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Abstract

In this paper, the single track railway scheduling problem with 2
stations and Q segments of the track is considered. Two subsets of
trains N ′

1 and N ′
2 are given, where trains from N ′

1 go from the station
1 to the station 2, and trains from N ′

2 go in the opposite direction. The
speed of trains over each segment is the same. A polynomial time re-
duction from the problem under consideration to a special case of the
single machine equal-processing-time scheduling problem with setup
times is presented. For this special case with different objective func-
tion under different constraints polynomial time solution algorithms
are presented.

Keywords: Single track railway scheduling problem, single machine,
setup times, equal processing time.

Introduction
A single track network can be seen as an embryonic portion for any
type of railway network topology. Furthermore, almost all national
railway networks have sections where there is a single track between
some stations. For some countries (USA, Australia) a significant part
of the network is single track. For multi track networks such a single-
track segment can be considered as a bottleneck, in which the traffic
capacity is restricted.

For the problem different optimization criterion on different con-
straints are considered:
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- optimization criterion: initial scheduling to minimize total
idle-time, rescheduling to minimize delays etc.;

- additional constraints: overtake segments, release and due
dates, priority and velocity of trains etc.

A literature review on the problem can be found, e.g., in [10].
In this paper, we consider a special core subcase with only two

stations. The subcase has its own practical significance and appears in
private railways, e.g., when a company transports loads between two
production points.

The Single Track Railway Scheduling Problem with two stations
(STRSP2) is formulated as follows. Given a single track railway be-
tween two stations and a set N ′ = N ′

1

⋃
N ′

2, N ′
1

⋂
N ′

2 = ∅ of n′ trains.
Trains from the subset N ′

1 go from the station 1 to the station 2, and
trains from the subset N ′

2 go in the opposite direction. |N ′
1| = n′

1 and
N ′

2 = n′
2, n

′
1+n′

2 = n′. The track is divided on Q segments 1, 2, . . . , Q.
Trains from the set N ′

1 traverse segments in an order 1 → 2 → · · · → Q
and trains from the set N ′

2 in an order Q → Q − 1 → . . . 1. At most
only one train can be on any track segment at a time1. If a train
j′ ∈ N ′

1 is on a track segment, then no train i′ ∈ N ′
2 can be on the

track and vice versa. For each segment q, q = 1, 2 . . . , Q, a traversing
time pq is given, in which a train j ∈ N traverses the segment, i.e.,
for each segment q, q = 1, 2 . . . , Q, all the trains go with the same
speed2. Let Sj′(Π) and Cj′(Π), j′ ∈ N ′ be the start and completion
times of the train j′ in a schedule Π, i.e. Sj′(Π) is a departure time of
the job j′ from the departure station and Cj′(Π) is an arrival time to
the destination station. Then in a feasible schedule we have:

- Cj′ ≥ Sj′ +
∑Q

q=1 pq, j′ ∈ N ′;

- for any i′ ∈ N ′
1 and for any j′ ∈ N ′

2 we have Ci′ ≤ Sj′ or Cj′ ≤ Si′ .

In addition, a due date dj′ ≥ 0, a weight wj′ ≥ 0, a release date rj′ ≥ 0
(the earliest possible starting time, i.e. Sj′ ≥ rj′) for each train j′ ∈ N ′

can be given. If Cj′(Π) > dj′ , then train j′ is tardy and we have
Uj′(Π) = 1, otherwise Uj′(Π) = 0. If Cj′(Π) ≤ dj′ , then train j′ is on-
time. Moreover, let Tj′(Π) = max{0, Cj′(Π)− dj′} be the tardiness of
train j′ and Cmax(Π) = maxj′∈N ′{Cj′(Π)} is the makespan in sched-
ule Π. For the STRSP2 with release dates of minimizing the makespan
Cmax, the objective is to find an optimal schedule Π∗ that minimizes
the makespan Cmax. This problem is denoted STRSP2|rj |Cmax (simi-
lar to the traditional three-field notation α|β|γ for scheduling problems

1A segment is circumscribed by two signals: one signal from each side, which will
control when a train either can or cannot proceed on that segment. This exists as a safety
precaution.

