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Abstract

In this paper, we consider two customized parallel machines
scheduling problem with precedence relations to minimize makespan.
Complexity and approximation results are presented.
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Introduction
The two-dedicated-parallel-machines scheduling problem is formulated
as follows:

We are given a set N = {1, 2, . . . , n} = N1

⋃
N2

⋃
N1or2

⋃
N1and2

of n jobs that must be processed on two machines. Jobs from the subset
N1 have to be processed on the first machine, jobs from the subset N2

on the second one, jobs from the subset N1or2 can be processed on any
of them, jobs from the subset N1and2 use both machines simultaneously.
Job preemption is not allowed. Each machine can handle only one job
at a time. All the jobs are assumed to be available for processing at
time 0. For each job j, j ∈ N , a processing time pj ≥ 0 is given. Fur-
thermore, arbitrary finish-start precedence relations i → j are defined
between the jobs according to an acyclic directed graph G. The objec-
tive is to determine the starting time Sj for each job j, j = 1, 2, . . . , n,
in such a way that the given precedence relations are fulfilled and the
makespan Cmax = maxnj=1 Cj , where Cj = Sj + pj , is minimized. De-
note this problem as P2|prec,N1, N2, N1or2, N1and2|Cmax.

This problem originally appeared as a sub-problem of the well-
known two-sided assembly line balancing problem. To define it, firstly,
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we describe a simple assembly line balancing problem. A single-model
paced assembly line which continuously manufactures a homogeneous
product in large quantities is considered (mass production). The simple
assembly line balancing problem (SALBP-1) is to find an optimal line
balance for a given cycle time c, i.e., to find a feasible assignment of
given operations to stations in such a way that the number of stations
used m reaches its minimal value. The SALBP-1 is defined as follows.

Given a set N = {1, 2, . . . , n} of operations and K stations (ma-
chines) 1, 2, . . . ,K. For each operation j ∈ N a processing time tj ≥ 0
is defined. The cycle time c ≥ max{tj, j ∈ N} is given. Further-
more, finish-start precedence relations i → j are defined between the
operations according to an acyclic directed graph G. The objective is
to assign each operation j, j = 1, 2, . . . , n, to a station in such a way
that:
- number m ≤ M of stations used is minimized;
- for each station k = 1, 2, . . . ,m a total load time

∑
j∈Nk

tj does not
exceed c, where Nk – a set of operations assigned to a station k;
- given precedence relations are fulfilled, i.e. if i → j, i ∈ Nk1 and
j ∈ Nk2 then k1 ≤ k2.

In the two-sided assembly line balancing problem (TSALBP-1) in-
stead of single stations, pairs of opposite stations on either side of the
line (left and right side stations) work in parallel, i.e., they work simul-
taneously at opposite sides of the same workpieces. Some operations
have to be performed on the right-hand-side and on the left-hand-side,
respectively, while others may be done on either side of the line or can
require both sides simultaneously.

While for SALBP-1 all jobs from a set Nk where
∑

j∈Nk
ti ≤ c

can be processed on the single station, for TSALBP-1 the ques-
tion appears: Is it possible to process all jobs from a set Nl where
c <

∑
j∈Nl

ti ≤ 2c on a pair of opposite stations? So, the problem
P2|prec,N1, N2, N1or2, N1and2|Cmax is obtained.

Two-machines problems are considered as fundamental scheduling
problems, which are a special case of parallel machines problems (see,
e.g., a survey [1]). Papers on different two-machines models appear
permanently (see, e.g., [2]). If N1or2 = N , i.e., N1 = N2 = N1and2 =
∅, then we have the classical two identical parallel machines problem
P2|prec|Cmax which is NP-hard [1]. A two-parallel machines early-
tardy scheduling problem where some jobs need to be processed by
one machine, while the others have to be processed by both machines
simultaneously is presented in [4]. In this paper we consider the special
case of the problem, where N1or2 = N1and2 = ∅, which is denoted as
P2|prec,N1, N2|Cmax. A similar problem without precedence relations
was considered in [3], where jobs are assigned to the machine in advance
and an incompatibility relation was defined over the tasks which forbids
any two incompatible tasks to be processed at the same time.
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SALBP-1 is NP-hard in the strong sense. Surveys on results for
SALBP-1 are published periodically (e.g., [5]). There exists a special
electronic library http://www.assembly -line-balancing.de of experi-
mental data to test solution algorithms for this problem.

The rest of the paper is organized as follows. In the first Section
some complexity results for special subcases are presented. Approxi-
mation results are discussed in Section 2. This paper is finishing up in
Section 3 with the conclusion.

