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1. INTRODUCTION

Nowadays, problems of the rail planning are attracting
attention of specialists due to the fact that they are chal-
lenging, tough, nontrivial and, what is more important,
are of practical significance. As a rule, specialists divide
railway problems into the time scheduling and routing
problems. See Caprara (2011) and Zwaneveld (2001). At
the same time, there exist sets of the cogeneration models.
See Lazarev et al. ”The integral formulation the tasks of
making up a trains and their movement schedules” (2012)
and Liu (2012). In particular, tasks of making up a trains
and destination routing generally require determining both
trip working of trains and hourly traffic flow.

In this research we consider the problem of making up
a freight train and the routes on the railway. It is nec-
essary from the set of orders available at the stations
to determine time-scheduling and destination routing by
railways in order to minimize the total completion time.
See Lazarev et al. ”Theory of Scheduling. The tasks of
railway planning” (2012) and Lazarev et al. ”Theory of
Scheduling. The tasks of transport systems management”
(2012).

In this paper it was studied the particular case of the
problem, specifically, the construction of orders delivery
schedules among 3 railway stations by one locomotive
(Fig. 1). Application of dynamic programming is very
effective for the solution of this problem. In this paper
it was suggested a polynomial algorithm and shown the
results of the computing experiment.
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2. PROBLEM STATEMENT

At each station there is a set of orders available for
delivery. Each order is characterized by a release date and
a destination station. If the order consists of a few cars
k > 1 then for each car there will be created a separate
order.

Let us introduce the following notations:

• q – the maximal number of the cars (wagons);
• O – set of all orders;
• n – total number of orders;
• nij – set of orders available for delivery between

stations i and j;
• Jijk – k-th order for delivery from station i to

destination station j;
• rijk – release time of the orders;
• pij – travelling time.

To simplify the description of our algorithm we will assume
that pij = p ∀i 6= j.

The objective function which tries to minimize total com-
pletion time is the following:

minF =
∑

Jijk∈O
Cijk, (1)

where Cijk is the completion time to destination station.
Also, this function describes the average time of order
delivery so it can be rewritten in the form:

F =
∑

Jijk∈O

Cijk − rijk
n

.

This problem is the generalization of the two stations
problem for which polynomial algorithms are known. See
Baptiste ”Batching identical jobs” (2000) and Hagai Ilani
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Fig. 1. The railway station location

et al. ”A General Two-directional Two-campus Transport
Problem” (2012).

Definition 1. A trip of the locomotive in problem (1) is
the quadruple (s, t, sd, o), where s is the departure station,
t is the departure time, sd is the destination station, o is
the set of orders delivered from the station s.

Definition 2. Feasible schedule in problem (1) is the
sequence of trips (sl, tl, s

d
l , ol), l = 1, . . . , r, where r is the

number of trips, such that

sl = sdl−1, l = 2, . . . , r,

tl ≥ tl−1 + p, l = 2, . . . , r,

rijk ≤ tl ∀Jijk ∈ ol,⋃
l=1,...,r

ol = O,
⋂

l=1,...,r

ol = ∅.

It is not difficult to notice that the locomotive can have
the following strategies of its route management.

1. Moving. If the locomotive stays at any station, moving
is possible in one from two directions with maximum of
orders available but not more than q.

2. Waiting. This point is possible if the total number of
orders available for delivery is less than q (cars capacity
of a train). And this mode is impossible if the flow of the
new orders is not expected.

3. Idle. This mode is necessary if the number of orders is
not available for delivery. Obviously, the ”idle” is impos-
sible to use twice in succession. Also, the locomotive can
idle only after departure to the station or at the starting
time.

It is easy to show that using of these strategies does not
cut optimal schedule that minimize the objective function.
Therefore, let us assume that the locomotive movement
satisfies these rules.

The next proposition allows us to determine the possible
moments of the locomotive departure.

Proposition 1. Possible moments of the locomotive de-
parture in the optimal schedule belong to the following set:

T = {t = rijk + mp}
⋃
{t = mp},

i, j ∈ {1, 2, 3}, k ∈ {1, . . . , nij}, m ∈ {0, . . . , 2n− 1}.

Proof. Let us assume that there exists optimal schedule
ϕ, in which some moments of the locomotive departure do
not belong to the set T . Considering the moment t1 from
this schedule we will get the following: if t1 /∈ T let us
choose t̄ = max{t : t ∈ T, t < t1}. It is obvious that such
t̄ exists since 0 ∈ T . In this case, during time period (t̄, t1]
there are no new orders because release times belong to
T . It means we can receive the feasible schedule ϕ′ from ϕ
with the help of the replacement t1 by t̄.