2This assumption is not far away from practice, since most trains travel at a maximal
speed allowed.
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proposed by Graham et al. [6], where α describes the resource envi-
ronment, β gives the activity characteristics and further constraints
and γ describes the objective function.) In addition, in this paper we
deal with the following STRSP2 with different objective functions and
further constraints:

- minimizing the number of late trains STRSP2||∑Uj ;

- minimizing the weighted number of late trains
STRSP2||∑wjUj ;

- minimizing the total completion time STRSP2|rj |
∑

Cj when
release dates are given;

- minimizing the weighted total completion time
STRSP2||∑wjCj ;

- minimizing the total tardiness STRSP2||∑Tj ;

To the best of our knowledge there does not exist any publications
for this set of problems. But the following assumptions and notes can
be easily made. If Q = 1 then the problems under consideration are
equivalent to classical single machine scheduling problems [5] and as
consequence if speeds of trains are arbitrary for the segment, then some
of problems are NP-hard [5]. Note as well that the problems can be also
easily reformulated like shop scheduling problems [5] with Q machines.
Multi-stage scheduling problems where Q = 2, 3, are considered, e.g.,
in the classical paper [7].

The rest of the paper is organized as follows. In Section 1, a poly-
nomial time reduction of STRSP2 to a special case of the single ma-
chine equal-processing-time scheduling problem with setup times is
suggested. Polynomial time algorithms for the single machine problem
with above mentioned objective functions are presented in Sections 2
and 3.

1 Reduction of STRSP2 to the Single Ma-
chine Scheduling Problem

Denote pmax = maxq=1,2,...,Q{pq} and P =
∑Q

q=1 pq.

Lemma 1 Assume that for a train j′ ∈ N ′
1 we have Cj′ = Sj′ + P

and the train i′ ∈ N ′
1 is the next train which passes the track. Then

without violation of feasibility’s conditions the train i′ can be scheduled
as follows: Si′ = max{ri′ , Si′ + pmax} and Ci′ = Si′ +P , i.e. the train
i′ departs from the time point max{ri′ , Sj′ + pmax} and leaves without
idle-times.
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Proof. Let Sq
j′ , Sq

i′ , q = 1, 2, . . . , Q, be the start times to travel upon
segment q by the trains j′ and i′ respectively. To prove the feasibility
of the schedule under consideration we have only to show that Sq

i′ ≥
Sq
j′ + pq, q = 1, 2, . . . , Q, i.e. the train i′ starts moving on segment q,

when the train j′ has left it already. We have Sq
j′ = Sj′ +

∑q−1
l=1 pl and

Sq
i′ = Sj′ +

∑q−1
l=1 pl = max{ri′ , Sj′ + pmax}+

∑q−1
l=1 pl ≥ Sq

j′ + pq, i.e.
the Lemma is true. ¤

In fact, Lemma 1 defines the rhythm of departures of trains from
the same subset if they follow one-by-one. In addition, note that
max{ri′ , Sj′ + pmax} is the earliest possible departure time for the
train i′, since for the track q, pq = pmax, we have S

q
i′ = Sq

j′ +pq and as
consequence |Cj′ −Ci′ | ≥ pmax for any j′, i′ belong to the same subset
N ′

1 or N ′
2.

Lemma 2 For any j′ and i′ belong to the same subset N ′
1 or N ′

2 we
have |Sj′ − Si′ | ≥ pmax and |Cj′ − Ci′ | ≥ pmax.