1 Complexity Results
Denote by P2|chain,N1, N2|Cmax a special subcase of the prob-
lem, where G consists only chains of jobs and by P2|prec, pj =
1, N1, N2|Cmax a special subcase with equal-processing-times of jobs.
3-Partition problem:
A set N = {b1, b2, . . . , bn} of n = 3m positive integers is given, where∑n

i=1 bj = mB and B
4 < bj < B

2 , j = 1, 2, . . . , n. Does there exist a
partition of N into m subsets N1, N2, . . . , Nm such that each subset
consists exactly three numbers and the sum of the numbers in each
subset is equal, i.e.,

∑

bj∈N1

bj =
∑

bj∈N2

bj = · · · =
∑

bj∈Nm

bj = B?

Lemma 1 P2|chain,N1, N2|Cmax is NP-hard in the strong sense.

Proof. We give a reduction from the 3-Partition problem. Given
an instance of the 3-Partition problem with 3m numbers. Construct
an instance of P2|chain,N1, N2|Cmax with 5m − 1 jobs. The first
3m jobs are independent, pj = bj , j = 1, 2, . . . , 3m, and there is a
chain of jobs 3m + 1 → 3m + 2 → 3m + 3 → · · · → 5m − 1, where
pj = B, j = 3m+1, 3m+3, . . . , 5m− 1 and pj = 1, j = 3m+2, 3m+
4, . . . , 5m− 2. Furthermore, N1 = {3m+ 1, 3m+ 3, . . . , 5m− 1} and
N2 = {1, 2, . . . , 3m, 3m+ 2, 3m+ 4, . . . , 5m− 2}. See Fig.1(a).

If and only if the instance of the 3-Partition problem has the answer
"YES", there is a schedule in which a subset of jobs which corresponds
to the set N i is processed in parallel with the job 3m + (2i − 1), i =
1, 2, . . . ,m. Starting times S3m+2i−1 = (B +1)(i− 1), i = 1, 2, . . . ,m,
and S3m+2i = Bi + (i − 1), i = 1, 2, . . . ,m− 1. For such the schedule
Cmax = mB +m− 1.

�
We can present the similar reduction from a decision version of

SALBP-1 to P2|prec,N1, N2|Cmax. In the decision version, we have
to answer the question, whether there is a line balance with m stations.
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Figure 1: Examples
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For this reduction there is a subset of jobs which corresponds to
the set of operations from SALBP-1 with the processing times pj =
tj , j = 1, 2, . . . , n, and the same precedence relations. Furthermore, a
chain of long and short jobs n+1 → n+2 → n+3 → · · · → n+2m−1
is given, where pj = c, j = n+1, n+3, . . . , n+2m−1 and pj = 1, j =
n+2, n+4, . . . , n+2m−2. If and only if the instance of SALBP-1 has
the answer "YES", there is a schedule for which Cmax = mc+(m−1).
So, the following Lemma is proven.

Lemma 2 Decision version of SALBP-1 can be reduced to
P2|prec,N1, N2|Cmax in polynomial time.

Since to solve TSALBP-1, solution methods for SALBP-1 can be
used, where P2|prec,N1, N2, N1or2, N1and2|Cmax has to be solved as
a subproblem, it seems to be interesting that SALBP-1 can be re-
duced to a special case of P2|prec,N1, N2|Cmax. Furthemore, there
are instances of SALBP-1 for which any known Branch and Bound al-
gorithm with a lower bound computed in polynomial time can not solve
instances with n ≥ 60 operations in appropriate time [6]. So, it seems
to be inadvisable to try to construct an effective solution algorithm for
the general case of the problem under consideration.

Clique Problem:
Given a graph G = (V,E) and an integer k, does G have a clique (i.e.,
a complete subgraph) on k vertices?

Lemma 3 P2|prec, pj = 1, N1, N2|Cmax is NP-hard in the strong
sense.

Proof. We give a reduction from the Clique problem1. We introduce
a job Jv for every vertex v ∈ V and a job Je for every edge e ∈ E, with
Jv → Je whenever v is endpoint of e. Denote n = |V | and l = |E|. The
processing times of all the jobs equal 1. Jobs Jv ∈ N2, ∀v ∈ V, and Je ∈
N1, ∀e ∈ E. We also add the chain of jobs n+1 → n+2 → n+3 → n+4,
where pn+1 = k, pn+2 = k(k−1)/2, pn+3 = n−k, pn+4 = l−k(k−1)/2
and n+ 1, n+ 3 ∈ N1, n+ 2, n+ 4 ∈ N2. See Fig.1(b).

