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Abstract

In this paper, we present a fully polynomial-time approximation
schema (FPTAS) for some single machine problems, namely:

- minimizing weighted total tardiness when all due dates are equal,

- two cases of the total tardiness problem,

- a special case of the generalized total tardiness problem and

- maximizing weighted total tardiness.

The FPTAS is obtained by converting a graphical algorithm and has
the best running time among the known FPTAS for the problems, that
is polynomial in n and 1/ε.

Keywords: Single machine scheduling, Weighted total tardiness,
Graphical algorithm, FPTAS

Introduction
In this paper, several single machine total tardiness problems are con-
sidered. These problems can be formulated as follows. We are given
a set N = {1, 2, . . . , n} of n independent jobs that must be processed
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on a single machine. Job preemption is not allowed. The machine can
handle only one job at a time. All jobs are assumed to be available for
processing at time 0. For each job j ∈ N , a processing time pj > 0, a
weight wj > 0 and a due date dj > 0 are given.

A feasible solution is described by a permutation π = (j1, j2, . . . , jn)
of the jobs of the set N from which the corresponding schedule
can be uniquely determined by starting each job as early as possi-
ble. Let Cjk(π) =

∑k
l=1 pjl be the completion time of job jk in

the schedule resulting from the sequence π. If Cj(π) > d, then job
j is tardy. If Cj(π) ≤ dj , then job j is on-time. Moreover, let
Tj(π) = max{0, Cj(π)−dj} be the tardiness of job j in the schedule re-
sulting from sequence π and let GTj(π) = min{max{0, Cj(π)−dj}, pj}.

In the weighted total tardiness minimization problem the objective
is to find an optimal job sequence π∗ that minimizes weighted total
tardiness, i.e., F (π) =

∑n
j=1 wjTj(π). Similarly, for the total tardi-

ness problem an objective function F (π) =
∑n

j=1 Tj(π) and for the
generalized total tardiness problem F (π) =

∑n
j=1 GTj(π) have to be

minimized. The following special cases of the problems are considered:

- minimizing weighted total tardiness when all due dates are equal,
i.e., dj = d, i = 1, 2, . . . , n. This is denoted by 1|dj = d|∑wjTj ;

- the special case B − 1 of the total tardiness problem 1||∑Tj ,
where p1 ≥ p2 ≥ · · · ≥ pn, d1 ≤ d2 ≤ · · · ≤ dn and dn − d1 < pn;

- the special case B − 1G of the problem 1||∑Tj, where dmax −
dmin < pmin, where dmax = maxj∈N{dj}, dmin = minj∈N{dj}
and pmin = minj∈N{pj}.

For the NP-hard problem of maximizing weighted total tardiness
1(no-idle)||max

∑
wjTj [16, 18], the objective is to find an optimal job

sequence that maximizes weighted total tardiness, where each feasible
schedule starts at time 0 and there is no idle time between the process-
ing of jobs. On the one hand, the investigation of a particular problem
with the maximum criterion is a theoretically significant task. Algo-
rithms for such a problem with the maximum criterion can be used to
cut bad sub-problems in the branching tree of branch-and-bound algo-
rithms, to compute upper and lower bounds for bi-criterion problems.
On the other hand, these problems have also practical interpretations
and applications [16, 18].

The problem 1||∑Tj is NP-hard in the ordinary sense [2, 3]. A
pseudo-polynomial dynamic programming algorithm of time complex-
ity O(n4

∑
pj) was proposed by Lawler [4]. The algorithms by Szwarc

et al. [5] can solve special instances [6] of this problem for n ≤ 500
jobs. For the NP-hard special case B − 1 [3], a pseudo-polynomial al-
gorithm is known [10]. A survey on the problem 1||∑Tj is presented
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in [7]. For the NP-hard problem 1||∑GTj [1, 17], pseudo-polynomial
algorithms are known as well [1, 17].

The above mentioned problems can be considered as subproblems
in some situations, where a complex function Ψ(t) + F (π, t) has to
be minimized. The function F (π, t) corresponds to one of the above
mentioned functions F (π) if the jobs are processed not from time 0,
but from time t. As an alternative, we have to partition the t-axis
into intervals with the same optimal schedule. For example, the single
machine problem of minimizing the number of late jobs, when the
starting time of the machine is variable, is considered in [8]. The same
situation arises when it is known that some jobs have to be scheduled
one by one in a "batch" from an unknown time point t ∈ [t1, t2], e.g.,
a set N contains two subsets N1, N2 and an optimal job sequence can
be represented as a concatenation (π1, π2, π3) where {π1}

⋃{π3} = N1

and {π2} = N2. Jobs from N2 have to be scheduled according to one
of the above mentioned functions. The graphical and approximation
algorithms presented in this paper can be used both for the initial
problems and for problems with variable starting time.

Since the main topic of this paper is that of an analysis of ap-
proximation algorithms, we recall some relevant definitions. For the
scheduling problem of minimizing a function F (π), a polynomial-time
algorithm that finds a feasible solution π′ such that F (π′) is at most
ρ ≥ 1 times the optimal value F (π∗) is called a ρ-approximation algo-
rithm; the value of ρ is called a worst-case ratio bound. If a problem
admits a ρ-approximation algorithm, it is said to be approximable
within a factor ρ. A family of ρ-approximation algorithms is called a
fully polynomial-time approximation scheme, or an FPTAS, if ρ = 1+ε
for any ε > 0 and the running time is polynomial with respect to both
the length of the problem input and 1/ε. Notice that a problem that
is NP-hard in the strong sense admits no FPTAS unless P = NP.

For the problem 1 | | min
∑

Tj, Lawler [9] converts his dynamic
programming algorithm into an FPTAS that requires O(n7/ε) time.
For the problem 1|dj = d|∑wjTj, which is NP-hard in the ordinary
sense [11], Fathi and Nuttle [12] provide a 2-approximation algorithm
that requires O(n2) time. A FPTAS for the problem with the running
time O((n6 log

∑
wj)/ε

3) was presented by Kellerer and Strusevich in
[13]. In [14], a heuristic algorithm is presented, which was incorrectly
called FPTAS with the running time O(n2/ε). This algorithm is based
on a wrong assumption that there is an optimal schedule where tardy
jobs are scheduled in non-decreasing order of values pj/wj (it does not
hold for the first tardy job). For the special case B − 1, an FPTAS
with the running time O(n3 logn+ n3/ε) is mentioned in [7].