Let a sequence of trains (j′1, j
′
2, . . . , j

′
n) be an order in which the

trains traverse the track. It is obvious, that a feasible schedule corre-
sponds to one and only one train sequence. Thus, an optimal schedule
corresponds to just one optimal train sequence. According to the train
sequence (j′1, j

′
2, . . . , j

′
n) a schedule can be computed as follows:





Sj′1 = rj′1 , Cj′1 = Sj′1 + P,
Sj′k = max{rj′k , Sj′k−1

+ pmax}, Cj′k = Sj′k + P, k = 2, . . . , n′, (∗)
Sj′k = max{rj′k , Sj′k−1

+ P}, Cj′k = Sj′k + P, k = 2, . . . , n′, (∗∗).
(1)

(∗) holds if both j′k and j′k−1 belongs to the same subset N ′
1 or N ′

2, else
(∗∗) holds.

According to Lemma 1 this schedule is feasible. Furthermore, for
the above mentioned objective functions, which are monotone functions
of the completion times of the trains, according to Lemma 2, algorithm
(1) from an optimal train sequence constructs an optimal schedule.

Based on these properties, the following reduction to the single
machine scheduling problem is proposed.

Single machine scheduling problem Given a set N =
N1

⋃
N2, N1

⋂
N2 = ∅ of n independent jobs that must be processed

on a single machine. Job preemption is not allowed. The machine can
handle only one job at a time. Processing times of jobs are equal
p, ∀j ∈ N . For each job j ∈ N , a due date dj ≥ 0, a weight
wj ≥ 0, a release date rj ≥ 0 (i.e., the earliest possible starting
time) can be given. A feasible solution is described by a permutation
π = (j1, j2, . . . , jn) of the jobs of the set N from which the correspond-
ing schedule can be uniquely determined by starting each job as early as
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possible. Let Sjk(π), Cjk(π) = Sjk(π)+ p be the start and completion
times of job jk in the schedule resulting from the sequence π. If jk ∈ N1

and jk+1 ∈ N2 then between jobs the machine has to be idle during a
setup time st = st1. If jk ∈ N2 and jk+1 ∈ N1 then between jobs the
machine has to be idle during a setup time st = st2. There is no setup
time between processing of jobs from the same subset, i.e. st = 0. In a
feasible schedule Sjk+1

= max{rjk+1
, Cjk + st} holds. Objective func-

tions are the same like for STRSP2. If Cj(π) > dj , then job j is tardy
and we have Uj(π) = 1, otherwise Uj(π) = 0. If Cj(π) ≤ dj , then job j
is on-time. Moreover, let Tj(π) = max{0, Cj(π)− dj} be the tardiness
of job j and Cmax(π) = maxj∈N{Cj(π)} is the makespan. We note
the scheduling problems according to the traditional three-field nota-
tion α|β|γ, e.g., 1|setup− times,N1, N2, pj = p, rj |Cmax for the single
machine scheduling problem with equal-processing-times, setup times
and release dates to minimize makespan.

The problems STRSP2|−|− for the previously mentioned objective
functions can be reduced to 1|setup− times,N1, N2, pj = p,−|− prob-
lems as follows. Subset of trains N ′

1 corresponds to the subset of jobs
N1, |N1| = |N ′

1|, and subset N ′
2 of trains to the subset N2, |N2| = |N ′

2|,
of jobs. Let q, q ∈ {1, 2, . . . , Q} be the index of segment for which
pq = pmax. Denote TAILleft =

∑q−1
l=1 pl, TAILright =

∑Q
l=q+1 pl.

Then assume p = pmax, st1 = 2 · TAILright, st2 = 2 · TAILleft, if
j ∈ N1 then release date rj = rj′+TAILleft, else rj = rj′+TAILright.
If j ∈ N1 then due date dj = dj′−TAILright, else dj = dj′−TAILleft.
Weights are the same.

