ing the search to non-delay schedules allows one to solve the same problem in polynomial
time when considering semi-active schedules (by solving at most O(n) non-delay versions
of the problem). The same remark holds for the NP-hardness of a problem (Aloulou et al.
2007). From Aloulou et al. (2004) it is known that for the problem 1(sa)|rj |maxf , there
exists an optimal schedule in which the jobs are processed from some release date ri without
idle times, i.e., for each possible ri (which is the starting time of the first job in the schedule),
we have to solve a problem 1(no-idle)||maxf . Thus, if one can solve the no-idle version
of a problem, this allows one to solve the corresponding problems extending the search to
semi-active or non-delay schedules.

The rest of this paper is organized as follows. In Sect. 2, we present several complex-
ity results and solution algorithms for single machine problems with total tardiness objec-
tive function. In particular, we prove NP-hardness of the problems 1(no-idle)|rj |max

∑
Tj

and 1(no-idle)||max
∑

wjTj . As a consequence, the non-delay and semi-active versions of
these problems are NP-hard as well (Aloulou et al. 2007). In Sect. 3, some single machine
scheduling problems with deadlines are considered.

2 Single machine problems with total tardiness objective function

In this section, we present some complexity results and solution algorithms for single ma-
chine maximization problems with total tardiness objective function. First, we propose
NP-hardness proofs for the problems 1(no-idle)|rj |max

∑
Tj and 1(no-idle)||max

∑
wjTj .

Then an exact algorithm for the problem 1(no-idle)||max
∑

wjTj is presented. This algo-
rithm is a generalization of the algorithm for the problem 1(no-idle)||max

∑
Tj given in

Gafarov et al. (2012).

2.1 NP-hardness proof for the problem 1(no-idle)|rj |max
∑

Tj

In this section, we give a polynomial reduction from the partition problem to a special in-
stance of the problem 1(no-idle)|rj |max

∑
Tj .

124 Ann Oper Res (2013) 207:121–136

Partition problem Given is a set N = {b1, b2, . . . , bn̄} of numbers b1 ≥ b2 ≥ · · · ≥ bn̄ > 0
with bi ∈ Z+, i = 1,2, . . . , n̄. Is there a subset N ′ ⊂ N̄ such that

∑
j∈N ′ bj = A =

1
2

∑n̄

i=1 bi?
In this special instance we have n = 2n̄ + 1 jobs. We renumber the jobs of the set N =

{0,1,2, . . . ,2n̄}, as

V0,V1,V2,V3,V4, . . . , V2i−1,V2i , . . . , V2n̄−1,V2n̄.

Without loss of generality, assume that A ≥ 10 and n̄ ≥ 4. Denote

b = 2An̄4, M = n̄3b, ε1 = 2

3n̄
and ε2 = 1

2 maxi∈N̄ bi

.

Given an instance of the partition problem, we construct the following instance of the prob-
lem 1(no-idle)|rj |max

∑
Tj :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0 = 4M, (1.1)

p2i = 2M − ib, i = 1,2, . . . , n̄, (1.2)

p2i−1 = 2M − ib + bi, i = 1,2, . . . , n̄, (1.3)

d0 =
∑2n̄

j=0
pj , (1.4)

d2n̄ = (2n̄ + 1)M, (1.5)

d2i = d2i+2 − (i − 1 + ε1)b, i = n̄ − 1, n̄ − 2, . . . ,1, (1.6)

d2i−1 = d2i − (i − 1)bi − ε2bi, i = n̄, n̄ − 1, . . . ,1, (1.7)

r0 = 2n̄M −
∑n̄

i=1
(n̄ − i)b + A, (1.8)

ri = 0, i = 1,2 . . . ,2n̄. (1.9)

For this instance, we have p0 > p1 > p2 > · · · > p2n̄ and d1 < d2 < · · · < d2n̄. The decision
version of the problem is as follows: Does there exist a feasible schedule, in which total
tardiness is not smaller than n̄

∑2n̄

i=0 pi − ∑n̄

i=1(i − 1)p2i − ∑n̄

i=1 d2i + ε2 · 1
2

∑n̄

i=1 bi . Next,
we can present the following properties for the instance (1.1)–(1.9).

Lemma 1 For the instance (1.1)–(1.9), there are exactly n̄ tardy jobs in any feasible sched-
ules.

Proof In a feasible schedule, there is no machine idle time. Since d0 = ∑2n̄

j=0 pj , the job 0 is

not tardy in any feasible schedule. Since d1 >
∑

j∈N̂ pj for all N̂ ⊂ N \ {V0} with |N̂ | = n̄,
there are no more than n̄ tardy jobs in any feasible schedule. Since d1 < d2 < · · · < d2n̄ =
(2n̄ + 1)M < (n̄ + 1)(2M − n̄b) = (n̄ + 1)p2n̄, where p2n̄ is the minimal processing time,
we have at least n̄ tardy jobs in any no-idle schedule. Thus, the lemma is true. �

Let (Vn̄,1,Vn̄−1,1, . . . , Vi,1, . . . , V1,1,V0,V1,2, . . . , Vi,2, . . . , Vn̄−1,2,Vn̄,2) be a canonical
sequence, where {Vi,1,Vi,2} = {V2i−1,V2i}, i = 1,2, . . . , n̄. We note that some canonical
sequences are not feasible.

Let us consider two feasible job sequences π ′ = (π1, j,V0,π2) and π ′′ = (π1,V0, j,π2).
Since the job V0 is not tardy in all feasible schedules and the maximization of total tardi-
ness is considered, inequality F(π ′) ≤ F(π ′′) holds. Thus, to find an optimal schedule, we
only need to consider schedules, where job V0 is scheduled as early as possible, i.e., in an

Ann Oper Res (2013) 207:121–136 125

optimal sequence this job is processed either at position n̄ + 1 (if the completion time of the
job processed at position n̄ is larger than or equal to r0) or n̄ + 2 (otherwise). Below (see
Lemma 3) we show that it is processed at position n̄ + 1 in any optimal sequence.