If and only if the instance of clique problem has the answer "YES",
there is a schedule for which Cmax = n + l =

∑n+4
i=n+1 pi. Denote the

clique by G′(V ′, E′). Jobs Jv, v ∈ V ′, are processed in parallel with
the job n+ 1. Jobs Je, e ∈ E′, are processed in parallel with the job
n+2. Jobs Jv, v ∈ V \V ′ are processed in parallel with the job n+3.
Jobs Je, e ∈ E \ E′ are processed in parallel with the job n+ 4.

If there is no clique of size k, then after scheduling of k jobs Jv, v ∈
V, we will be able to schedule no more than k(k−1)/2−1 jobs Je, e ∈ E,
in parallel with the job n+ 2.

1We use a similar idea like in [1] for P |prec, pj = 1|Cmax problem
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The jobs n+ 1, n+ 2, n+ 3, n+ 4 can be substituted for chains of
k, k(k − 1)/2, n − k, and l − k(k − 1)/2 equal-processing-time jobs,
respectively, i.e. the special case, where pj = 1, is received.

So, the Lemma is proven.
�
As a consequence from Lemma 5, for the special case P2|prec, pj =

1, N1, N2|Cmax the approximation ratio of polynomial time algorithms
is not less than 2/n and there is no FPTAS (fully-polynomial time
approximation schema) for the special case.
Denote the problem, where preemptions of jobs are allowed by
P2|prec, pmtn.,N1, N2|Cmax.

Corollary 1 P2|prec, pmtn.,N1, N2|Cmax is NP-hard in the strong
sense.

Denote C∗
max(pmtn.) – the minimal makespan for the problem with

preemptions.

Lemma 4 For the problem P2|prec,N1, N2|Cmax an inequality
C∗

max

C∗
max(pmtn.) < 2 holds and there is an instance for which C∗

max

C∗
max(pmtn.) ≈

2.

Proof. It’s obvious that
1

2

∑

j∈N

pj ≤ C∗
max, C

∗
max(pmtn.) <

∑

j∈N

pj .

So, the first part of Lemma is true.
To prove the second part let us consider an instance with chain of

2n−1 jobs, pj = p, j = 1, 3, . . . , 2n−1, and pj = e, j = 2, 4, . . . , 2n−2.
In addition, an independent job 2n is given with p2n = np. N1 =
{1, 3, . . . , 2n − 1} and N2 = {2, 4, . . . , 2n − 2, 2n} (see Fig.1(f)). For
such the instance C∗

max = (n − 1)(p + e) + np and C∗
max(pmtn.) =

np+ (n − 1)e. Then for e → 0 the second part of the Lemma is true.
�

2 Approximation by List Scheduling Algo-
rithm
To solve problems with precedence relations (e.g., SALBP-1,
P2|prec|Cmax) enumeration schemas based on the well-known List
Scheduling (LS) Algorithm are usually used. The problem
P2|prec,N1, N2|Cmax can be solved by an algorithm based on LS as
well. The main idea of LS is as follows: on each step j = 1, 2, . . . , n,
choose a job (operation) for which all predecessors are already sched-
uled and assign it to be performed from the earliest possible starting
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time according to precedence relations and resource restrictions. Ac-
cording to such the algorithm only active schedules will be constructed
for which there is no job which can be shifted to an earlier starting
time without violating of precedence or resource constraints. It’s ob-
vious, that among active schedules there are optimal ones, that’s why,
an optimal solution can be presented as a sequence (permutation) of
n jobs, which denotes the order of jobs’ choice in LS. Different domi-
nations rules are used in LS, which define the jobs’ choice, e.g., choose
a job with the maximal processing time among ready to be scheduled
jobs (LPT), or choose a job which belongs to a critical path (CP) etc.

List Scheduling is widely used for scheduling problems with prece-
dence relations to compute an Upper Bound, i.e., to find an feasible
solution. The question appears, which approximation ratios LS with
different domination rules has. Let us denote the optimal objective
function value by C∗

max and the objective function value for the solu-
tion constructed by LS with domination rules α by Cmax(LSα). It is
known[1], that for the problem P |prec|Cmax we have 4

3 ≤ Cmax(LSα)
C∗

max
<

2 for any domination rule α checked in polynomial time. For SALBP-1
we have 3

2 ≤ m(LSα)
m∗ < 2, where m∗ – minimal number of stations and

m(LSα) – number of stations for the solution constructed by LS with
any domination rule α.