Let us consider a job sequence (j1, j2, . . . , jn), corresponding train
sequence (j′1, j

′
2, . . . , j

′
n), where a job jk, k = 1, 2, . . . , n, corresponds

to a train j′k, and schedules which are determined by starting each
job/train as early as possible (for jobs) or by algorithm (1) (for trains)
according to the sequences. Then for a job j and a train j′ we can
construct the following table of correspondence:

Table 1: Parameters’ correspondence

train/job release date due date start time completion
time

j ∈ N1 rj = rj′ +
TAILleft

dj = dj′ −
TAILright

Sj′ +
TAILleft

Cj′ −
TAILright

j′ ∈ N ′
1 rj′ dj′ Sj′ Cj′

j ∈ N2 rj = rj′ +
TAILright

dj = dj′ −
TAILleft

Sj′ +
TAILright

Cj′ −
TAILleft

j′ ∈ N ′
2 rj′ dj′ Sj′ Cj′

In addition, we have the following correspondence of the objective func-
tions values for the respective schedules:

Table 2: Objective function values’ correspondence
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Objective function value
STRSP2| − |−

Objective function value 1|setup −
times,N1, N2, pj = p,−|−∑

wj′Uj′
∑

wj′Uj′∑
Tj′

∑
Tj′∑

wj′Cj′
∑

wj′Cj′ +
∑

j′∈N ′
1
wj′ · TAILright +∑

j′∈N ′
2
wj′ · TAILleft

So, we can conclude that for the functions mentioned in the Table
2 an optimal job sequence (j1, j2, . . . , jn) corresponds to an optimal
train sequence (j′1, j

′
2, . . . , j

′
n), i.e. STRSP2| − |− problems can be re-

duced to corresponding 1|setup− times,N1, N2, pj = p,−|− problems
in polynomial time. In the resulting single machine problems all jobs
j ∈ N1 starts not earlier than time r = TAILleft and jobs j ∈ N2

starts not earlier than time r = TAILright. In the following Sections
some algorithms are presented for problems where all release dates r
equals 0, but these algorithms can be easily adopted for the resulting
problems.

A similar reduction can be made for STRSP2|rj |Cmax to 1|setup−
times,N1, N2, pj = p, rj |Cmax, but in such a reduction there is no
tight connections between values of Cmax, i.e., an optimal job se-
quence (j1, j2, . . . , jn) can correspond to a not optimal train sequence
(j′1, j

′
2, . . . , j

′
n). Although, the modification of solution algorithms for

1|setup− times,N1, N2, pj = p, rj |Cmax presented in the next Section
can be used for STRSP2|rj |Cmax as well.

So, in the next two Sections solution algorithms not for STRSP2|−
|− problems but for the following 1|setup− times,N1, N2, pj = p,−|−
problems are presented:

- 1|setup− times,N1, N2, pj = p, rj |Cmax;

- 1|setup− times,N1, N2, pj = p, rj
∑

Cj ;

- 1|setup− times,N1, N2, pj = p|∑wjCj ;

- 1|setup− times,N1, N2, pj = p|∑Tj ;

- 1|setup− times,N1, N2, pj = p|∑Uj ;

- 1|setup− times,N1, N2, pj = p|∑wjUj .

A survey of scheduling problems with setup times can be found, e.g.,
in [1]. In [9], a single machine problem with jobs grouped in classes
is considered, where setup times are only required when processing
switches from jobs of one class to jobs of another class. Another single
machine problem with setup-times and jobs families is considered in
[2]. Some results in equal-processing-time scheduling are presented in
[3, 8]. In [4] authors propose a compact MIP formulation for single
machine problems with piecewise linear objective functions, which has
been shown to be efficient for academic benchmarks as well as on real-
life industrial problems.
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Definition 1. We will call schedules for 1|setup− times,N1, N2, pj =
p,−|− problems left-shifted, if they are determined by starting each
job as early as possible. It is obvious that for any afore mentioned
problem there are optimal schedules which are left-shifted.
Definition 2. Let Θ = {t|t = rj + x1 · p + x2 · st1 + x3 · st2, j ∈
{1, 2, . . . , n}, x1, x2, x3 ∈ {0, 1, 2, . . . , n}, x2 + x3 ≤ x1}.
Notice that there are at most O(n4) values in Θ.