For a practical realization of some pseudo-polynomial algorithms,
one can use the idea from [15]. This modification of pseudo-polynomial
algorithms for combinatorial problems with Boolean variables (e.g.
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problems, where a job can be on-time or tardy, or an item is put
into the knapsack or not) is called a graphical approach. In this pa-
per, we present such a graphical modification of a pseudo-polynomial
algorithm for the problem 1|dj = d|∑wjTj and a FPTAS based on
this graphical algorithm with the running time O(n3/ε). In addition,
modifications of these graphical algorithms and FPTAS for the cases
B−1, B−1G and the problems 1||∑GTj and 1(no-idle)||max

∑
wjTj

are presented.
The rest of this paper is organized as follows. In Section 2, an

exact pseudo-polynomial algorithm for the problem 1|dj = d|∑wjTj

is presented. A graphical algorithm for the problem 1|dj = d|∑wjTj

is given in Section 3. Its advantages in contrast to different dynamic
programming algorithms are discussed in Section 4. In Section 5, a
FPTAS based on the graphical algorithm is presented. Modifications
of the graphical algorithm and FPTAS for the rest of the problems are
described in Section 6.

1 Dynamic Programming for the Problem
1|dj = d|∑wjTj

In this section, we present a property of an optimal sequence and an
exact algorithm for the problem 1|dj = d|∑wjTj which are the base
for the modification in Section 2.

Lemma 1 [1, 13] There exists an optimal job sequence π for the
problem 1|dj = d|∑wjTj that can be represented as a concatenation
(G, x,H), where all jobs j ∈ H are tardy and Sj ≥ d, ∀j ∈ H, and all
jobs i ∈ G are on-time. All jobs from the set G are processed in non-
increasing order of values pj

wj
and all jobs from the set H are processed

in non-decreasing order of values pj

wj
. The job x starts before time d

and is completed no earlier than time d.

The job x is called straddling.
Assume that the jobs are numbered as follows:

p2
w2

≤ p3
w3

≤ · · · ≤ pn
wn

, (1)

where the job with number 1 is a straddling job. As a corollary from
Lemma 1, there is a straddling job x, x ∈ N, to which the number
1 will be assigned, such that for each l ∈ {1, 2, . . . , n}, there exists
an optimal schedule in which all jobs j ∈ {1, 2, . . . , l} are processed
from time t one by one, and there is no job i ∈ {l + 1, l + 2, . . . , n}
which is processed between these jobs. Thus, we can present a dynamic
programming algorithm (DPA) based on Lemma 1. For each x, x ∈ N,
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we number the jobs from the set N \ {x} according to the rule (1) and
perform Algorithm 1. Then we choose a best found schedule among the
n constructed schedules. At each stage l, 1 ≤ l ≤ n, of Algorithm 1, we
construct a best partial sequence πl(t) for the set of jobs {1, 2, . . . , l}
and for each possible starting time t of the first job (which represents a
possible state in the dynamic programming algorithm). Fl(t) denotes
the weighted total tardiness value for the job sequence πl(t). Φ1(t) and
Φ2(t) are temporary functions, which are used to compute Fl(t).

Algorithm 1

1. Enumerate the jobs according to order (1);

2. FOR t := 0 TO
∑n

j=2 pj DO

π1(t) := (1), F1(t) := w1 max{0, p1 + t− d};
3. FOR l := 2 TO n DO

FOR t := 0 TO
∑n

j=l+1 pj DO
π1 := (l, πl−1(t+ pl)), π2 := (πl−1(t), l);
Φ1(t) := wl max{0, pl + t− d}+ Fl−1(t+ pl);

Φ2(t) := Fl−1(t) + wl max

{
0,

l∑
j=1

pj + t− d

}
;

IF Φ1(t) < Φ2(t) THEN Fl(t) := Φ1(t) and πl(t) := π1,
ELSE Fl(t) := Φ2(t) and πl(t) := π2;

4. πn(0) is an optimal job sequence for the chosen job x with the
objective function value Fn(0).

Theorem 1 By using Algorithm 1 for each x, x ∈ N, an optimal job
sequence of the type described in Lemma 1 can be found in O(n2

∑
pj)

time.

Proof. We prove the theorem indirectly. Assume that there exists an
optimal job sequence of the form π∗ = (G, 1, H) of the type described
in Lemma 1. Assume that F (π∗) < F (πn(0)) = Fn(0).

Let π′ := π∗. For each l = 1, 2, . . . , n, we successively consider
the part π̄l ∈ π′ of the schedule with {π̄l} = {1, 2, . . . , l}. Let
π′ = (πα, π̄l, πβ) and t∗ =

∑
i∈πα

pi. If π̄l �= πl(t
∗), then π′ :=

(πα, πl(t
∗), πβ). It is obvious that F ((πα, π̄l, πβ)) ≥ F ((πα, πl(t

∗), πβ)).
Applying this procedure to subsequent values l, we have F (π∗) ≥
F (π′) = Fn(0) at the end. Thus, the schedule πn(0) is also optimal for
a chosen job x = 1.

Obviously, the time complexity of Algorithm 1 is equal to
O(n

∑
pj). So, an optimal job sequence can be found in O(n2

∑
pj)

time �
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It is obvious, that for some chosen job x, x ∈ N, in a found job
sequence πn(0) the job x will be not straddling (i.e., either Sx ≥ d or
Cx < d). This means that there exists another job x′, x′ ∈ N for which
the value Fn(0) will be less.

Algorithm 1 can be modified by considering for each l = 1, 2, . . . , n,

only the interval [0, d− pl] instead of the interval [0,
n∑

i=l+1

pi] since for

each t > d − pl, job j is tardy in any partial sequence πl(t) and the
partial sequence π2 := (πl−1(t), l) is optimal. Thus, the time com-
plexity of the modified Algorithm 1 is equal to O(nd) and the optimal
schedule can be found in O(n2d) time which is equal to the running
time of the solution algorithm for the problem presented in [1].

Let UB be an upper bound on the optimal function value for the
problem which is found by the 2-approximation algorithm of Fathi and
Nuttle [12], i.e., UB ≤ 2F (π∗). If for some tUB

l ∈ (−∞,+∞) we have
Fl(t

UB
l ) = UB, then for each t > tUB

l we have Fl(t) > UB (since t
denotes the starting time of an optimal schedule obtained from the job
sequence πl(t) for jobs 1, 2, . . . , l and Fl(t) denotes the corresponding
objective function value). So, the states t > tUB

l seem to be unpromis-
ing, i.e., for any job sequence π, constructed using these states, we
will have F (π) > UB, i.e., π is not optimal. Thus, we can consider
different values Fl(t) only for t ∈ [0, tUB

l ] and assume Fl(t) = +∞ for
t ∈ (tUB

l ,+∞). If all parameters pj , wj , ∀j ∈ N, and d are integer,
then there are at most UB + 2 different values Fl(t).