Lemma 2 For the instance (1.1)–(1.9), the inequality
∣
∣F

(
π ′) − F

(
π ′′)∣∣ < A

holds for any two canonical sequences π ′ and π ′′.

Proof Let us consider a canonical sequence

π = (Vn̄,1,Vn̄−1,1, . . . , Vi,1, . . . , V1,1,V0,V1,2, . . . , Vi,2, . . . , Vn̄−1,2,Vn̄,2).

It is known that the jobs V1,2, . . . , Vi,2, . . . , Vn̄−1,2,Vn̄,2 are tardy while the remaining jobs
are on-time. Then

∑
j∈N Tj (π) = ∑n̄

i=1 TVi,2(π).

Let C = ∑2n̄

i=0 pi . Then we have

n̄∑

i=1

CVi,2(π) = nC −
n̄∑

i=1

(i − 1)pVi,2 .

Denote by πmin a canonical sequence, where Vi,2 = V2i for all i = 1,2, . . . , n̄. Then we
have the minimal value of the total tardiness among all canonical sequences:

∑

j∈N

Tj

(
πmin

) = n̄C −
n̄∑

i=1

(i − 1)p2i −
n̄∑

i=1

d2i =: T 1.

Denote by πmax a canonical sequence, where Vi,2 = V2i−1 for all i = 1,2, . . . , n̄. Then we
have the maximal value of the total tardiness among all canonical sequences:

∑

j∈N

Tj

(
πmax

) = T 1 −
n̄∑

i=1

(i − 1)bi +
(

n̄∑

i=1

(i − 1)bi + ε2

n̄∑

i=1

bi

)

=: T 2.

We have T 2 − T 1 < A, i.e., the lemma is true. �

Lemma 3 For the instance (1.1)–(1.9), all optimal sequences are canonical sequences or
they can be reduced to canonical sequences if the SPT (shortest processing time) rule is
applied to the first n̄ jobs.

Proof The idea of the proof is as follows. In (1) and (2) we show how a non-canonical
sequence can be transformed into a canonical one for which the total tardiness is larger.
In (1) we prove that the tardy jobs have to be processed in non-decreasing order of a
pair to which they belong. In (2) we show that one and only one job from each pair
{Vj,1,Vj,2}, j = 1, . . . , n, is tardy in any optimal sequence. Thus, (1) and (2) show that
in any optimal sequence the tardy jobs are processed in the same way as the n̄ last tardy jobs
in a canonical sequence, and the n̄ first on-time jobs can be processed in any order.

(1) Let us consider a job V j ∈ {Vj,1,Vj,2} and a job V i ∈ {Vi,1,Vi,2}, where j > i > 0. Let
in an optimal sequence π = (π1,V

j ,V i,π2) both jobs be tardy. We consider the sequence
π ′ = (π1,V

i,V j ,π2). It is easy to check that in the sequence π ′, both jobs are tardy as well
(analogously to the proof of Lemma 1). We get

F
(
π ′) − F(π) ≥ p2i − p2j − bj > b − bj > 0,

126 Ann Oper Res (2013) 207:121–136

i.e., the sequence π is not optimal. This means that in any optimal schedule, a tardy job
which belongs to a pair with smaller number has to be processed earlier than the other tardy
jobs.

(2) Let us consider an optimal sequence π = (π1,V2i , π2,V0,π3,V2j , π4), |π3| = i − 1,
where at position n̄+1+ i job V2j is processed, i.e., the sequence π is not canonical because
in a canonical sequence, a job V i ∈ {Vi,1,Vi,2} = {V2i−1,V2i} should be processed at this
position. Next, for the cases (2.1) and (2.2) we show that the sequence π can be transformed
into a canonical one with a larger total tardiness.

(2.1) Let i > j . For the sequence π ′ = (π1,V2j , π2,V0,π3,V2i , π4), we have

F
(
π ′) − F(π)

= (
C2j (π) − d2i

) − (
C2j (π) − d2j

) + (i − 1)(p2j − p2i)

= d2j − d2i + (i − 1)(p2j − p2i)

= −(
(j − 1 + ε1) + (

(j − 1) − 1 + ε1

) + · · · + (
(i − 2) − 1 + ε1

)

+ (
(i − 1) − 1 + ε1

))
b + (i − 1)(2M − jb − 2M + ib)

= −((
i − 1 + ε1 − (i − j)

) + (
i − 1 + ε1 − (i − j − 1)

) + · · ·
+ (i − 1 + ε1 − 2) + (i − 1 + ε1 − 1)
︸ ︷︷ ︸

i−j

)
b

+ (i − 1)(i − j)b

= −(i − 1)(i − j)b +
i−j∑

k=1

kb − (i − j)ε1b + (i − 1)(i − j)b

> b − n̄ε1b = 1

3
b > 0,

i.e., the sequence π is not optimal.
Analogously, for any optimal sequence π = (π1,V

i,π2,V0,π3,V
j ,π4), where V i ∈

{Vi,1,Vi,2} and V j ∈ {Vj,1,Vj,2}, we can construct a feasible sequence π ′ = (π1,V
j ,π2,V0,

π3,V
i,π4), for which F(π ′) − F(π) > 1

3b − bmax > 0. To prove this, one can use (1.3),
(1.7), b = 2An̄4 � 2n̄bmax and ε2bi < 1