Lemma 3 In all left-shifted schedules, job starting times belong to Θ.

Proof. Let in a feasible left-shifted schedule Π job jk, 1 < k < n, be
the earliest job, for which Sjk /∈ Θ, i.e. a starting time of its predecessor
Sjk−1

∈ Θ. The earliest possible starting time S of the job jk is defined
as follows:





S = max{rjk , Sjk−1
+ p}, (∗)

S = max{rjk , Sjk−1
+ p+ st1}, (∗∗)

S = max{rjk , Sjk−1
+ p+ st2}. (∗ ∗ ∗)

(*) holds if both jk and jk−1 belongs to the same subset N1 or N2,
(**) holds if jk ∈ N2 and jk−1 ∈ N1 and (***) holds if jk ∈ N1 and
jk−1 ∈ N2. Obviously, S ∈ Θ. Since Sjk /∈ Θ, we have S < Sjk and
the schedule Π is not left-shifted. ¤

2 Algorithms for the Problems with Or-
dered Subsets N1 and N2

In this Section solution algorithms for the following problems are pre-
sented:

- 1|setup− times,N1, N2, pj = p, rj |Cmax;
- 1|setup− times,N1, N2, pj = p, rj

∑
Cj ;

- 1|setup− times,N1, N2, pj = p|∑wjCj ;
- 1|setup− times,N1, N2, pj = p|∑Tj .

All the algorithms are based on the same properties of optimal
solutions and use the same search procedure.

Denote the subset N1 = {j1, j2, . . . , jn1} and the subset N2 =
{i1, i2, . . . , in2}.
Lemma 4 For each of the above mentioned problems there is an op-
timal schedule in which jobs are processed in a special order:

- for the problems 1|setup − times,N1, N2, pj = p, rj |Cmax and
1|setup− times,N1, N2, pj = p, rj |

∑
Cj jobs are ordered accord-

ing to non-decreasing release dates, i.e., rj1 ≤ rj2 ≤ · · · ≤ rjn1

and ri1 ≤ ri2 ≤ · · · ≤ rin2
;
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- for the problem 1|setup − times,N1, N2, pj = p|∑wjCj jobs in
each subset are ordered according to non-increasing weights, i.e.
wj1 ≥ wj2 ≥ · · · ≥ wjn1

and wi1 ≥ wi2 ≥ · · · ≥ win2
;

- for the problem 1|setup − times,N1, N2, pj = p|∑Tj jobs in
each subset are ordered according to non-decreasing due dates,
i.e. dj1 ≤ dj2 ≤ · · · ≤ djn1

and di1 ≤ di2 ≤ · · · ≤ din2
.

Proof. The Lemma can be easily proven as follows. If in an optimal
schedule Π two jobs which belong to the same subset N1 or N2 are
processed in violation of corresponding order then we can interchange
them in the schedule without increasing of the objective function value.
¤

Next we present a solution algorithm for the 1|setup −
times,N1, N2, pj = p, rj |Cmax problem and explain how it can be used
for other problems considered in the Section. Assume that jobs in N1

and N2 are ordered according to Lemma 4. In the algorithm one-by-
one we consider jobs i1, i2, . . . , in2 . For each job ik, k = 1, 2, . . . , n2,
we have to consider all positions l, l = 0, 1, 2, . . . , n1, where position l
means that job jl precedes job ik in a constructed schedule and ik pre-
cedes job jl+1. If for the job ik a position l is chosen, then for the job
ik+1 only positions l, l + 1, . . . , n1 have to be considered (see Lemma
4).

It is easy to establish a time bound for this algorithm. The sets of
unscheduled jobs appear in the arguments of the recursive procedure
are of the form

{jl+1, jl+2, . . . , jn1 , ik, ik+1, . . . , in2},
i.e. they are completely characterized by the index pairs (k, l). The
arguments Sik−1

belong to the set Θ. Thus, we need to call function
Sequence(k, l, Sik−1

) at the most O(n6) times. The run time of the
function is O(n). So, the running time of the Algorithm 2 is O(n7).