In addition, we can note the following. For each function Fl(t),
there can be only one interval [t′, t′′], t′ ≤ t′′, where all the values
Fl(t) are equal. Moreover, Fl(t) = 0. If F (t′′) < F (t′′ + 1), then
F (t) < F (t + 1) for all t > t′′. Thus, we can modify Algorithm 1 as
follows. If we will save at each stage l instead of all states t ∈ [t′, t′′] only
one state t′′, then the number of saved states will be restricted by UB,
since for all saved stated t we have F (t) < F (t+1). The running time
of the modified algorithm is O(nmin{d, UB}). If we consider only the
states t ∈ [d−∑n

j=1 pj , d] instead of [0, d] at each stage l, l = 1, 2, . . . , n,
then we obtain an optimal solution for the chosen straddling job for
each possible starting time t ∈ (−∞, tUB

n ) in O(nUB) time.
Let π′ be a job sequence, where all n jobs are processed in non-

decreasing order of the values pj

wj
. Denote by F (π′, d) the weighted

total tardiness for the job sequence π′, where the processing of the jobs
starts at time d. It is obvious that for this starting time the schedule
π′ is optimal. Then, by the modified Algorithm 1, we can obtain
an optimal solution for each possible starting time t ∈ (−∞,+∞) in
O(n2F (π′, d)) time.

We note that the inequality F (t) < F (t + 1) does not necessarily
hold for all t > t′′ in the problem 1||∑GTj , i.e., the running time of
Algorithm 1 is not restricted by UB for the problem 1||∑GTj .
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Figure 1: Function Fl(t) in the GrA and in Algorithm 1

2 Graphical Algorithm for the Problem
1|dj = d|∑wjTj

In this section, a new graphical algorithm (GrA) is derived for this
problem which is based on an idea from [15]. The GrA is a modification
of Algorithm 1, in which function Fl(t) is defined for any t ∈ (−∞,+∞)
(not only for integer t). However, we need to compute these values
only at the break points separating intervals in which function Fl(t) is
a linear function of the form Fl(t) = F k

l (t) = uk
l · (t − tk−1

l ) + bkl . In
Theorem 2, we are to prove that Fl(t) is a continuous piecewise linear
function whose parameters can be described in a tabular form (like in
Table 1).

In each step of the GrA, we store the information on function
Fl(t) for a number of intervals (characterized by the same best partial
sequence and by the same number of tardy jobs) in a tabular form as
given in Table 1.

Table 1: Function Fl(t)

k 1 2 . . . ml + 1 ml + 2

interval k (−∞, t1l ] (t1l , t
2
l ] . . . (tml

l , tml+1
l ] (tml+1

l ,+∞)

bkl 0 b2l . . . bml+1
l +∞

uk
l 0 u2

l . . . uml+1
l 0

πk
l π1

l π2
l . . . πml+1

l (1, 2, . . . , l)

In Table 1, k denotes the number of the current interval whose
values range from 1 to ml + 2 (where the number of intervals ml + 2
is defined for each l = 1, 2, . . . , n), (tk−1

l , tkl ] is the kth interval (where
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t0l = −∞, tml+2
l = ∞ and tml+1

l = tUB
l ), bkl , u

k
l are the parameters of

the linear function F k
l (t) defined in the kth interval, and πk

l is the best
sequence of the first l jobs if they are processed from time t ∈ (tk−1

l , tkl ].

These data mean the following. For each above interval, we store
the parameters bkl and uk

l for describing function Fl(t) and the resulting
best partial sequence if the first job starts in this interval. For each
starting time t ∈ (tk−1

l , tkl ] (t0l = −∞) of the first job, we have a
best partial sequence πk

l of the jobs 1, 2, . . . , l with a total weight of
the tardy jobs uk

l and the function value Fl(t) = uk
l · (t − tk−1

l ) + bkl
(see Fig. 1). Fl(t) = 0, for t ∈ (t0l , t

1
l ]. Recall that function Fl(t)

is defined not only for integers t, but also for real numbers t. For
simplicity of the following description, we consider the whole t-axis,
i.e., t ∈ (−∞,+∞). In Theorem 2, we prove that this table describes a
function Fl(t) which is continuous, piecewise-linear function in interval
(−∞, tUB

l ]. The points t1l , t
2
l , . . . , t

ml+1
l are called break points, since

there is a change from value uk−1
l to uk

l (which means that the slope
of the piecewise-linear function changes). Note that some of the break
points tkl can be non-integer. To describe each linear segment, we store
its slope uk

l and its function value bkl = Fl(t) at the point t = tk−1
l . So,

in the table b1l < b2l < · · · < bml+1
l < UB, since t1l < t2l < · · · < tml+1

l .
In the GrA, the functions Fl(t) reflect the same functional equations

as in Algorithm 1, i.e., for each t ∈ Z
⋂
[0,

∑n
j=2 pj ], the function Fl(t)

has the same value as in Algorithm 1 (see Fig. 1), but these functions
are now defined for any t ∈ (−∞,+∞). As a result, often a large
number of integer states is combined into one interval (describing a new
state in the resulting algorithm) with the same best partial sequence.
In Fig. 1 (a), the function Fl(t) from the GrA is presented and in Fig.
1 (b), the function Fl(t) from Algorithm 1 is displayed.

Next, the GrA is described. The core is Step 3, where we explain
how the states at stage l, l > 1, are obtained if the states at stage l− 1
are known.

Graphical algorithm (GrA)

Step 1. We enumerate the jobs according to order (1);

Step 2. Set l := 1, π1(t) := (1), F1(t) := w1 max{0, p1 + t − d}
for all t. We represent function F1(t) in a tabular form as given
in Table 2. For all three intervals, there is the same best partial
sequence (1). For t ∈ (−∞, d − p1], there is no tardy job in the
schedule corresponding to sequence (1) when this job is started
at time t and for t ∈ (d − p1,+∞), there is one tardy job. The
value tUB

1 can be found from the equation UB = (tUB
1 −(d−p1))w1+0.

Table 2: Function F1(t)
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k 1 2 3
interval k (−∞, d− p1] (d− p1, t

UB
1 ) (tUB

1 ,+∞)
bk1 0 0 +∞
uk
1 0 w1 0

πk
1 (1) (1) (1)

Step 3. Let l > 1 and assume that function Fl−1(t) and the best
partial sequences of the jobs {1, 2, . . . , l − 1} for all resulting intervals
given in Table 3 are known, where t

ml−1+1
l−1 = tUB

l−1

Table 3: Function Fl−1(t)

k 1 2 . . . ml−1 + 1 ml−1 + 2
interval k (−∞, t1l−1] (t1l−1, t

2
l−1] . . . (t

ml−1

l−1 , tUB
l−1] (tUB

l−1,+∞)

bkl−1 0 b2l−1 . . . b
ml−1+1
l−1 +∞

uk
l−1 0 u2

l−1 . . . u
ml−1+1
l−1 0

πk
l−1 π1

l−1 π2
l−1 . . . π

ml−1+1
l−1 (1, 2, . . . , l − 1)

In the following, we describe how function Fl(t) is obtained by
means of function Fl−1(t). Note that we can store the temporary
functions Φ1(t) and Φ2(t) determined in Steps 3.1 and 3.2 also in a
tabular form as in Table 1.