It is obvious that for the problem P2|prec,N1, N2|Cmax, we have
Cmax(LSα)

C∗
max

< 2, since

1

2

∑

j∈N

pj ≤ C∗
max, Cmax(LSα) <

∑

j∈N

pj

.
For some problems it can be useful to know the worst possible active

schedule constructed by LS. Such problems with opposite optimality
criteria have both theoretical and practical significance [7]. For the
problem under consideration, we can note such a problem with oppo-
site optimality criteria, namely to maximize the makespan where only
active schedules are considered, by P2|prec,N1, N2|Cmax → max. Un-
fortunately, the proposed maximization problem is strongly NP-hard,
too.

Lemma 5 P2|chains,N1, N2|Cmax → max is NP-hard in the strong
sense.

Proof. We give a reduction from the 3-Partition problem. Given
an instance of the 3-Partition problem with 3m numbers. Let M =
(mB)2. Construct an instance of P2|chain,N1, N2|Cmax with 5m+ 1
jobs. The first 3m+ 1 operations are independent, pj = M + bj , j =
1, 2, . . . , 3m, and p3m+1 = M . In addition, there is a chain of jobs
3m+ 2 → 3m+ 3 → 3m+ 4 → · · · → 3m+ 2m+ 1, where pj = 4M +
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B− 1, j = 3m+2, 3m+4, . . . , 3m+2m and pj = 1, j = 3m+3, 3m+
5, . . . , 3m+2m+1. Furthermore, N1 = {3m+2, 3m+4, . . . , 3m+2m}
and N2 = {1, 2, . . . , 3m + 1, 3m + 3, 3m + 5, . . . , 3m + 2m + 1}. See
Fig.1(c).

If and only if the instance of the 3-Partition problem has the answer
"YES", there is an active schedule in which the subset of jobs which
corresponds to the set N i is processed in parallel with a job 3m+ 1+
(2i−1), i = 1, 2, . . . ,m. Starting times S3m+1+(2i−1) = (4M +B−1+
1)(i− 1), i = 1, 2, . . . ,m, and S3m+1+2i = (4M +B− 1)i+(i− 1), i =
1, 2, . . . ,m. The job 3m+ 1 is processed independently from the time
(4M +B − 1 + 1)m. For such the schedule Cmax = (4M +B)m+M .

If the answer is "NO" then Cmax = (4M +B)m, and there is a job
3m+1+(2i− 1), i ∈ {1, 2, . . . ,m}, which is processed in parallel with
4 jobs from the set {1, 2, . . . , 3m+ 1} (including the job 3m+ 1).

�
We show that approximation ration of LS with the following domi-

nation rules is ≈ 2: CP – critical path rule (choose a job which belongs
to a critical path [5, 1]), LPT–choose a job with the maximal process-
ing time, MS – choose a job with the maximal number of immediate
successors.

Lemma 6 There are instances for which

Cmax(LSα)

C∗
max

≈ 2, α ∈ {CP,LPT,MS}.

Proof.
For the rule MS we consider an instance from Fig.1(d). In this

instance we have a chain of k jobs with processing times p. k is odd.
Each such a job precedes two jobs with processing times e. Addi-
tionally, there is a chain of k jobs with processing times p + e. Then
Cmax(LSMS) = (k − 1)p+ 2e+ k(p+ e) and C∗

max = k(p+ e) + ke/2.
For k → ∞, e → 0, the lemma is true.

For the rule CP consider an instance from Fig.1(e). In this instance
we have a chain of 2k jobs with processing times p and e. Additionally,
there is k independent jobs with processing times p+ e which have to
be processed on the second machine. Then Cmax(LSCP ) = 2k(p+ e)
and C∗

max = k(p+ 2e). For e → 0 the lemma is true.
If we modify the instance for CP by adding a job 2k+1 with process-

ing time e/2, which precedes all independent jobs with the processing
time p+ e, then for the modified instance Cmax(LSLPT )

C∗
max

≈ 2.

�
We conjecture that the same relation is true for other rules α com-

puted in polynomial time.
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3 Conclusion
In this paper, we present some complexity and approximation results
for the two-dedicated-parallel-machines scheduling problem with prece-
dence relations to minimize makespan, which is a sub-problem of two-
sided assembly line balancing problem. The presented results shows
that the two-machines problem is not easier than well-known SALBP-
1, i.e. there is no Branch and Bound algorithm with a polynomial time
computed Lower Bound that solve instances of a special case even for
n = 60 jobs in appropriate time. For the future research a question
appears: if there is a constant a, 1 < a < 2, in which the problem is
either approximable or not.
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