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Introduction

Suppose that we have a set N = {1, 2, . . . , n} of n jobs to be processed on
a single machine. Preemptions are not allowed. The machine is available
since time t0 = 0 and can handle only one job at a time. Job j ∈ N is
available for processing since its release date rj ≥ 0, its processing requires
processing time pj ≥ 0 time units and should ideally be completed before
its due date dj . We will call an instance the set of given parameters:
release dates, processing times, and due dates. We will use superscripts
to distinguish parameters belonging to different instances. Note that an
instance A = {rA

1
, . . . , rAn , p

A
1
, . . . , pAn , d

A
1
, . . . , dAn } can be considered as a

vector in 3n-dimensional space.
Let Sj(π) and Cj(π) be the starting and the completion time of job j ∈

N in schedule π, respectively. We will consider only early schedules, i.e.,
if π = {j1, . . . , jn}, then Sj1 = max{0, rj1}, Sjk = max{rjk , Cjk−1

}, k =
2, 3, . . . , n, and Cj(π) = Sj(π) + pj , j ∈ N . Thus an early schedule is
uniquely determined by a permutation of the jobs of set N . Then let
Tj(π) = max{0, Cj(π)− dj} be a tardiness of job j in schedule π.

The objective is to find an optimal schedule π̄ which minimizes the
total tardiness, i.e., objective function is F (π) =

∑
j∈N

Tj(π). The problem

is denoted by 1|rj |
∑

Tj .
In the paper we propose a new approach for the total tardiness mini-

mization problem. The approach is to construct a polynomially solvable
instance B and apply its solution to the given instance A. To evaluate
the error of the solution we construct a metric for the considered problem.
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For the problem 1|rj |
∑

Tj we propose a metric ρ(A,B).

ρ(A,B) = n ·max
j∈N

|rAj − rBj |+ n ·
∑

j∈N

|pAj − pBj |+
∑

j∈N

|dAj − dBj |.

This function can be considered as a metric for the problem and bounds
difference between optimal values of objective functions of instances A

and B.

Metrical approach

Theorem 1. The function

ρ(A,B) = n ·max
j∈N

|rAj − rBj |+ n ·
∑

j∈N

|pAj − pBj |+
∑

j∈N

|dAj − dBj |.

satisfies the metric axioms.

Theorem 2. Let π̄A and π̄B be an optimal schedules for instances A

and B, respectively. Moreover, let π̃B be an approximate schedule, subject

to

∑

j∈N

TB
j (π̃B)−

∑

j∈N

TB
j (π̄B) ≤ δ.

Then

∑

j∈N

TA
j (π̃B)−

∑

j∈N

TA
j (π̄A) ≤ 2ρ(A,B) + δ.

The idea of the metrical approach is to find the least distanced in
the metric from the given instance A polynomially solvable instance B.
Then, by applying known polynomial algorithm to the instance B, one
obtains a schedule πB which can be used as an approximate solution
for instance A with error no greater than 2ρ(A,B). One can also use
approximate solution for the instance B with an absolute error δ as an
approximate solution for instance A, in this case the error is not greater
that 2ρ(A,B) + δ.

Thereby, the problem 1|rj |
∑

Tj is reduced to the function ρ(A,B)
minimization problem .
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Let us search for the instance B in the polynomially solvable class
defined by the system of linear inequalities

A ·RB + B · PB + C ·DB ≤ H,

where RB = (rB
1
, . . . , rBn )T , PB = (pB

1
, . . . , pBn )

T , DB = (dB
1
, . . . , dBn )

T ,

pBj ≥ 0, rBj ≥ 0, j ∈ N , T is transposition symbol, A,B, C – m × n

matrices, and H – a column of m elements.
Then the problem of finding the least distanced from A instance of the

given polynomially solvable class can be formulated as follows

minimize f = n · (yr − xr) + n ·
∑

j∈N

(ypj − x
p
j ) +

∑

j∈N

(ydj − xd
j ),

subject to

xr ≤ rAj − rBj ≤ yr,

x
p
j ≤ pAj − pBj ≤ y

p
j ,

xd
j ≤ dAj − dBj ≤ yd,

rBj ≥ 0, pBj ≥ 0, j ∈ N,

A ·RB + B · PB + C ·DB ≤ H.

It is the problem of the linear programming, with 7n + 2 variables:
rBj , pBj , d

B
j , x

p
j , y

p
j , x

d
j , y

d
j , x

r, yr, j = 1, . . . , n.
However, it is not necessary to use algorithms of the linear program-

ming, if there are less complicated ways.
The metrical approach can be applied to other scheduling problems,

if a metric function with required properties is constructed.
Lemma 1. Consider the scheduling problem with following objective

function

F (π) =
∑

j∈N

φj(π, r1, . . . , rn, p1, . . . , pn, dj).

Then the function

ρ(A,B) =
∑

j∈N

∑

i∈N

(Rji|r
A
j − rBj |+ Pji|p

A
j − pBj |) +

∑

j∈N

Dj |d
A
j − dBj |,
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where Rji ≥ |∂φi

∂rj
|, Pji ≥ |∂φi

∂pj
|, Dj ≥ |

∂φj

∂dj
|, can be used as a metric for the

problem, and the metrical approach can be applied to find an approximate

solution of the problem.

Computational experiments

We used three polynomially solvable classes in computational experi-
ments. These classes are {PR : pj = p, rj = r, j ∈ N}, {PD : pj =
p, dj = d, j ∈ N}, {RD : rj = r, dj = d, j ∈ N}. In the optimal sched-
ules for these classes jobs are processed in the increasing order the free
parameter.

Lemma 2. Minimum of the metric function ρ(A,B), where B ∈
{PR,PD,RD} can be found in O(n) operations.

To evaluate approximate solutions for both cases we have run compu-
tational experiments. For each value of n and each of used polynomially
solvable classes 10000 instances were generated. Experiments were per-
formed for n = 4, 5, . . . , 10. For each instance, processing times pj were
generated randomly in the interval [1, 100], due dates dj were generated in
the interval [pj ,

∑
j∈N

pj ], and release dates rj were generated in the interval

[0, dj − pj ]. We used proposed approach to find an approximate solution
with value of objective function Fa for each instance, and branch & bound
algorithm to find an optimal solution with value of objective function Fo.
After we estimated experimental error δ = Fa − Fo in percentage of the
theoretical error, which is doubled value of function ρ(A,B) .

All obtained distributions are bell-shaped. Obtained average errors
are shown in Table 1. In the PR-case experimental errors averages near
2, 5% of the theoretical, in PD-case average error is near 4, 5% and in
RD-case error grows from 20% to 30% with increasing of n

Conclusion

In the paper we have proposed the new approach to the total tardiness
minimization problem. The approach is based on search for the poly-
nomially solvable instance which has a minimal distance in the metric
from the original instance. In further research we are going to improve
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Table 1: Average experimental error in percentage of the theoretical error
n PR PD RD
4 2,5% 4,6% 20,8%
5 2,6% 4,8% 23,1%
6 2,6% 4,6% 24,6%
7 2,6% 4,7% 26%
8 2,5% 4,6% 27%
9 2,4% 4,7% 27,9%
10 2,4% 4,6% 28,6%

the approach by constructing new metrics and finding new polynomially
solvable cases of scheduling problems.

The authors were supported by the Russian Foundation for Basic Research
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