2 .
(2.2) Let j > i. For the sequence π ′ = (π1,V2j , π2,V0,π3,V2i , π4), we have

F
(
π ′) − F(π) = d2j − d2i − (i − 1)(p2i − p2j)

= (
(i − 1 + ε1) + (

(i + 1) − 1 + ε1

) + · · · + (
(j − 2) − 1 + ε1

)

+ (
(j − 1) − 1 + ε1

))
b − (i − 1)(2M − ib − 2M + jb)

= (
(i − 1 + ε1 + 0) + (i − 1 + ε1 + 1) + · · · + (

i − 1 + ε1 + (j − i − 2)
)

+ (
i − 1 + ε1 − (j − i − 1)

)

︸ ︷︷ ︸
j−i

)
b

− (i − 1)(j − i)b

= (i − 1)(j − i)b +
j−i−1∑

k=0

kb + (j − i)ε1b − (i − 1)(j − i)b

=
j−1−i∑

k=0

kb + (j − i)ε1b > 0,

Ann Oper Res (2013) 207:121–136 127

i.e., the sequence π is not optimal.
Analogously, for any optimal sequence π = (π1,V

i,π2,V0,π3,V
j ,π4), we can con-

struct a feasible sequence π ′ = (π1,V
j ,π2,V0,π3,V

i,π4), for which F(π ′) − F(π) >

ε1b − bmax > 0. To prove this, one can use (1.3), (1.7), b = 2An̄4 � 2n̄bmax and ε2bi < 1
2 .

We note that for both cases (2.1) and (2.2), inequality F(π ′) − F(π) > nA holds.
By the transformations described in (2.1) and (2.2), we change an initial feasible se-
quence into a canonical one. By each transformation the total tardiness value is increased
by a number larger than nA. By the transformation described in (2.1), we always ob-
tain a feasible sequence π ′. By the transformation described in (2.2), in the final canon-
ical sequence π ′, we can have an idle time between SV0(π

′) and CV1,1(π
′), i.e., the re-

sulting schedule is not feasible. This infeasible canonical sequence can be easily trans-
formed into a feasible canonical one which has no idle time, i.e., we can schedule the jobs
V2n̄−1,V2n̄−3, . . . , V2i−1, . . . , V1 at the beginning of the canonical sequence. Denote such a
sequence as π ′′. Then F(π ′) − F(π ′′) < A (see Lemma 2), i.e., the sequence π ′′ is better
than the initial sequence π , since F(π ′) − F(π) > ε1b − bmax > A > F(π ′) − F(π ′′).

If we consider an optimal sequence π = (π1,Vα,Vβ,V0,π3), where the job V0 is
processed at position n̄ + 2, i.e., |π1| = n̄ − 1 and CVα < r0, then the sequence π =
(π1,Vα,V0,Vβ,π3) is not feasible. However, F(π) − F(π) > 0, and the sequence π can
be transformed into a canonical one by the operations described in (2.1) and (2.2), where by
each operation the total tardiness value is increased.

To sum up, we can conclude that all optimal sequences are canonical sequences or they
can be reduced to canonical sequences if the SPT (shortest processing time) rule is applied
to the first n̄ jobs, since they are not tardy and can be processed in any order. �

Theorem 1 The problem 1(no-idle)|rj |max
∑

Tj is NP-hard.

Proof In this proof, we analyze the maximal possible value of total tardiness among all
canonical schedules. This maximal value corresponds to a canonical schedule which is not
feasible. Then, we look for the maximal value reached in a feasible canonical schedule if
the instance of the partition problem has the answer “YES” and vice versa.

Let us consider a canonical sequence

π = (Vn̄,1,Vn̄−1,1, . . . , Vi,1, . . . , V1,1,V0,V1,2, . . . , Vi,2, . . . , Vn̄−1,2,Vn̄,2).

It is known that the jobs V1,2, . . . , Vi,2, . . . , Vn̄−1,2,Vn̄,2 are tardy while the remaining jobs
are on-time. Then

∑
j∈N Tj (π) = ∑n̄

i=1 TVi,2(π).

Let C = ∑2n̄

i=0 pi . Then we have

n̄∑

i=1

CVi,2(π) = nC −
n̄∑

i=1

(i − 1)pVi,2 .

In addition, let us denote

φ(i) =
{

1, if Vi,2 = V2i−1,

0, if Vi,2 = V2i .

If Vi,2 = V2i for all i = 1,2, . . . , n̄, then

∑

j∈N

Tj (π) = n̄C −
n̄∑

i=1

(i − 1)p2i −
n̄∑

i=1

d2i =: T 1

128 Ann Oper Res (2013) 207:121–136

else we have

∑

j∈N

Tj (π) = T 1 −
n̄∑

i=1

φ(i)(i − 1)bi +
(

n̄∑

i=1

φ(i)(i − 1)bi + ε2

n̄∑

i=1

φ(i)bi

)

.

Thus, the maximal objective function value obtained among the canonical sequences is equal
to T 1 + ε2

∑n̄

i=1 bi . However, the sequence

(V2n̄, V2(n̄−1), . . . , V2i , . . . , V2,V0,V1, . . . , V2i−1, . . . , V2(n̄−1)−1,V2n̄−1)

is not feasible since there is an idle time before the job V0. We must construct a feasible
canonical sequence, where the value ε2

∑n̄

i=1 φ(i)bi is maximized.
If and only if the instance of the partition problem has the answer “YES”, we have a

feasible canonical sequence with

ε2

n̄∑

i=1

φ(i)bi = ε2 · 1

2

n̄∑

i=1

bi

and thus, SV0(π) = r0. If we have bi ∈ N ′ in the original instance of the partition problem,
then φ(i) = 1. If the answer is “NO”, then in an optimal schedule the total tardiness value is
less than T 1 + ε2 · 1

2

∑n̄

i=1 bi .
This means that the NP-complete partition problem can be reduced to the problem

1(no-idle)|rj |max
∑

Tj in polynomial time, i.e., the problem under consideration is NP-
hard. �

2.2 NP-hardness for the problem 1(no-idle)||max
∑

wjTj

In this section, we give a polynomial reduction from the partition problem to a special in-
stance of the problem 1(no-idle)||max

∑
wjTj . For the latter problem, we have to maximize

F(π) = ∑n̄

j=1 wjTj (π).
First, we present a property of an optimal schedule for the problem 1(no-idle)||max

∑
wj·

Tj .