Step 3.1. The function Φ1(t) is obtained from function Fl−1(t) by
the following operations. We shift the diagram of function Fl−1(t) to
the left by the value pl and in the table for function Fl−1(t) and add a
column which results from the new break point t′ = d−pl. If tsl−1−pl <

t′ < ts+1
l−1 − pl, s ≤ ml−1, then we have two new intervals of t in the

table for Φ1(t): (tsl−1 − pl, t
′] and (t′, ts+1

l−1 − pl] (for s+ 1 = ml−1 + 1,
we have (t

ml−1+1
l−1 −pl, t

′] and (t′,∞)). This means that we first replace
each interval (tkl−1, t

k+1
l−1 ] by (tkl−1 − pl, t

k+1
l−1 − pl] in the table for Φ1(t),

and then replace the column with the interval (tsl−1 − pl, t
s+1
l−1 − pl] by

two new columns with the intervals (tsl−1 − pl, t
′] and (t′, ts+1

l−1 − pl].
Moreover, we increase the values us+1

l−1 , u
s+2
l−1 , . . . , u

ml−1+1
l−1 by

wl, i.e., the total weight of tardy jobs (and thus the slope of the
function) increases. The corresponding partial sequences π1 are
obtained by adding job l as the first job to each previous partial
sequence. In this way, we obtain the information on function
Φ1(t) together with the corresponding partial sequences given in Ta-
ble 4, which also includes the calculation of the corresponding b values.

Step 3.2. The function Φ2(t) is obtained from function Fl−1(t) by
the following operations. In the table for Fl−1(t), we add a column
which results from the new break point t′′ = d − ∑l

i=1 pi. If thl−1 <
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t′′ < th+1
l−1 , h+ 1 ≤ ml−1 + 1, then there are two new intervals of t in

the table for Φ2(t): (thl−1, t
′′] and (t′′, th+1

l−1 ] (for h = ml−1 +1, we have
(t

ml−1+1
l−1 , t′′] and (t′′,∞)).

This means that we replace the column with the interval (thl−1, t
h+1
l−1 ]

by two new columns with the intervals (thl−1, t
′′] and (t′′, th+1

l−1 ].
Moreover, we increase the values uh+1

l−1 , u
h+2
l−1 , . . . , u

ml−1+1
l−1 by wl,

i.e., the total weight of tardy jobs increases. The corresponding partial
sequences π2 are obtained by adding job l at the end to each previous
partial sequence. In this way, we obtain the information on function
Φ2(t) together with the corresponding partial sequences given in Table
5.

Step 3.3. Now we construct a table that corresponds to the func-
tion

Fl(t) = min{Φ1(t),Φ2(t)}.
Consider all resulting intervals from both tables and search for inter-
section points of the diagrams of functions Φ1(t) and Φ2(t). Then we
construct function Fl(t) as the minimum of both functions obtained.

To be more precise, we construct a list t1, t2, . . . , te, t1 < t2 <
. . . , te, of all break points t from the tables for Φ1(t) and Φ2(t), which
are left / right boundary points of the intervals given in these tables.
Then we consider each interval (ti, ti+1], i = 1, 2, . . . , e − 1, and com-
pare the two functions Φ1(t) and Φ2(t) over this interval. Let the
interval (ti, ti+1] be contained in the interval (tz−1, tz] from the table
for Φ1(t) and in the interval (ty−1, ty] from the table for Φ2(t). Then
Φ1(t) = (t− tz−1) ·uz + bz and Φ2(t) = (t− ty−1) ·uy + by. Choose the
column from both tables corresponding to the maximum of the two
functions in the interval (ti, ti+1] and insert this column into the table
for Fl(t). If there exists an intersection point t′′′ of Φ1(t) and Φ2(t)
in this interval, then insert two columns with the intervals (ti, t′′′] and
(t′′′, ti+1].

This step requires O(ml−1) operations.
Step 3.4. Let m be the number of columns in the resulting table

of Fl(t) and for k, 1 < k < m, the inequality bkl < UB ≤ bk+1
l

holds. Then compute from the equality UB = (tUB
l − tk−1

l )uk
l + bkl

the value tUB
l . In the column with an interval (tk−1

l , tkl ] (column k)
assign tkl = tUB

l and substitute all the columns k + 1, k + 2, . . . ,m, by
one column with the interval (tUB

l ,+∞), bk+1
l = +∞, uk+1

l = 0 and
πk+1
l = (1, 2, . . . , l). So, in the resulting table, there will be no more

then UB + 2 columns if all the parameters of the problem are integer.

Step 3.5. If l = n, then GOTO 4 else l := l + 1 and GOTO 3.
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Step 4. In the table corresponding to function Fn(t) we determine
the column (tkn, t

k+1
n ], where tkn < 0 ≤ tk+1

n . Then we have an optimal
sequence π∗ = πk+1

n for a chosen job x and the optimal function value
F (π∗) = bk+1

n + (0 − tkn) · uk+1
n .

Theorem 2 By using the GrA for each x, x ∈ N, an optimal job
sequence of the type described in Lemma 1 will be found in O(n2F ∗)
time, where F ∗ is the optimal objective function value.

Proof.
First, prove that all functions Fl(t), l = 1, 2, . . . , n, defined at the

beginning of Section 3 are continuous and piecewise linear functions in
the interval (−∞, tUB

l ].
It is obvious that function F1(t) is a continuous and piecewise lin-

ear function with two break points in the interval (−∞, tUB
1 ]. Accord-

ing to the operations described in Step 3, both functions Φ1(t) and
Φ2(t) are also continuous and piecewise linear functions in the inter-
vals (−∞, tUB

1 − p2] and (−∞, tUB
1 ]. Thus, the function

F2(t) = min{Φ1(t),Φ2(t)}

and its modification obtained in Step 3.4. are continuous and piecewise
linear functions in the interval (−∞, tUB

2 ] as well. Continuing in this
way, all functions Fl(t), l = 1, 2, . . . , n, have the above properties.

Now assume that we have obtained Table 6 for some function Fl(t)
in Step 3.

Table 6: Function Fl(t)

k 1 2 . . . s s+ 1 . . . ml + 1 ml + 2

interval k (−∞, t1l ] (t1l , t
2
l ] . . . (ts−1

l , tsl ] (tsl , t
s+1
l ] . . . (tml

l , tUB
l ] (tUB

l ,+∞)

bkl 0 b2l . . . bsl bs+1
l . . . bml+1

l +∞
uk
l 0 u2

l . . . us
l us+1

l . . . uml+1
l 0

πk
l π1

l π2
l . . . πs

l πs+1
l . . . πml+1

l (1, 2, . . . , l)

We prove that b1l < b2l < · · · < bsl < bs+1
l < · · · < bml+1

l < UB
holds. Assume that we have bsl ≥ bs+1

l . Let F (π, t) be the weighted
total tardiness value of the sequence π when the first job starts at
time t. For each t ∈ (tsl , t

s+1
l ], we have F (πs

l , t) ≥ F (πs+1
l , t), since for

t ∈ (ts+1
l , ts+2

l ] the inequality F (πs
l , t) ≥ F (πs+1

l , t) holds, which is a
contradiction. So, in Table 6, there are at most UB + 2 columns and
l+ 1 break points.