According to Lemma 4 the Algorithm constructs an optimal job
sequence in O(n7) time.
The function can be easily modified to solve the problem
STRSP2|rj |Cmax. We have to change lines 4 and 9 of the function
Sequence:

4. Return pair (Cjn1
+ TAILright, σ);

. . .
9. Return pair (Cin2

+ TAILleft, σ);
To solve the problem 1|setup− times,N1, N2, pj = p, rj |

∑
Cj we have

to change the following lines of the function:

4. Return pair (
∑n1

x:=l+1 Cjx , σ), where Cjx – completion time of the
job jx in the partial schedule obtained from sequence σ, where
jobs are processed from the time Sik−1

+ p+ st1;
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Function Sequence(k, l, Sik−1
)

1: if k = n2 + 1 then
2: Schedule jobs jl+1, jl+2, . . . , jn1 from the time Sik−1

+p+st1 according
to the Algorithm (1);

3: σ := (jl+1, jl+2, . . . , jn1)
4: Return pair (Cjn1

, σ);
5: end if
6: if l = n1 then
7: Schedule jobs ik, ik+1, . . . , in2 from the time Sik−1

+ p according to
the Algorithm (1);

8: σ := (ik, ik+1, . . . , in2)
9: Return pair (Cin2

, σ);
10: end if
11: S := Sik−1

;
12: fmin := ∞;
13: σmin := ();
14: for pos := l to n1 do
15: if pos = l then
16: Sik := max{rik , S + p};
17: If l = 0 then S := 0 else S := S + p+ st2;
18: (f, σ) := Sequence(k + 1, l, Sik);
19: else
20: Sjpos := max{rjpos , S};
21: Sik := max{rik , Sjpos + p+ st1};
22: (f, σ) := Sequence(k + 1, pos, Sik);
23: S := Sjpos + p;
24: end if
25: if fmin > f then
26: fmin := f ;
27: σmin := (jl+1, . . . , jpos, ik, σ)
28: end if
29: end for
30: Return pair (fmin, σmin);
Algorithm 2.
(F, πopt) := Sequence(1, 0,−p), where πopt is an optimal job sequence and
F = C∗

max is the minimal makespan;
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. . .

9. Return pair (
∑n2

x:=k Cix , σ), where Cix – completion time of the
job ix in the partial schedule obtained from sequence σ, where
jobs are processed from the time Sik−1

+ p;

. . .

25. If fmin > f + fcurrent Then,// where fcurrent is the total com-
pletion time of jobs in a partial sequence (jl+1, . . . , jpos, ik) sched-
uled from time Sik−1

+ p;

26. fmin := f + fcurrent;

Remember that for the problem 1|setup − times,N1, N2, pj =
p, rj |

∑
Cj jobs in N1 and N2 have to be ordered according to Lemma

4.
Analogously, the function can be changed to solve prob-

lems 1|setup − times,N1, N2, pj = p|∑wjCj and 1|setup −
times,N1, N2, pj = p|∑Tj . Note that for these two problem |Θ| =
O(n3), since all the release dates are equal 0, i.e. the run time of the
modified algorithms for these problems equals O(n6).

Lemma 5 The following problems are solvable in O(n7) or in O(n6)
time by Algorithm 2 and its modifications:

- 1|setup− times,N1, N2, pj = p, rj |Cmax and STRSP2|rj |Cmax;

- 1|setup− times,N1, N2, pj = p, rj
∑

Cj and STRSP2|rj |
∑

Cj;

- 1|setup− times,N1, N2, pj = p|∑wjCj and STRSP2||∑wjCj;

- 1|setup− times,N1, N2, pj = p|∑Tj and STRSP2||∑Tj;

3 Problems with Partially Ordered Subsets
Lemma 6 For the problem 1|setup − times,N1, N2, pj = p|∑wjUj,
there is an optimal left-shifted schedule, where on-time jobs from the
same subset N1 or N2 are ordered according to non-decreasing due
dates, i.e. dj1 ≤ dj2 ≤ · · · ≤ djn1

and di1 ≤ di2 ≤ · · · ≤ din2
.