Lemma 4 There exists an optimal job sequence π for the problem 1(no-idle)||max
∑

wjTj

that can be represented as a concatenation (G,H), where all jobs j ∈ H are tardy and all
jobs i ∈ G are on-time. All jobs from the set G are processed in non-increasing order of the
values

wj

pj
and all jobs from the set H are processed in non-decreasing order of the values

wj

pj
.

Proof First, in (1) we prove that in any optimal schedule, the tardy jobs are processed one
by one at the end of the schedule. Then, in (2) and (3) we substantiate the order of the tardy
and on-time jobs in an optimal schedule.

(1) Assume that there exists an optimal sequence π = (π1, j,π2, i, π3), where job j is
tardy and job i is on-time. For the sequence π ′ = (π1, i, j,π2,π3), we have

F
(
π ′) − F(π) ≥ wj

(
Tj

(
π ′) − Tj (π)

) + wi

(
Ti

(
π ′) − Ti(π)

) = wjpi + 0 > 0.

Therefore, we have a contradiction since the sequence π ′ has a larger value of total weighted
tardiness, i.e., π ′ is better and π is not optimal.

(2) We consider an optimal sequence π = (G,H), where all jobs j ∈ H are tardy and all
jobs i ∈ G are on-time. Now we prove that all jobs from H are processed in non-decreasing

Ann Oper Res (2013) 207:121–136 129

order of the values
wj

pj
. Assume that there exists an optimal sequence π = (π1, j1, j2,π2),

where the jobs j1 and j2 are tardy and
wj1
pj1

>
wj2
pj2

. For the sequence π ′ = (π1, j2, j1,π2), we

have

F
(
π ′) − F(π) = wj1

(
Tj1

(
π ′) − Tj1(π)

) + wj2

(
Tj2

(
π ′) − Tj2(π)

)

= wj1pj2 − wj2 min
{
pj1 , Tj2(π)

}
> 0.

Therefore, we have a contradiction and π = (π1, j1, j2,π2) is not optimal.
(3) We consider an optimal sequence π = (G,H), where all jobs j ∈ H are tardy and

all jobs i ∈ G are on-time. Now, we prove that all jobs i ∈ G can be processed in non-
increasing order of the values

wj

pj
in an optimal sequence. For all jobs i ∈ G, we have di ≥

∑
k∈G pk . Otherwise, if di <

∑
k∈G pk , the sequence π ′ = (G \ {i}, i,H) is better, and we

have a contradiction. Therefore, the jobs from G can be processed in any order. �

The reduction from the partition problem to a special instance of the problem
1(no-idle)||max

∑
wjTj can be done as follows. Without loss of generality, we assume

that n̄ > 3 and
∑n̄

i=1 bi > 10. Given an instance of the partition problem, we construct the
following instance of the problem 1(no-idle)||max

∑
wjTj , where n = 2n̄:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

w2i = Mi, i = 1,2, . . . , n̄, (2.1)

w2i−1 = w2i + bi, i = 1,2, . . . , n̄, (2.2)

p2i =
∑i−1

j=1
w2j + 1

2

∑

j∈N̄\{i}bj , i = 1,2, . . . , n̄, (2.3)

p2i−1 = p2i + bi, i = 1,2, . . . , n̄, (2.4)

d2i = d2i−1 = P −
∑n̄

j=i
p2j , i = 1,2, . . . , n̄, (2.5)

with M = (n̄
∑

bi)
10 = (2An̄)10 and P = ∑2n̄

j=1 pj . The decision version is as follows: Does

there exist a feasible schedule, in which total tardiness is not smaller than
∑n̄

j=1 w2jp2j +
1
2A2.

The main idea of using Mi is that the weight of a job belongs to a pair with the largest
number being greater than the total weight of all jobs from the pairs with smaller numbers,
e.g., for the job V2n̄, we have: w2n̄ � ∑n̄−1

i=1 (w2i−1 + w2i). If we suppose that all digits used
are coded in a binary system with approximately 2x zero-one symbols per digit, then, to
code Mn̄, we need 2x·O(n̄) symbols. So, the input length for the resulting input will be O(n̄)

times larger than the input length of the initial instance of the partition problem.
We renumber the jobs of the set N = {1,2, . . . ,2n̄} as

V1,V2,V3,V4, . . . , V2i−1,V2i , . . . , V2n̄−1,V2n̄.

Let (Vn̄,1,Vn̄−1,1, . . . , Vi,1, . . . , V1,1,V1,2, . . . , Vi,2, . . . , Vn̄−1,2,Vn̄,2) be a canonical sequence,
where {Vi,1,Vi,2} = {V2i−1,V2i}, i = 1,2, . . . , n̄.

Lemma 5 For the instance (2.1)–(2.5), all optimal sequences are canonical sequences,
or they can be reduced to a canonical sequence if the first n̄ jobs are reordered in non-
increasing order of the values

wj

pj
.