Therefore, Step 3 requires O(UB) operations for each l =
1, 2, . . . , n.

According to the GrA, it is obvious that at each integer point t ∈
(−∞, tUB

l ], the value Fl(t) is equal to that determined by Algorithm 1
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(since in the GrA, the functions Fl(t) represent the same equations as
in Algorithm 1 for the integer values t considered).

For some chosen straddling jobs x, it can be that Fn(0) = +∞.
This means that the best job sequence with the chosen straddling job
x is not better then a job sequence πUB for which F (πUB) < F (πn(0)).

Therefore, by using the GrA for each x, x ∈ N, an optimal job
sequence of the type described in Lemma 1 for some x with the optimal
value Fn(0) will be found. The time complexity of such a search is
O(n2F ∗) time, since 1

2UB ≤ F ∗ ≤ UB.
�

3 Advantages of the Graphical Algorithm
to solve 1|dj = d|∑wjTj

In fact, in each step j = 1, 2, . . . , n of the GrA, we do not consider
all points t ∈ [0, d], t ∈ Z, but only points from the interval in which
the optimal partial solution changes or where the resulting functional
equation of the objective function changes. So, the main difference is
that we operate not with independent values F in each of the
points t, but with functions which are transformed in each
step analytically, according to their analytical form, which can
have obvious advantages. For example, let us minimize a function
Ψ(t) + F (π, t), where the function F (π, t) corresponds to a function
F (π) when the jobs are processed not from time 0, but from time t. If
the computed function F (t) is presented analytically (not in a tabular
form (t, F )) and the function Ψ(t) is presented analytically as well,
then the search for the minimum of Ψ(t) + F (π, t) will be made in
shorter time.

Moreover, such an approach has the following advantages when
compared with Algorithm 1 (DPA):

1. The GrA can solve instances, where (some of) the parameters
pj, wj , j = 1, 2, . . . , n or/and d are not in Z.

2. The running time of the GrA for two instances with the param-
eters {pj, wj , d} and {pj · 10const± 1, wj · 10const± 1, d · 10const ±
1}, const > 1, is the same while the running time of the DPA will
be 10const times larger in the second case. Thus, one can usually
solve considerably larger instances with the GrA.

3. Properties of an optimal solution can be taken into account, and
sometimes the GrA has even a polynomial time complexity, or
we can at least essentially reduce the complexity of the standard
DPA (see the experimental results in Section 6).

4. Unlike DPA, it is possible to construct a FPTAS based on GrA
easily. The FPTAS is presented in the next section.
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Let us consider another type of a DPA. This algorithm generates
iteratively some sets of states. In every iteration l, l = n, n− 1, . . . , 1,
a set of states is generated. Each state can be represented by a string
of the form (t, F ), where t is the completion time of the last known
job scheduled in the beginning of a schedule and F is the value of
the function, provided that the early jobs start at time 0 and the last
known late job completes exactly at time

∑n
j=1 p. This algorithm can

be described as follows:

Alternative DPA

1. Enumerate the jobs according to their order (1);
2. In the set of states Vn+1, put a state (0, 0).
3. FOR l := n TO 1 DO

FOR each state (t, F ) from the set of states Vl+1 DO
Put a state [t+ pl, F + wl max{0, t+ pl − d}];
Put a state [t, F +wl max{0,∑n

j=1 pj − (
∑l−1

j=1 pj − t)−
d}];

4. Find F ∗ = min{F |(t, F ) ∈ V1}.
We need to consider only states, where t ≤ d and F ≤ UB. If in

a list Vl, there are two states with the same objective function value
(t1, F

′) and (t2, F
′) and t2 > t1, then the state (t2, F

′) can be removed
from consideration. So, the running time of the Alternative DPA is
O(nmin{d, F ∗}) which corresponds to the running time of GrA (note
that the GrA can be easily modified to consider only points t ∈ [0, d]).
However, in the GrA some of possible but unpromising states are not
considered and, in contrast to the alternative DPA, the GrA finds all
optimal schedules for all t ∈ [−∞, tUB] in time O(nF ∗). So, the alter-
native DPA is not effective for the problems of minimizing a complex
function Ψ(t) + F (π, t).

4 FPTAS for the Problem 1|dj = d|∑wjTj

The idea of the FPTAS is as follows. Let δ = εUB
2n . To reduce the time

complexity of the graphical algorithm, we have to diminish the num-
ber of columns considered, which is the number of different objective
function values b1l , b

2
l , . . . , b

ml+1
l . If we consider not the original values

bkl but the values bkl which are rounded up or down to the nearest mul-
tiple of δ values bkl , there are no more than UB

δ = 2n
ε different values

bkl . Then we will be able to convert the table Fl(t) into a similar table
with no more than 4n

ε columns. Furthermore, for such a modified table
(function) F ′(t), we will have |F (t) − F ′(t)| < δ ≤ εF (π∗)

n . If we do
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the rounding and modification after each step 3.4. of the graphical al-
gorithm, then the cumulative error will be no more than nδ ≤ εF (π∗)
and the total running time of n runs of the graphical algorithm will be
O(n

3

ε ), i.e., an FPTAS is received.
By transforming the graphical algorithm, we save the approxi-

mated functions Fl(t) in the same tabular form but without the last
row which describes an optimal partial job sequence πk

l . The data
from the last row are saved in a tabular form described in Step 3.5.
(see below). These n saved tables, corresponding to the n last rows,
are used to restore an approximate job sequence.

FPTAS (as a modification of the graphical algorithm).
In the modified graphical algorithm, Steps 1, 2, 3.1., 3.2., 3.3. and

3.4. remain the same. Instead of Step 3.5, we use the following steps.
Assume that we have obtained Table 6 for a function Fl(t) in Step 3.4
with the different objective function values b1l , b

2
l , . . . , b

ml+1
l .

Step 3.5. Save Table 7.
Table 7: Positions of the job l

k 1 2 . . . ml + 1 ml + 2
interval k (−∞, t1l ] (t1l , t

2
l ] . . . (tml

l , tUB
l ) (tUB

l ,+∞)

positionk
l position1

l position2
l . . . positionml+1

l 2

where positionk
l := 1 if in the partial sequence πk

l job l is the first
job and positionk

l = 2 if job l is the last one (there are only two
possibilities).
Step 3.6. If ml ≤ 4n

ε , then GOTO 3.7. Else do the following. Round
all the values bkl from Table 6 to the nearest multiple of δ. Let the
values b1l , b

2
l , . . . , b

ml+1
l be obtained, where b1l ≤ b2l ≤ · · · ≤ bml+1

l . We
modify the table Fl(t) as follows. Assume that, for k1 < k2, we have
bk1

l < bk1+1
l = · · · = bk2

l < bk2+1
l . We substitute the columns which

correspond to the values bk1

l , . . . , bk2−1
l for the two columns presented

in Table 8.
Table 8: Substitution of columns
interval k . . . (tk1−1

l , tk1

l ] (tk1

l , tk2−1
l ] . . . (tUB

l ,+∞)

bkl . . . bk1

l bk2

l . . . +∞
uk
l . . . u =

b
k2
l −b

k1
l

t
k1
l −t

k1−1

l

0 . . . 0

Step 3.7. If l = n, then GOTO 4 else l := l + 1 and GOTO 3.
End of the modification of the graphical algorithm.