Lemma 7 Assume, that the jobs are ordered according to Lemma 6.
For the problem 1|setup − times,N1, N2, pj = p|∑Uj, there is an
optimal left-shifted schedule and such indexes x, 1 ≤ x ≤ n1 and
y, 1 ≤ y ≤ n2, where only jobs jx, jx+1, . . . , jn1 , iy, iy+1, . . . , in2 are
on-time and processed according to the order from Lemma 6.

Both Lemmas 6 and 7 can be proven similarly to Lemma 4.

So, for the problem 1|setup − times,N1, N2, pj = p|∑Uj we have
to choose indexes x and y, such that x + y → max and jobs
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jx, jx+1, . . . , jn1 , iy, iy+1, . . . , in2 can all be processed on-time at the
beginning of a schedule. Thus, we have to consider at most
(n1 + 1) log(n2 + 1) pairs (x, y). For each of the pairs we solve
the problem 1|setup − times,N1, N2, pj = p|∑Tj with set of jobs
{jx, jx+1, . . . , jn1 , iy, iy+1, . . . , in2} by a modification of the Algorithm
2. If

∑
Tj(π

∗) = 0 then pair (x, y) is feasible. We can conclude the
following:

Lemma 8 The problem 1|setup−times,N1, N2, pj = p|∑Uj is solved
in O(n7 logn) time.

For the problem 1|setup − times,N1, N2, pj = p|∑wjUj a dynamic
programming polynomial time algorithm is suggested. The algo-
rithm based on the following assumptions. Note jobs in N =
{H1,H2, . . . , Hn}, where wH1

≤ wH2
≤ · · · ≤ wHn

. If wHk
= wHk+1

then dHk
≤ dHk+1

. Jobs from N1 and N2 are noted and ordered ac-
cording to Lemma 6. Let Hn ∈ N2 and Hn = ik. For the Hn a position
in a schedule is defined by a pair (t, l), where t ∈ Θ is the starting time
of the job, the index l = 0, 1, . . . , n1 means that on-time jobs from the
subset {j1, j2, . . . , jl} precede the job Hn in a schedule and on-time
jobs from the subset {jl+1, jl+2, . . . , jn1} are scheduled after Hn. A
position (−, n1+1) means that the job Hn is late and processed in the
end of schedule from time T ∈ Θ.

Then for each position (t, l) among O(n4) possible, we can decom-
pose the initial problem to two independent subproblems:

- with a set of jobs Nleft = {j1, j2, . . . , jl, i1, i2, . . . , ik−1}, which
have to be processed in interval [0, t);

- with a set of jobs Nright =
{jl+1, jl+2, . . . , jn1 , ik+1, ik+2, . . . , in2}, which have to be
processed in interval [t+ p, T );

Denote Tmax = max{t|t ∈ Θ}. Note that for the 1|setup −
times,N1, N2, pj = p|∑wjUj problem |Θ| = O(n3), since all release
dates of jobs equal 0. Next, we present a solution Algorithm 3 for this
problem.
It is easy to establish a time bound for this algorithm . The sets of
unscheduled jobs appear in the arguments of the recursive procedure
are in the form of

N ′ = {jl1 , jl1+1, . . . , jl2 , ik1 , ik1+1, . . . , ik2},

N ′ ⋂{Hh+1,Hh+2, . . . ,Hn} = ∅,
i.e. they are completely delineated by the index fives h, k1, k2, l1, l2.
The arguments t1, t2 belong to the set Θ. Thus, we need to call
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function SequenceWU(h, t1, t2, I1, I2, k1, k2, l1, l2) at most O(n5+3+3)
times. The run time of the function is O(n4). So, the run time of the
Algorithm 3 is O(n15).
Note, if Hh /∈ N ′ then assign h := maxx=1,...,h−1{Hx ∈ N ′}.