Proof In this proof, we only consider optimal sequences of the type described in Lemma 4.
First, in (1) we prove that one of the jobs V2n and V2n−1 is tardy in any optimal sequence.

130 Ann Oper Res (2013) 207:121–136

In (2) we show that only one of them is tardy, and it is processed at the end of any optimal
sequence. In (3), we explain that the same property holds also for the other pairs of jobs.

(1) Suppose that both jobs are on-time in an optimal sequence π = (π1,V2n,π2,V2n−1,

π3,π4), where only the jobs from the set π4 are tardy. We note that we consider only optimal
sequences of the type π = (G,H), where all jobs j ∈ H are tardy and all jobs i ∈ G are on-
time (see Lemma 4). For the sequence π ′ = (π1,π2,V2n−1,π3,π4,V2n), we have

n∑

j=1

wjTj

(
π ′) −

n∑

j=1

wjTj (π) ≥ w2nT2n

(
π ′) − p2n

∑

j∈π4

wj

≥ p2nM
n − p2n

n−1∑

i=1

(
2Mi + bi

)

= p2nM
n − p2n

(

2M
Mn−1 − 1

M − 1
+

n−1∑

i=1

bi

)

> 0.

Thus, the sequence π is not optimal, i.e., one of the jobs V2n and V2n−1 is tardy in any
optimal schedule.

(2) Now we prove that the following inequalities hold:

w2

p2
<

w4

p4
< · · · < w2n

p2n

.

We have to prove:

Mi−1

∑i−2
j=1 w2j + 1

2

∑
j∈N\{i−1} bj

<
Mi

∑i−1
j=1 w2j + 1

2

∑
j∈N\{i} bj

.

Let Bi = 1
2

∑
j∈N\{i} bj , i = 1,2, . . . , n. Then, by equivalent transformations, we obtain

Mi−1

M Mi−2−1
M−1 + Bi−1

<
Mi

M Mi−1−1
M−1 + Bi

⇐⇒ 1
M(Mi−2−1)+Bi−1(M−1)

M−1

<
M

M(Mi−1−1)+Bi(M−1)

M−1

⇐⇒ M
(
Mi−1 − 1

) + Bi(M − 1) < M
[
M

(
Mi−2 − 1

) + Bi−1(M − 1)
]

⇐⇒ 0 < M2(Bi−1 − 1) − M(Bi−1 + Bi − 1) + Bi.

The latter inequality is true since M2 > M · 2
∑n̄

j=1 bj and (Bi−1 − 1) > 1. Thus, the
above inequalities hold. Analogously, we can prove that

w2(i−1)−1

p2(i−1)−1
<

w2i

p2i

,
w2(i−1)

p2(i−1)

<
w2i−1

p2i−1
and

w2(i−1)−1

p2(i−1)−1
<

w2i−1

p2i−1

for each i = 2,3, . . . , n̄.
Thus, we conclude that in any optimal sequence, one of the jobs V2n̄ or V2n̄−1 is the

last tardy job. We remind that we only consider optimal sequences of the type π = (G,H),
where all jobs j ∈ H are tardy, all jobs i ∈ G are on-time and all jobs from the set H are
processed in non-decreasing order of the values

wj

pj
.

Since d2n̄ = d2n̄−1 = P − ∑n̄

j=n̄ p2j = P − p2n̄ > P − p2n̄−1, only one of the jobs V2n̄ or
V2n̄−1 can be tardy in any feasible schedule. Then, one and only one of the jobs V2n̄ and
V2n̄−1 is the last tardy job in any optimal schedule. The on-time jobs can be processed

Ann Oper Res (2013) 207:121–136 131

in an optimal schedule in any order (see point 3 in the proof of Lemma 4). Therefore,
in the following, we consider only optimal sequences of the type (Vn̄,1,πα,Vn̄,2), where
{Vn̄,1,Vn̄,2} = {V2n̄−1,V2n̄}.

(3) Analogously to (1) and (2), we can prove that for each i = n̄ − 1, n̄ − 2, . . . ,1, one
and only of the jobs V2i and V2i−1 is tardy and precedes only the jobs Vi+1,2, . . . , Vn̄,2.

Thus, the lemma is true. �

Theorem 2 The problem 1(no-idle)||max
∑

wjTj is NP-hard in the ordinary sense.

Proof For the sequence π = (V2n̄−1,V2(n̄−1)−1, . . . , V3,V1,V2,V4, . . . , V2(n̄−1), V2n̄), we ob-
tain the objective function value

F(π) =
n̄∑

j=1

w2j T2j (π) =
n̄∑

j=1

w2jp2j .

Now we consider the canonical sequence

π ′ = (Vn̄,1,Vn̄−1,1, . . . , Vi,1, . . . , V1,1,V1,2, . . . , Vi,2, . . . , Vn̄−1,2,Vn̄,2).

In addition, let us denote

xi =
{

1, if Vi,2 = V2i−1,

0, if Vi,2 = V2i .

Then we get

F
(
π ′) = F(π) +

n̄∑

i=1

xi

[

(w2i−1 − w2i) · TV2i
(π) − (p2i−1 − p2i)

(
i−1∑

j=1

wVj,2

)]

= F(π) +
n̄∑

i=1

xi

[

bi · p2i − bi ·
(

i−1∑

j=1

wVj,2

)]

= F(π) +
n̄∑

i=1

xi

[

bi · p2i − bi ·
(

i−1∑

j=1

w2j +
i−1∑

j=1

xjbj

)]

= F(π) +
n̄∑

i=1

xibi

[

p2i −
i−1∑

j=1

w2j − 1

2

∑

j∈N̄\{i}
xjbj

]

= F(π) + 1

2

n̄∑

i=1

xibi

(∑

j∈N̄\{i}
bj −

∑

j∈N̄\{i}
xjbj

)

= F(π) + 1

2

n̄∑

i=1

∑

j∈N̄\{i}
xi · bi · bj · (1 − xj).