Let us analyze the substitution proposed in Step 3.6. Let F l(t) be
the function, received after Step 3.4 in the modified algorithm. In fact,
the function Fl(t) was modified in Step 3.6 in a way shown in Fig. 2.
Let F ′

l (t) present the modified function.
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Figure 2: Substitution of columns and modification of Fl(t)

Lemma 2 For all t ∈ (tk1−1
l , tk2−1

l ], we have |F ′
l (t)− F l(t)| < δ/2.

Proof. It is only necessary to consider the values |F ′
l (t) − F l(t)| in

the break points tk1−1
l , tk1

l , . . . , tk2−1
l . In these points, the inequality

holds and these points are end points of continuous and piecewise linear
segments of the functions F l(t) and F ′

l (t). �
Assume that functions Fl(t), l = 1, 2, . . . , n, are exact and con-

structed by the original graphical algorithm. Similarly, F ′
l (t), l =

1, 2, . . . , n, are approximated functions constructed by the modified
algorithm (the functions after step 3.6. of the modified algorithm).

Lemma 3 For each l, l = 1, 2, . . . , n, for all t ∈ (−∞,+∞), we have
|F ′

l (t)− Fl(t)| ≤ l · δ/2.
Proof. The proof is accomplished by induction. The inequality holds
for l = 1. Assume that it holds for l − 1, 1 < l < n, i.e., for t ∈
(−∞,+∞) we have |F ′

l−1(t)−Fl−1(t)| ≤ (l−1)δ/2. Let functions Φ1(t)
and Φ2(t) be obtained from function Fl−1(t) and functions φ1(t) and
φ2(t) be obtained from function F ′

l−1(t). Then we have |φ1(t)−Φ1(t)| ≤
(l − 1)δ/2 and |φ2(t)− Φ2(t)| ≤ (l − 1)δ/2. Thus,

|F ′
l (t)−Fl(t)| ≤ |(min{φ1(t), φ2(t)}+δ/2)−min{Φ1(t),Φ2(t)}| ≤ l·δ/2.

So, the Lemma is true. �
An approximate job sequence π′ can be restored by backward re-

cursion from the tables saved in Step 3.5. of the modified graphical
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algorithm as follows. In the table of positions of the job n, we de-
termine the column (tkn

n , tkn+1
n ], where tkn

n < 0 ≤ tkn+1
n . Then we

have an optimal sequence positionkn+1
n = 1, job n is the first job in

the schedule and for the position of the job n − 1, we search in the
column (t

kn−1

n−1 , t
kn−1+1
n ] in the table of positions of job n − 1, where

t
kn−1

n−1 < pn ≤ t
kn−1+1
n−1 . Otherwise, job n is the last job and for the po-

sition of the job n− 1, we search in the column (t
kn−1

n−1 , t
kn−1+1
n−1 ], where

t
kn−1

n−1 < 0 ≤ t
kn−1+1
n−1 . By continuing with such an operation, we restore

the job sequence π′ in time O(n log(n/ε)). Let π∗ be an optimal job
sequence for a chosen straddling job x.

Lemma 4 Inequality F (π′)− F (π∗) ≤ n · δ ≤ n 2ε·F (π∗)
2n holds.

Proof. According to Lemma 2, we prove that |F (π′)−F ′
n(0)| ≤ n·δ/2.

Furthermore, according to Lemma 3, we have |F ′
n(0)−Fn(0)| ≤ n ·δ/2.

From both statements we establish that the lemma is true. �
So, we can conclude the following.

Theorem 3 By using the modified graphical algorithm for each x, x ∈
N, a job sequence π′ of the type described in Lemma 1 will be found in
O(n

3

ε ) time, where F (π′) ≤ (1 + ε)F (π∗).

The running time O(n
3

ε ) is received as follows. The modified graphical
algorithm is used n times for each job x, x ∈ N . The running time
of the modified graphical algorithm depends on n and the number of
columns in the tables which describe the functions F ′(t). The number
of columns does not exceed O(nε ).

5 Algorithms for the Special Cases B − 1,
B − 1G and for the Problems 1||∑GTj and
1(no-idle)||max

∑
wjTj

In this section, modifications of DPA, GrA and FPTAS for two special
cases of the problem 1||∑Tj and for the problems 1||∑GTj and 1(no-
idle)||max

∑
wjTj are presented.

Lemma 5 There exists an optimal job sequence π for the special case
B− 1G that can be represented as a concatenation (G, x,H), where all
jobs j ∈ H are tardy and all jobs i ∈ G are on-time. All jobs from
the set G are processed in non-increasing order of values pj (longest
processing time order, LPT) and all jobs from the set H are processed
in non-decreasing order of values pj (shortest processing time order,
SPT).
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The job x is called straddling.
Proof. Let in an optimal job sequence π′ = (π1, l, k, π2), job k be the
first tardy job. Then all jobs from the partial sequence π2 are tardy
and processed in SPT order, since dmax − dmin < pmin (which can
be easily proved by contradiction). If Sk > dmin, then all jobs in the
partial sequence (k, π2) have to be processed in SPT order and the jobs
from π1 can be processed in any order (LPT as well). In this case, l is
the straddling job. If Sk ≤ dmin, then all jobs in the partial sequence
(π1, l) can be reordered by the LPT rule without loss of optimality. In
this case, k is the straddling job. �

Lemma 6 [19] There exists an optimal job sequence π for the special
case B − 1 that can be represented as a concatenation (G,H), where
all jobs j ∈ H are tardy and all jobs i ∈ G are on-time. All jobs from
the set G are processed in LPT order and all jobs from the set H are
processed in SPT order.

Assume that for the case B−1G, the jobs are numbered as follows:
p1 ≥ p2 ≥ · · · ≥ pn.

Lemma 7 For the special cases B− 1 and B− 1G and a job sequence
πSPT = (n, n − 1, . . . , 1), the following inequality holds: F (πSPT ) ≤
3F (π∗).

Proof. Consider a modified instance, where all due dates are equal to
dmax. Let F (π) be the total tardiness value for the modified instance
and F (π) be the value for the original one. Let in the job sequence
πSPT = (n, n−1, . . . , k, . . . , 1), job k be the first tardy job for the orig-
inal instance and k ≥ 2 (the case where k = 1 is trivial). It is obvious
that the job sequence πSPT is optimal for the modified instance. The
following inequality holds: F (πSPT ) ≤ F (π∗) ≤ F (πSPT ). Further-
more, F (πSPT ) ≥ F (πSPT ) − k · pmin and F (πSPT ) ≥ (k − 1) · pmin.
Thus, 3F (πSPT ) ≥ F (πSPT ) and the lemma is true. �

Without loss of generality, we will consider only cases where in a
job sequence πSPT at least two jobs are tardy.