Rewriting the objective function in terms of trips, we will
get:

Fϕ =
∑

l=1,...,r

(tl + p) · |ol|,

where |ol| is the number of orders in the set ol. On the
other hand, we can rewrite Fϕ as:

Fϕ = Fϕ′ + (t1 − t̄) · |o1|.
Consequently, the schedule ϕ can be optimal only if
|o1| = 0, i.e. in the case of idle mode in the first trip.
But, according to strategies 1–3, idle is not possible after
waiting mode. It means that t1 ∈ T .

Let us assume that tl ∈ T, l = 1, 2, . . . , i and consider
(i + 1)-th trip, if ti+1 /∈ T choose

t̄ = max{t : t ∈ T, t < ti+1}.
Since ti ∈ T , ti + p ∈ T and ti+1 ≥ ti + p, we conclude
that ti + p < ti+1. It means that we can replace ti+1 by
t̄ and get feasible schedule with the same sets of orders
in all trips. However, the objective function value will be
the same only in the case of idle, but it contradicts with
the strategy 3 due to the fact idle is not possible after
waiting mode. This contradiction leads to the following
tl ∈ T, l = 1, 2, . . . , r. 2

Definition 3. Let us suppose, that the locomotive is
in the state S(s, t, k12, k23, k31, k13, k32, k21) if at the time
moment t ∈ T , it is at the station s and by the current
time moment has been delivered k12 orders from the first
to the second station, k23 orders from the second to the
third station and etc.

Let the objective function value of the state
S(s, t, k12, k23, k31, k13, k32, k21) be denoted by

C(s, t, k12, k23, k31, k13, k32, k21)

The transition from one state to another occurs according
to the strategies mentioned above. In this case, if the
locomotive can move from the state S1 to S2 directly, then
the objective value of the state can be calculated with the
help of the following formula:

C2 = C1 + (t′ + p) ∗ k,

where t′ is the time moment from the state S1 and k is
the number of the orders delivery when transforming into
the new state.

The objective function value does not change if the loco-
motive moves to another station in idle or waiting mode. In
summary, the main idea of the algorithm is the following:
first of all, the graph of states in ascending order of t is
built. The states are generated by the strategies mentioned
above. From the same two states in the tree remains the
only one that has a lower value of objective function. The
solution to the problem is to reach the state which has the
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lowest value of the objective function from the set of the
states completed:

min
s,t

C(s, t, n12, n23, n31, n13, n32, n21).

Complexity of the algorithm is estimated by the total
number of states in the graph. Since the number of time
moments t from the set T is O(n2), the total number of
states can be estimated as O(n2

∏
i6=j

(nij + 1)) or O(m8),

where m = max
ij

nij .

In the case of different travelling times p12, p23, p13 the
set of possible moments of the locomotive departure equals
to

T = {t = rijk + m1p12 + m2p23 + m3p13}∪
∪{t = m1p12 + m2p23 + m3p13},

where i, j ∈ {1, 2, 3}, k ∈ {1, . . . , nij}, m1 + m2 + m3 ∈
{0, . . . , 2n − 1}. It means that the power of the set T is
O(n5).

3. CONCEPTS OF THE ALGORITHM

One of the key moments of our approach is the merge of the
same nodes. The states are considered equal if at the time
moment t both locomotives are on the same station and
the numbers of the orders delivered to each station are also
equal. Obviously, from two states in the tree remains the
only one that has a lower value of the objective function.
If the state was added to the tree before, the algorithm
will replace it, otherwise we choose just added one.

This situation is represented in the Fig. 2. As you can see
the value of the state S(1,7,2,0,0,0,0,2) equals to 22, if its
parents were enclosed in the quadrilateral and equals to 24,
if its parents were enclosed in the pentagon. This condition
can be an important factor in choosing between them
(parent’ branch). Thereby, on each step it is necessary a
full tree survey.

In the simpliest implementation of the algorithm the
solution tree can be stored in the memory. But this
approach it not optimal. For minimization of the memory
used and increasing the performance this work suggests the
other tree representations in the memory and also creats
a garbage collector. In the RAM arestored only the states
which belong to [ti − p; tk], where ti is the current time
moment, p is the traveling time and tk is the maximum
value of the time of the set T . States that do not satisfy
this condition should be relocated to the hard disk. They
will be needed later when it is necessary to build and show
a full branch of the tree.

During the tree creation process, as well as for the branch
and bound scheme, one of the important factors is a
cutting off an ”unpromising” branch. We obtain the upper
bound C when the first complete state (all orders were
delivered) is received.