The equality

n̄∑

i=1

xibi

(
i−1∑

j=1

xjbj

)

=
n̄∑

i=1

xibi

(
1

2

∑

j∈N̄\{i}
xjbj

)

can be explained as follows. In the left part of the equality, for any i ∈ N , we have the
following combinations xibi

∑i−1
j=1 xjbj +xi+1bi+1xibi +xi+2bi+2xibi +· · ·+xn̄bn̄xibi . This

132 Ann Oper Res (2013) 207:121–136

means that in the left equality for each pair (i, j), i ∈ N̄, j ∈ N̄ \ {i}, there is one and
only one summand xjbjxibi . This summand can be presented as a sum of two summands
1
2xjbjxibi + 1

2xjbjxibi to be taken into account twice in the right part of the equality.
F(π ′) reaches its maximal value if there exists a subset N ′ ⊂ N̄ such that

∑
i∈N ′ bi = A,

i.e.,

F
(
π ′) = F(π) + 1

2

∑

i∈N ′

∑

j∈N̄\N ′
bi · bj = F(π) + 1

2
A · A.

Otherwise, we have

F
(
π ′) = F(π) + 1

2

n̄∑

i=1

∑

j∈N̄\{i}
xi · bi · bj · (1 − xj)

= F(π) + 1

2
(A − y)(A + y)

= F(π) + 1

2
A2 − 1

2
y2,

where y > 0.
This means that, if and only if there exists a subset N ′ ⊂ N̄ for the instance of the par-

tition problem such that
∑

i∈N ′ bi = A, then, for an optimal canonical sequence π∗, we
have

F
(
π∗) = F(π) + 1

2
A2,

where xi = 1 for i ∈ N ′. �

In the following section, a pseudo-polynomial solution algorithm for the problem
1(no-idle)||max

∑
wjTj is presented. Thus, the problems 1(no-idle)||max

∑
wjTj and

1(sa)||max
∑

wjTj are NP-hard in the ordinary sense but not in the strong sense.

2.3 Solution algorithms for the problem 1(no-idle)||max
∑

wjTj

Assume that the jobs are numbered such that

w1

p1
≤ w2

p2
≤ · · · ≤ wn

pn

.

As a corollary from Lemma 4, there exists an optimal schedule, in which all jobs l ∈
{1,2, . . . , j} are processed from time t one by one and there is no job i ∈ {j + 1, j + 2,

. . . , n}, which is processed between these jobs. Thus, we can propose a dynamic program-
ming algorithm based on Lemma 4. In this algorithm, for each set of jobs {1,2, . . . , j} (i.e.,
at each stage j) and for each possible starting time t (i.e., each possible state), we construct
a partial optimal job sequence πl(t). In addition, Fl(t) denotes the total weighted tardiness
value of this sequence. Φ1(t) and Φ2(t) are temporary functions, which are used to compute
Fl(t).

Algorithm 1
1. Number the jobs such that w1

p1
≤ w2

p2
≤ · · · ≤ wn

pn
;

2. π1(t) := (1), F1(t) := w1 max{0, t + p1 − d1} for all t ∈ Z with t ∈ [0,
∑n

i=2 pi];
3. FOR l := 2 TO n DO

Ann Oper Res (2013) 207:121–136 133

FOR t := 0 TO
∑n

i=l+1 pi (t ∈ Z) DO
π1 := (l,πl−1(t + pl)), π2 := (πl−1(t), l);
Φ1(t) := wl max{0, t + pl − dl} + Fl−1(t + pl);
Φ2(t) := Fl−1(t) + wl max{0, t + ∑l

i=1 pi − dl};
If Φ1(t) > Φ2(t) then Fl(t) := Φ1(t) and πl(t) := π1, else Fl(t) := Φ2(t)

and πl(t) := π2;
4. πn(0) is an optimal job sequence with the objective function value Fn(0).

Theorem 3 Algorithm 1 constructs an optimal job sequence in O(n
∑

pj) time.

The proof is very similar to that given in Gafarov et al. (2012) based on Lemma 4 adapted
to unit weights, and it is also presented in Gafarov et al. (2010b) for the problem under
consideration.

In all partial schedules starting from a point t ≥ dmax, all jobs are tardy in each partial
schedule which starts from time t . Thus, we can reduce the time complexity to O(ndmax).
We note that a similar algorithm for this problem with time complexity O(ndmax) has been
presented in Lawler and Moore (1969).

To reduce the running time of Algorithm 1, we can use a modification of the dynamic
programming algorithm presented in Gafarov et al. (2012) for the special case of the problem
1(no-idle)||max

∑
Tj , where wj = 1, j = 1,2, . . . , n. In this modification, the functions

Fl(t), l = 1,2, . . . , n, are defined for any t ∈ (−∞,+∞) (not only for integer t). Then it
is easy to prove that the functions Fl(t) are piecewise-linear, convex, continuous and non-
decreasing functions (Gafarov et al. 2012) and that the t -axis can be divided into intervals,
on which function Fl(t) is a linear function of the form Fl(t) = Fk

l (t) = uk
l · (t − tk−1

l)+ bk
l ,

where k is the number of the interval [tk−1
l , t kl), uk

l is the slope of the function and bk
l =

Fl(t
k−1
l). The points tkl which separate the intervals are called break points.

Let t ′ = dl − pl and t ′′ = dl − ∑l

i=1 pi . In addition, assume that t sl−1 − pl < t ′ < ts+1
l−1 −

pl, s + 1 ≤ vl−1 and thl−1 < t ′′ < th+1
l−1 , h + 1 ≤ vl−1, where vl−1 is the number of intervals.