Lemma 8 [17] There exists an optimal job sequence π for the problem
1||∑GTj that can be represented as a concatenation (G,H), where all
jobs j ∈ H are tardy and GTj(π) = pj. For all jobs i ∈ G, we have
0 ≤ GTi(π) < pi. All jobs from the set G are processed in EDD (early
due date) order and all jobs from the set H are processed in LDD (last
due date) order.

Let for the problem 1||∑GTj the jobs be numbered as fol-
lows: d1 ≤ d2 ≤ · · · ≤ dn and let πEDD = (1, 2, . . . , n). De-
note by T ∗ the maximal tardiness of a job in the sequence πEDD,
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i.e., T ∗ = maxj∈N{GTj(πEDD)}. We remind that GTj(π) =
min{max{0, Cj(π) − dj}, pj} and F (π) =

∑n
j=1 GTj(π).

Lemma 9 For the problem 1||∑GTj, the following inequality holds:
F (πEDD) ≤ nF (π∗).

Proof. It is easy to show that F (π∗) ≥ T ∗. Furthermore, it is obvious
that nT ∗ ≥ F (πEDD). So, the lemma is true. �

Lemma 10 [16, 18] There exists an optimal job sequence π for the
problem 1(no-idle)||max

∑
wjTj that can be represented as a concate-

nation (G,H), where all jobs j ∈ H are tardy and all jobs i ∈ G
are on-time. All jobs from the set G are processed in non-increasing
order of the values wj

pj
and all jobs from the set H are processed in

non-decreasing order of the values wj

pj
.

For the problem 1(no-idle)||max
∑

wjTj, the value LBmaxTT =
maxj∈N (wj(

∑n
i=1 pi − dj)) is a lower bound. Then UBmaxTT =

nLBmaxTT is an upper bound on the optimal objective function value.

To solve these problems, Algorithm 1, GrA and FPTAS can be modi-
fied as follows.

For the special case B − 1G.

- DPA. Use the fact described in Lemma 5. In Algorithm 1, we
enumerate the jobs according to the order p1 ≤ p2 ≤ · · · ≤ pn.
Assume that F1(t) := max{0, p1+t−d1}, Φ1(t) := max{0, pl+t−
dl}+Fl−1(t+pl) and Φ2(t) := Fl−1(t)+max

{
0,

l∑
j=1

pj + t− dl

}
.

All other lines of the algorithm remain the same. Remember that
wj = 1 for all j ∈ N for the special case of the problem 1||∑Tj .
The running time of the modified Algorithm 1 is O(ndmax). Since
it is necessary to consider n straddling jobs x ∈ N , an optimal job
sequence can be found in O(n2dmax) time by using the modified
Algorithm 1;

- GrA. The graphical algorithm remains the same. The param-
eters uk

l denote the number of tardy jobs which is equal to the
total weight of the tardy jobs, since wj = 1 for all j ∈ N . In
addition, assume that UB = F (πSPT ). By using the GrA, an
optimal schedule can be found in O(n2 min{dmax, F

∗}) time;

- FPTAS. In the FPTAS, assume that δ = εF (πSPT )
3n . Since the

GrA is without changes, the time complexity of FPTAS based on
the GrA for the special caseB−1G has a running time of O(n3/ε),
which is less than the running time O(n7/ε) of the FPTAS for
the general case presented in [9].
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For the special case B − 1.

- DPA. Use the fact described in Lemma 6. Algorithm 1 is mod-
ified as for the special case B − 1G. The running time of the
modified Algorithm 1 is O(ndmax). Since there is no straddling
job, an optimal job sequence can be found in O(ndmax) time by
using the modified Algorithm 1 only once;

- GrA. The graphical algorithm remains the same as for the special
case B − 1G. By the GrA, an optimal schedule can be found in
O(nmin{dmax, F

∗}) time;

- FPTAS. The FPTAS remains the same as for the special case
B− 1G. Since there is no straddling job, the FPTAS for the spe-
cial case B− 1 has a running time of O(n2/ε), which is less than
the running time of O(n3 logn+ n3/ε) of the FPTAS mentioned
in [7].

For the problem 1||∑GTj .

- DPA. Use the fact described in Lemma 8. In Algorithm 1,
we enumerate the jobs according to the order d1 ≥ d2 ≥
· · · ≥ dn. Assume F1(t) := min{p1,max{0, p1 + t − d1}},
Φ1(t) := min{pl,max{0, pl + t− dl}}+Fl−1(t+ pl) and Φ2(t) :=

Fl−1(t) + min

{
pl,max

{
0,

l∑
j=1

pj + t− dl

}}
. The running time

of the modified Algorithm 1 is O(ndmax). Since there is no strad-
dling job, an optimal job sequence can be found in O(ndmax) time
by using the modified Algorithm 1 only once;

- GrA. The graphical algorithm remains almost the same. In ad-
dition to the break points t′ and t′′ in Steps 3.1 and 3.2, two

new break points τ ′ = dl and τ ′′ = dl −
l−1∑
j=1

pj are consid-

ered. The slope uk
l of the function Fl(t) is changed according

to the function min{pl,max{0, pl + t − dl}}. By the GrA, an
optimal schedule can be found in O(nmin{dmax, nF

∗}) time,
since UB = F (πEDD) ≤ nF (π∗) and there are at most 2UB + 2
columns in each table Fl(t) considered in the GrA;

- FPTAS. In the FPTAS, we assume δ = εF (πEDD)
n2 . So, the

FPTAS has a running time of O(n3/ε).

For the problem 1(no-idle)||max
∑

wjTj .

- DPA. We use the fact described in Lemma 10. In Algorithm
1, we enumerate the jobs according to the order w1

p1
≤ w2

p2
≤

· · · ≤ wn

pn
. We assume that F1(t) := w1 max{0, p1 + t − d1},

Φ1(t) := wl max{0, pl+t−dl}+Fl−1(t+pl) and Φ2(t) := Fl−1(t)+
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wl max

{
0,

l∑
i=1

pi + t− dl

}
. Since total tardiness is maximized,

we have Fl(t) := max{Φ1(t),Φ2(t)}. The running time of the
modified Algorithm 1 is O(ndmax). Since there is no straddling
job, an optimal job sequence can be found in O(ndmax) time by
using the modified Algorithm 1 only once;

- GrA. The graphical algorithm remains the same as for the
problem 1|dj = d|∑wjTj. In Step 3.3., we have Fl(t) =
max{Φ1(t),Φ2(t)}. In [16, 18], it is shown that the functions
Fl(t) represent continuous, piecewise-linear and convex func-
tions. By the GrA, an optimal schedule can be found in
O(nmin{dmax, nF

∗,
∑

wj}) time.