Conclusion
In the paper, the single track railway scheduling problem with 2 sta-
tions and Q segments is considered. A polynomial time reduction to
the single machine scheduling problem with setup-times is presented.
The following polynomial time algorithms are proposed:

Railway problem Corresponding single machine problem Running
time of
algorithms

STRSP2|rj |Cmax 1|setup−times,N1, N2, pj = p, rj |Cmax O(n7)
STRSP2|rj |

∑
Cj 1|setup−times,N1, N2, pj = p, rj

∑
Cj O(n7)

STRSP2||∑wjCj 1|setup−times,N1, N2, pj = p|∑wjCj O(n6)
STRSP2||∑Tj 1|setup− times,N1, N2, pj = p|∑Tj O(n6)
STRSP2||∑Uj 1|setup− times,N1, N2, pj = p|∑Uj O(n7 logn)
STRSP2||∑wjUj 1|setup−times,N1, N2, pj = p|∑wjUj O(n15)

We suppose that running times of Algorithms can be substantivally
reduced after more detailed analysis.
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Function SequenceWU(h, t1, t2, I1, I2, k1, k2, l1, l2)

1: fmax := −∞;//weighted number of on-time jobs;
2: σmax := {};//a set of pairs (h, Sh), i.e. a schedule.
3: if Hh ∈ N1 then
4: I = 1; pos1 := k1; pos2 := k2;
5: if I1 = 1 then tmin := t1;
6: if I1 = 2 then tmin := t1 + st2;
7: if I1 = 0 then tmin := 0;
8: if I2 = 1 then tmax := t2 − p;
9: if I2 = 2 then tmax := t2 − p− st1;
10: if I2 = 0 then tmax := Tmax;
11: else
12: I = 2; pos1 := l1; pos2 := l2;
13: if I1 = 1 then tmin := t1 + st1;
14: if I1 = 2 then tmin := t1;
15: if I1 = 0 then tmin := 0;
16: if I2 = 1 then tmax := t2 − p− st2;
17: if I2 = 2 then tmax := t2 − p;
18: if I2 = 0 then tmax := Tmax;
19: end if
20: for pos := pos1 to pos2 do
21: for each t ∈ Θ, tmin ≤ t ≤ tmax, t+ p ≤ dHh

do
22: if Hh ∈ N1 then
23: Let jl = Hh;
24: (σ1, f1) := SequenceWU(h−1, t1, t+p, I1, I, k1, pos, l1, l−1);
25: (σ2, f2) := SequenceWU(h−1, t+p, t2, I, I2, pos, k2, l+1, l2);
26: else
27: Let ik = Hh;
28: (σ1, f1) := SequenceWU(h−1, t1, t+p, I1, I, k1, k−1, l1, pos);
29: (σ2, f2) := SequenceWU(h−1, t+p, t2, I, I2, k+1, k2, pos, l2);
30: end if
31: if f1 + f2 + wHh

> fmax then
32: fmax := f1 + f2 + wHh

;
33: σmax := σ1

⋃
σ2

⋃{(h, t)};
34: end if
35: end for
36: end for
37: //In addition, we consider the case, when the job Hh is late.
38: (σ1, f1) := SequenceWU(h− 1, t1, t2, I1, I2, k1, k2, l1, l2);
39: if f1 > fmax then
40: fmax := f1;
41: σmax := σ1

⋃{(h, Tmax)};
42: end if
43: Return pair (fmax, σmax);
Algorithm 3.
(F, SCHEDULEopt) := SequenceWU(n, 0, Tmax, 0, 0, 0, n2, 0, n1), where
SCHEDULEopt is an unfeasible job schedule, which can be transformed to
optimal one by rescheduling jobs started at time Tmax, and F =

∑
wj(1−Uj)

is the maximal weighted number of on-time jobs;
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