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Problem statement

The paper is devoted to the problem of railway transportation. The
railway network consists of stations between which freight cars are trans-
ported. Let us S be a set of stations. Every station s has a set
Ns = {J1, ...Jns} of orders to deliver. N = ∪s∈SNs is a common set
of orders. Each order represents one freight car. If an order consists of
k cars, we will consider it as k different orders. We know realise time rsj
and due date dsj of delivery for each car Jj ∈ Ns. Let us psj be traversing
time for the car Jj ∈ Ns and ws

j be its weight (importance). Our goal is
to design freight trains and work out their schedule. Objective functions
can be the following:

• minimizing the weight total tardiness

min
∑
s∈S

∑
j∈Ns

ws
j max{0, Cs

j − dsj};

• minimizing the total completion time

min
∑
s∈S

∑
j∈Ns

Cs
j ;

• minimizing the maximal lateness

min max
j∈Ns,s∈S

{Cs
j − dsj};

• in the set N find subset N ⊆ N of cars that can be delivered on
time:

max
∑
j∈N

ws
j −

∑
j∈N\N

zsj .
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These problems are large-scale and difficult to solve. Therefore, we
proposed to divide them into subproblems which are easier to solve and
consider special cases which would help to find important structural prop-
erties which are hard to recognize in the general case. We have suggested a
number of railway basic models (with two stations, with chain of stations
and so on) that gives us an opportunity to develop special exact algo-
rithms which can be used in general railway problems. Some algorithms
for two-stations railway problems can be found in [1]. In this paper we
propose an algorithm for the special case of three stations.

Three-Stations Railway problem

Consider the problem with 3 stations that are connected by a rail
road and one locomotive. A valid arrangement is shown on fig. 1. Arrows
indicate a possible route of the locomotive from one station to another.
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Fig. 1 Possible arrangement of stations

We have to implement a set of orders. N ij is a set of orders that should
be delivered from the station i to the station j. So N1 = N12 ∪N13 etc.
Let us assume that p is a traversing time from one station to another, q
is a capacity of a train, rsi is a release time of Js

i ∈ Ns, s ∈ {1, 2, 3}, ns is
a common number of orders at the station s, nsi is a number of orders at
station S that are should be delivered to the station i.

Objective function of the problem is following:

min
∑

J1
i ∈N1

C1
i +

∑
J2
i ∈N2

C2
i +

∑
J3
i ∈N3

C3
i . (1)

It is easy to see the locomotive has the following strategies when he
arrives to a station:

1. staying at the station and waiting a new order;
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2. idling to the next station;

3. idling to the previous station;

4. moving to the next station with the largest possible number of cars;

5. moving to the previous station with the largest possible number of
cars.

Only for this objective function (1) we can reduce the number of pos-
sible solutions if we consider the following:

• idling to the next or previous station is the same as moving without
the wagons;

• if we can move at the second station with q wagons it is more prefer-
able for us than stay at the station;

• idling to another station is preferable, if all orders have been deliv-
ered from station s.

It is obviously that in an optimal schedule the train begins his move-
ment from a station s only at the moments of its arrival to this station
or at the moment of appearance of a new order, i.e. at the moment rsi .
So times points at which the train begins and ends movement between
stations belong to T = {t : ∃rsj , ∃l ∈ {1, . . . , (n1+n2+n3)}, t = rsj + lp}.

Let us denote by

S(s, t, k12, k13, k21, k23, k31, k32) (2)

the state at the moment t ∈ T , where s is the number of the station where
the locomotive is, k12 is the number of delivered orders from the first to the
second station, k23 the number of delivered orders from the second station
to the third one, etc. Let us assume that P (s, t, k12, k13, k21, k23, k31, k32)
is the smallest total delivery time in the scheduling which leads to state
S(s, t, k12, k13, k21, k23, k31, k32). For the objective function (1) the opti-
mal solution of the problem is

min
s,t

P (s, t, n12, n13, n21, n23, n31, n32). (3)

E x a m p l e 1. Consider the following problem. Let us assume that
r12 = (1, 2, 3), r23 = (2, 3, 4), r13 = (3, 4, 5), r21 = (2, 3), r32 = (1, 2),
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r31 = (2, 3), p = 2, q = 2. One of the possible scheduling solutions is
shown on fig. 2.
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Fig. 2 One of the possible scheduling solutions

Algorithm 1 describes the calculation of the number of cars that the
train can take to the next station in (2).

Algorithm 1

1: function GetPossibleOrders(s,ns,futureS)
2: futureQ← 0

3: while rsi < t do

4: if i > n & i− n <= q then futureQ← futureQ+ 1

5: end if

6: end whilereturn futureQ

7: end function

Let us introduce the following denotations:
t — current time;
s — station number, where the locomotive is located at the time t;
j — number of wagons, which the locomotive can take at the current
time;
n — number of delivered orders from station s;
q — max number of wagons that the locomotive can carry at a time;
N [s][futureS] — array, which contain number of delivered orders from
station s to futureS;
Runner — entry point, which execution of the program begins with;
existsCarsOnStay — function, which returns false, if all orders have been
delivered from station s.
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Algorithm 2 creates nodes of the tree and allows to move from one
station to another.

Algorithm 2

1: function Runner

2: int[,] N ← new int[s,s]
3: N ← 0
4: newS ← S(1, 0, N)
5: BuildTree(newS)
6: end function

7:

8: function BuildTree(prevS)
9: j ← 1

10: q ← 0
11: s← prevS.s

12: t← prevS.t

13: N ← prevS.N

14: while j..3 do

15: if j = 1 then futureS ← s⊕3 1
16: end if

17: if j = 2 then futureS ← s⊖3 1
18: end if

19: if j = 3 then futureS ← s

20: end if

21: q ← GetPossibleOrders(s,N [s, futureS])
22: N [s, futureS]← N [s, futureS] + q

23: if j <> 3 then

24: t← t + p

25: else

26: t← t + 1
27: end if

28: newS ← S(futureS, t, N)
29: if existsCarsOnStay(newS) then

30: BuildTree(newS)
31: end if

32: end while

33: end function

As we have O((n1 + n2 + n3)
2) possible time moments running time of

the proposed algorithm is O((n1 + n2 + n3)
2n12n13n21n23n31n32).
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