- FPTAS. In the FPTAS, assume δ = εUBmaxTT

n2 . So, the FPTAS
has a running time of O(n3/ε).

6 Further remarks
Some other graphical algorithms for other single machine problems are
presented in [16]. For some of these problems, similar FPTAS can be
presented. If for a problem there exists a graphical algorithm with a
running time of O(nαUB), then it is easy to construct a similar FPTAS
with a time complexity of O(nγ + nα+β

ε ), where UB is an upper bound
which is no more than O(nβ) times greater than the optimal objective
function value, computed in O(nγ) time, and α, β, γ are constants.
Thus, the running time of such an FPTAS depends on the relative
error of the upper bound found, i.e., on β. For the special cases B− 1,
B − 1G and for the problem 1|dj = d|∑wjTj , we have β = 0, but for
the rest of the problems, we have β = 1, since UB/LB = n.

In the papers [20, 21], a technique is proposed to improve the com-
plexities of approximation algorithms for optimization problems. The
technique can be described as follows. If there is an FPTAS for a prob-
lem with a running time bounded by a polynomial P (L, 1

ε ,
UB
LB ), where

L is the problem instance length and UB, LB are known upper and
lower bounds, and the value UB

LB is not bounded by a constant, then
the technique enables us to find in time P (L, log log UB

LB ) such values
UB0 and LB0 that LB0 ≤ F ∗ ≤ UB0 < 3LB0, i.e., UB0

LB0
is bounded

by the constant 3. By using such values UB0 and LB0, the running
time of the FPTAS will be reduced to P (L, 1ε ), where P is the same
polynomial.

If we use this technique for an FPTAS for the problems 1(no-
idle)||max

∑
wjTj and 1||∑GTj, we have a running time of

O(n2 log log n+ n2

ε ) for the modified FPTAS.
We note that the modified Algorithm 1 (see the end of Section 1)
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can be considered as a base for an FPTAS as well. The running time
of the modification is restricted by UB under the assumption that
there is only one interval with the same objective function value Fl(t)
although in the proposed FPTAS, there are several intervals with the
same objective function value. So, is seems to be more difficult to
transform the modification into an FPTAS. The running time of such
a modification will be increased by the factor O(log n

ε ) in comparison
with the FPTAS based on the GrA.

In the following table, a comparison of Algorithm 1 (classical DPA),
GrA and the alternative DPA is presented. Denote Θl = {1x1p1 +
1x2p2 + · · ·+ 1xlpl|x1, x2, . . . , xl ∈ {0, 1}}. Let tUB

n ∈ (−∞,+∞) be a
value, where we have Fn(t

LB
n ) = LB.

Table 9: Comparison of the classical, alternative DPA and the GrA
for the problem 1|dj = d|∑wjTj

Note Classical DPA GrA Alternative DPA
Can it solve instances
with pj /∈ Z and in-
stances with large values
pj

no yes yes

states t considered all t ∈ [0, d]
⋂
Z only t, where the slope

of the function Fl(t) is
changed

only t from the set
Θl

The running time for the
initial instance

O(nmin{d, UB}) O(nmin{d, UB}) O(nmin{d, UB})

- of the problem
1||∑GTj is

O(ndmax) O(nmin{dmax, UB}) O(nmin{dmax, UB})

- of the problem 1(no-
idle)||max

∑
wjTj is

O(nmin{dmax, UB}) O(nmin{dmax, UB,
∑

wj}) O(nmin{dmax, UB})

It finds all optimal sched-
ules for all starting times
t ∈ [0, d] in time

O(nd) O(nd) -

If finds all optimal sched-
ules for all starting times
t ∈ (−∞, UB] in time

O(nUB) O(nUB) -

It finds all optimal sched-
ules for all starting times
t ∈ (−∞,+∞) in time

O(nF (π′, d)) (see
Section 2 for
the definition of
F (π′, d)

O(nF (π′, d)) -

The running time of the
FPTAS is

O(n
3

ε log n
ε )) O(n3/ε)∗ O(n3/ε)∗∗

∗ In this time, for all t ∈ (−∞, tUB
n ] solutions can be found with an

absolute error restricted by εLB. For all t ∈ [tLB
n , tUB

n ], tLB
n ≤ 0 ≤
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tUB
n , solutions can be found with a relative error restricted by ε.

∗∗ An approximate solution is only found for the starting time t = 0.

In the following table, some GrA and FPTAS are summarized.

Table 10: Time complexity of the GrA and FPTAS based on the
GrA

Problem Time complexity of GrA Time complex-
ity of FPTAS

Time
complex-
ity of
classical
DPA

1||∑wjUj O(min{2n, n ·min{dmax, Fopt}}) [16] - O(ndmax)
1|dj = d′j+A|∑Uj O(n2) [16] - O(n

∑
pj)

1||∑GTj O(min{2n, n · {dmax, nF
∗}}) O(n2 log logn +

n2

ε )

O(ndmax)

1||∑Tj special
case B − 1

O(min{2n, n ·min{dmax, F
∗}}) O(n2/ε) O(ndmax)

1||∑Tj special
case B − 1G

O(min{n2 ·min{dmax, F
∗}}) O(n3/ε) O(n2dmax)

1|dj = d|∑wjTj O(min{n2 ·min{d, F ∗}}) O(n3/ε) O(n2dmax)
1(no-
idle)||max

∑
wjTj

O(min{2n, n · min{dmax, nF
∗,
∑

wj}})
[16]

O(n2 log logn +
n2

ε )

O(ndmax)

1(no-
idle)||max

∑
Tj

O(n2) [15] - O(ndmax)

In [17], an experimental analysis of the running time of the graphi-
cal algorithms for two NP-hard single machine problems was presented.
According to the experimental results for a significant part of the in-
stances considered the number of columns (i.e., the running time) in
the graphical algorithms does not exceed O(n2). We can conclude
that for such instances the modified graphical algorithm will find ex-
act solutions. So, the modified graphical algorithms remain exact for
a significant part of the instances.

7 Conclusion
In this paper, an FPTAS was presented, which can be used with some
simple modifications for several single machine problems. The FPTAS
is based on a graphical approach from [15, 16]. The idea of such a
modification of graphical algorithms enables us to construct an FPTAS
easily.

The graphical approach can be applied to problems, where a
pseudo-polynomial algorithm exists and Boolean variables are used in
the sense that yes/no decisions have to be made (e.g., in the scheduling
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problems under consideration, a job may be completed on-time or not
or for a knapsack problem, an item can be put into the knapsack or
not). For the knapsack problem, the graphical algorithm often reduces
substantially the number of points to be considered but the time com-
plexity of the algorithm remains pseudo-polynomial. However, for the
single machine problem of maximizing total tardiness, the graphical
algorithm improved the complexity from O(n

∑
pj) to O(n2). Thus,

the graphical approach has not only a practical but also a theoretical
importance.
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