After that, the algorithm tries to check the execution of
the inequation for all of the following states in order to cut
off the nodes that have the worst value of the objective
function:

Fig. 2. The same states merging process

C ′ +
∑
Jijk

[max{t, rijk + p}] > C,

where C ′ is the value of the current state, t is the current
time moment. The left side of the inequation is the lower
bound for the current state (all unfulfilled orders delivered
to the destination after they are received immediately).

In order to illustrate our approach, let us the following
example and set n=6, r1,2=r2,3=r3,1={1,3}, q=2, p=2.
The locomotive at the initial time t = 0 is at the station
1 and has the following options:

• to stay at the station s = 1 until the time of order
receipt t = 1, thus go to state S(1, 1, 0, 0, 0, 0, 0, 0);

• to move to the station s = 2 by the idle,
S(2, 2, 0, 0, 0, 0, 0, 0);

• to move to the station s = 3 by the idle,
S(3, 2, 0, 0, 0, 0, 0, 0).

If at the initial time t=0, the locomotive stays at the
station s=1 until the time of order receipt then it is
possible to deliver the first order available either to the
station s=2 at the next time moment, S(2, 3, 1, 0, 0, 0, 0, 0),
or to stay at the station s=1 until the time of order
receipt, S(1, 3, 0, 0, 0, 0, 0, 0). If at the initial time t=0 the
locomotive moves to the station s=2 by the idle, then
at the next time moment the locomotive can transport
all orders available to the station s=3 or stay at the
station s=2 until the time of the order receipt. In the
latter case the locomotive has the only one choice: to carry
all orders available at this time moment to the station
s=3, S(3, 5, 0, 2, 0, 0, 0, 0). It should be noted that for the
locomotive there are no any other options for the transition
from the previous state. When the locomotive stays at the
station s=3, he has the only one possible way: to carry all
orders available to the station s=1, S(1, 7, 0, 2, 2, 0, 0, 0).
After that the locomotive can ship remaining orders to
the station s=2, S(2, 9, 2, 2, 2, 0, 0, 0) and in this state the
locomotive delivers all orders available. The part of states
graph is shown in the Fig. 3

4. COMPUTING EXPERIMENT

Table 1 shows the results of a computing experiment. The
first column contains input parameters – time moments,
the second column contains the total number of orders,
the third – the number of the nodes in the tree if the
problem was solved through the blind search, the fourth
– the number of theoretical nodes, in the last one - the
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(1,0,0,0,0,0,0,0)

(1,1,0,0,0,0,0,0) (2,2,0,0,0,0,0,0) (3,2,0,0,0,0,0,0)

(3,4,0,1,0,0,0,0) (2,3,0,0,0,0,0,0)

(3,5,0,2,0,0,0,0)

(1,7,0,2,2,0,0,0)

(2,9,2,2,2,0,0,0)

Fig. 3. The part of states graph

Table 1. Results of computing experiment

input values
cars
count

blind
search

theoretic
dynamic
prgrm.

practic
dynamic
prgrm.

r1,2 = r2,3 = r3,1 =
{1, 3} 6 327 648 38

r1,2 = r2,3 = r3,1 =
r1,3 = r3,2 = r2,1 =

{1, 3}
12 351 753 387

r1,2 = r2,3 = r3,1 =
r1,3 = r3,2 = r2,1 =

{1, 3, 5}
18 377 166 212 2 260

r1,2 = r2,3 = r3,1 =
r1,3 = r3,2 = r2,1 =

{1, 3, 5, 7}
240 3725

1 154
289 852

9 268 585

number of the nodes which were obtained in practice. In
all examples set p = 2, q = 2. Also, from this table it may
be seen that the practical complexity is much lower than
it is theoretical estimation.

5. CONCLUSION

In this research it was analysed the problem of making up
a freight train and its routes on the railway. Also, it was
proposed a polynomial algorithm for the construction of
orders delivery schedules for one locomotive plying among
3 railway stations. As an example, were represented the
steps of making up a freight train and destination routing
in order to minimize the total completion time. Also, there
were shown the results of the computing experiments, the
upper bound of the complexity and the total number of
nodes while solving the problem by different approaches.
The complexity of this algorithm is O(n8) operations.

Future research

• Creation of a fast and accurate technique to deter-
mine a lower bound for cutting off an unpromising
branch;

• Consideration of more complex arrangement of the
stations in the limits of which a locomotive will have
an opportunity to deliver orders;

• Investigation of the case when orders are delivered by
means of several locomotives;

• Improvement of the algorithm performance and de-
creasing the RAM usage;

• Parallelizing the algorithm.
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