The function Φ1(t) is obtained from function Fl−1(t) by shifting the diagram of func-
tion Fl−1(t) to the left by the value pl , adding a new break point t ′ and increasing
the values us+1

l−1 , us+2
l−1 , . . . , u

vl−1+1
l−1 by wl , i.e., the weighted number of tardy jobs (and

thus the slope of the function) increases. The function Φ2(t) is obtained from function
Fl−1(t) by adding a column which results from the new break point t ′′ and increas-
ing the values uh+1

l−1 , uh+2
l−1 , . . . , u

vl−1+1
l−1 by wl , i.e., the weighted number of tardy jobs in-

creases. So, we transform Fl−1(t) into Φ1(t) and Φ2(t) analytically. The function Fl(t) =
max{Φ1(t),Φ2(t)} can be computed analytically as well. Then the processing time of this
modification linearly depends on the number of break points. Since the functions Fl(t) are
convex and the slopes uk

l are equal to the weighted number of tardy jobs in a partial sched-
ule, the number of break points is less than or equal to O(

∑l

j=1 wj) at stage l. Moreover, the
number of break points is less than or equal to O(dmax) for instances with integer parameters.
Then the time complexity of this graphical modification is equal to O(nmin{dmax,

∑
wj }).

A more detailed description, the complete proofs and a numerical example of such an
algorithm for the problem 1(no-idle)||max

∑
Tj with unit weights have been presented in

Gafarov et al. (2012). In particular, it has been shown that for such an algorithm, Fl(t) is a
continuous, piecewise-linear and convex function Fl(t) which is also true for the problem
under consideration. The time complexity of the graphical modification for the special case
1(no-idle)||max

∑
Tj is equal to O(n2) (Gafarov et al. 2012).

As a consequence, we can prove that the problem 1(sa)|rj |max
∑

Tj , the complexity
status of which was open (Aloulou et al. 2007), is polynomially solvable. From (Aloulou

134 Ann Oper Res (2013) 207:121–136

et al. 2004), it is known that for the problem 1(sa)|rj |max
∑

Tj , there exists an optimal
schedule in which the jobs are processed from some release date ri without idle times, i.e.,
for each possible ri (which is the starting time of the first job in the schedule), we have
to solve the problem 1(no-idle)||max

∑
Tj , i.e., the resulting solution algorithm has a time

complexity of O(n3).

3 Complexity results for single machine problems with deadlines and/or other
objective functions

First, we present two new complexity results for single machine maximization problems.

Lemma 6 The problems 1(no-idle)|Dj |max
∑

Tj and 1(no-idle)|Dj |max
∑

Uj are NP-
hard.

Proof We give a reduction from the partition problem. Given an instance of the partition
problem, we construct an instance of the scheduling problems with n = n̄ + 1 jobs, where
pj = bj and dj = Dj = ∑n̄

j=1 pj + 1, j = 1,2, . . . , n̄. In addition, let pn̄+1 = 1, dn̄+1 = A

and Dn̄+1 = A + 1. It is obvious that in any feasible schedule, the jobs 1,2, . . . , n̄ are on-
time.

If the instance of the partition problem has the answer “YES”, then there exists an op-
timal sequence π = (π1, n̄ + 1,π2), where {π1} = N ′,

∑
j∈N ′ pj = A, {π2} = N̄ \ N ′ and

∑n̄+1
j=1 Tj (π) = 1. If the answer is “NO”, then in all feasible sequences

∑n̄+1
j=1 Tj (π) = 0.

Analogously,
∑n̄+1

j=1 Uj(π) = 1 and
∑n̄+1

j=1 Uj(π) = 0, respectively, hold. �

Lemma 7 The problems 1(no-idle)|rj |max
∑

wjCj and 1(no-idle)|Dj |max
∑

wjCj are
NP-hard.

Proof We give a reduction from the partition problem. Given an instance of the partition
problem with n̄ numbers, we construct an instance of the scheduling problem with n = n̄+1
jobs, where pj = wj = bj and rj = 0, j = 1,2, . . . , n̄. In addition, let pn̄+1 = 1,wn̄+1 = 0
and rn̄+1 = A.

If the instance of the partition problem has the answer “YES”, then there exists an optimal
sequence π = (π1, n̄+1,π2), where {π1} = N ′,

∑
j∈π1

pj = A, {π2} = N̄ \N ′,
∑

j∈π2
pj =∑

j∈N bj − A and

n̄+1∑

j=1

wjCj (π) =
∑

1≤i≤j≤n̄

bibj +
(∑

j∈N̄

bj − A

)

,

since in the sequence π ′ = (π1,π2, n̄ + 1), the equality

n̄+1∑

j=1

wjCj (π) =
∑

1≤i≤j≤n̄

bibj

holds (Lenstra et al. 1977). The jobs from the partial sequences π1 and π2 can be processed
in an arbitrary order (Lenstra et al. 1977). If the answer is “NO”, then

n̄+1∑

j=1

wjCj (π) <
∑

1≤i≤j≤n̄

bibj +
(∑

j∈N̄

bj − A

)

.

Ann Oper Res (2013) 207:121–136 135

Table 1 Complexity results

Problem Maximization version Minimization version

Total tardiness problems

1(no-idle)||max
∑

wj Tj NP-hard in the ordinary sense
(Theorem 2), Solution algorithm with
complexity O(nmin{∑wj ,dmax})

strongly NP-hard

1(no-idle)|rj |max
∑

Tj NP-hard (Theorem 1) strongly NP-hard

1(no-idle)||max
∑

Tj Solution algorithm with complexity
O(n

∑
pj) (Gafarov et al. 2010a).

Solution algorithm with complexity
O(n2) (Gafarov et al. 2012)

NP-hard in the ordinary sense.
Solution algorithm with
complexity O(n4 ∑

pj)

(Lawler 1977)

1(no-idle)|Dj |max
∑

Tj NP-hard (Lemma 6) Special case 1||∑Tj is
NP-hard in the ordinary sense

1(sa)|rj |max
∑

Tj Polynomially solvable in O(n3) time
(see Sect. 2.2)

1(sa)|rj |max
∑

wj Tj NP-hard (Theorem 2)

1(nd)|rj |max
∑

wj Tj strongly NP-hard (Aloulou et al. 2007) strongly NP-hard

Other maximization problems

1(no-idle)|Dj |max
∑

Uj NP-hard (Lemma 6) NP-hard (van den Akker and
Hoogeveen 2004)

1(no-idle)|Dj |max
∑

wj Cj NP-hard (Lemma 7) strongly NP-hard (Lenstra
et al. 1977)

1(no-idle)|rj |max
∑

wj Cj NP-hard (Lemma 7) strongly NP-hard (Lenstra
et al. 1977)

Thus, the problem 1(no-idle)|rj |max
∑

wjCj is NP-hard.
In an analogous way, for the problem 1(no-idle)|Dj |max

∑
wjCj , we consider an in-

stance with n = n̄ + 1 jobs, where pj = bj ,wj = 0, Dj = ∑n̄+1
i=1 pi, j = 1,2, . . . , n̄. In

addition, let pn̄+1 = 1,wn̄+1 = 1 and Dn̄+1 = A + 1. Now it is obvious that the instance of
the partition problem has the answer “YES” if and only if Cn̄+1(π) = A + 1. �

Next, in Table 1, we give an overview on new results which we presented in this paper
and a comparison with known results for the corresponding minimization problems. Here,
NP-hard means that the existence of a pseudo-polynomial algorithm is unknown.

4 Concluding remarks

In this paper, we considered several scheduling problems, where the optimization criterion
is opposite to the classical problems. Mainly, we considered complexity issues of such prob-
lems with total tardiness criterion. NP-hardness proofs for 6 open problems were presented
as well as a pseudo-polynomial solution algorithm for the total weighted tardiness maxi-
mization problem.

For future research, it is interesting to compare the complexity of maximization and
minimization versions for problems with other objective functions. Another subject can be
the improvement of algorithms for the original problems by analyzing the solutions found
in the maximization versions.

136 Ann Oper Res (2013) 207:121–136

Acknowledgements This work has been partially supported by DAAD (Deutscher Akademischer Aus-
tauschdienst): A/08/80442/Ref. 325 and by RFBR (Russian Foundation for Basic Research): 11-08-13121.
The authors are grateful to the anonymous referees for their constructive suggestions which helped us to
improve the presentation.

References

Aloulou, M. A., & Artigues, C. (2010). Flexible solutions in disjunctive scheduling: general formulation and
study of the flow-shop case. Computers & Operations Research, 37(5), 890–898.

Aloulou, M. A., Kovalyov, M. Y., & Portmann, M.-C. (2004). Maximization problems in single machine
scheduling. Annals of Operations Research, 129, 21–32.

Aloulou, M. A., Kovalyov, M. Y., & Portmann, M.-C. (2007). Evaluation flexible solutions in single ma-
chine scheduling via objective function maximization: the study of computational complexity. RAIRO.
Recherche Opérationnelle, 41, 1–18.

Baker, K. R. (1974). Introduction to sequencing and scheduling. New York: Wiley.
Gafarov, E. R., Lazarev, A. A., & Werner, F. (2010a). Algorithms for maximizing the number of tardy jobs

or total tardiness on a single machine. Automation and Remote Control, 71(10), 2070–2084.
Gafarov, E. R., Lazarev, A. A., & Werner, F. (2010b). Classical combinatorial and single machine schedul-

ing problems with opposite optimality criteria. Preprint 11/10, FMA, Otto-von-Guericke-Universität
Magdeburg.

Gafarov, E. R., Lazarev, A. A., & Werner, F. (2012). Transforming a pseudo-polynomial algorithm for the
single machine total tardiness maximization problem into a polynomial one. Annals of Operations Re-
search, 196(1), 247–261.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979). Optimization and approxima-
tion in deterministic machine scheduling: a survey. Annals of Discrete Mathematics, 5, 287–326.

Lawler, E. L. (1977). A pseudopolynomial algorithm for sequencing jobs to minimize total tardiness. Annals
of Discrete Mathematics, 1, 331–342.

Lawler, E. L., & Moore, J. M. (1969). A functional equation and its application to resource allocation and
sequencing problems. Management Science, 16(1), 77–84.

Lenstra, J. K., Rinnooy Kan, A. H. G., & Brucker, P. (1977). Complexity of machine scheduling problems.
Annals of Discrete Mathematics, 1, 343–362.

van den Akker, M., & Hoogeveen, H. (2004). Minimizing the number of tardy jobs. In Y.-T. Leung (Ed.),
Handbook of scheduling: algorithms, models and performance analysis. London: Chapman & Hall.

	Single machine total tardiness maximization problems: complexity and algorithms
	Abstract
	Introduction
	Single machine problems with total tardiness objective function
	NP-hardness proof for the problem 1(no-idle)|rj|maxTj
	NP-hardness for the problem 1(no-idle)||maxwjTj
	Solution algorithms for the problem 1(no-idle)||maxwjTj

	Complexity results for single machine problems with deadlines and/or other objective functions
	Concluding remarks
	Acknowledgements
	References

