Metric for the total tardiness minimization problem

Pavel Korenev^{1,2}, Alexander Lazarev^{1,2,3}

¹ Institute of Control Sciences of the Russian Academy of Sciences, Russia; ² Moscow State University, Moscow, Russia;

³ National Research University Higher School of Economics, Moscow, Russia; jobmath@mail.ru, pkorenev@rambler.ru

Introduction

Suppose that we have a set $N = \{1, 2, ..., n\}$ of n jobs to be processed on a single machine. Preemptions are not allowed. The machine is available since time $t_0 = 0$ and can handle only one job at a time. Job $j \in N$ is available for processing since its *release date* $r_j \ge 0$, its processing requires *processing time* $p_j \ge 0$ time units and should ideally be completed before its *due date* d_j . We will call an instance the set of given parameters: release dates, processing times, and due dates. We will use superscripts to distinguish parameters belonging to different instances. Note that an instance $A = \{r_1^A, \ldots, r_n^A, p_1^A, \ldots, p_n^A, d_1^A, \ldots, d_n^A\}$ can be considered as a vector in 3n-dimensional space.

Let $S_j(\pi)$ and $C_j(\pi)$ be the starting and the completion time of job $j \in N$ in schedule π , respectively. We will consider only early schedules, i.e., if $\pi = \{j_1, \ldots, j_n\}$, then $S_{j_1} = \max\{0, r_{j_1}\}, S_{j_k} = \max\{r_{j_k}, C_{j_{k-1}}\}, k = 2, 3, \ldots, n$, and $C_j(\pi) = S_j(\pi) + p_j, j \in N$. Thus an early schedule is uniquely determined by a permutation of the jobs of set N. Then let $T_j(\pi) = \max\{0, C_j(\pi) - d_j\}$ be a tardiness of job j in schedule π .

The objective is to find an *optimal schedule* $\bar{\pi}$ which minimizes the *total tardiness*, i.e., objective function is $F(\pi) = \sum_{j \in N} T_j(\pi)$. The problem

is denoted by $1|r_j| \sum T_j$.

In the paper we propose a new approach for the total tardiness minimization problem. The approach is to construct a polynomially solvable instance B and apply its solution to the given instance A. To evaluate the error of the solution we construct a metric for the considered problem.

1

For the problem $1|r_j| \sum T_j$ we propose a metric $\rho(A, B)$.

$$\rho(A,B) = n \cdot \max_{j \in N} |r_j^A - r_j^B| + n \cdot \sum_{j \in N} |p_j^A - p_j^B| + \sum_{j \in N} |d_j^A - d_j^B|.$$

This function can be considered as a metric for the problem and bounds difference between optimal values of objective functions of instances A and B.

Metrical approach

Theorem 1. The function

$$\rho(A,B) = n \cdot \max_{j \in N} |r_j^A - r_j^B| + n \cdot \sum_{j \in N} |p_j^A - p_j^B| + \sum_{j \in N} |d_j^A - d_j^B|.$$

satisfies the metric axioms.

Theorem 2. Let $\bar{\pi}^A$ and $\bar{\pi}^B$ be an optimal schedules for instances A and B, respectively. Moreover, let $\tilde{\pi}^B$ be an approximate schedule, subject to

$$\sum_{j\in N}T^B_j(\tilde{\pi}^B)-\sum_{j\in N}T^B_j(\bar{\pi}^B)\leq \delta.$$

Then

$$\sum_{j \in N} T_j^A(\tilde{\pi}^B) - \sum_{j \in N} T_j^A(\bar{\pi}^A) \le 2\rho(A, B) + \delta.$$

The idea of the metrical approach is to find the least distanced in the metric from the given instance A polynomially solvable instance B. Then, by applying known polynomial algorithm to the instance B, one obtains a schedule π^B which can be used as an approximate solution for instance A with error no greater than $2\rho(A, B)$. One can also use approximate solution for the instance B with an absolute error δ as an approximate solution for instance A, in this case the error is not greater that $2\rho(A, B) + \delta$.

Thereby, the problem $1|r_j| \sum T_j$ is reduced to the function $\rho(A, B)$ minimization problem .

۷	2	٦
•		,
1		
4		

Let us search for the instance B in the polynomially solvable class defined by the system of linear inequalities

$$\mathcal{A} \cdot R^B + \mathcal{B} \cdot P^B + \mathcal{C} \cdot D^B \le H,$$

where $R^B = (r_1^B, \dots, r_n^B)^T, P^B = (p_1^B, \dots, p_n^B)^T, D^B = (d_1^B, \dots, d_n^B)^T, p_j^B \ge 0, r_j^B \ge 0, j \in \mathbb{N}, T$ is transposition symbol, $\mathcal{A}, \mathcal{B}, \mathcal{C} - m \times n$ matrices, and H – a column of m elements.

Then the problem of finding the least distanced from A instance of the given polynomially solvable class can be formulated as follows

minimize
$$f = n \cdot (y^r - x^r) + n \cdot \sum_{j \in N} (y_j^p - x_j^p) + \sum_{j \in N} (y_j^d - x_j^d),$$

subject to

$$\begin{aligned} x^r &\leq r_j^A - r_j^B \leq y^r, \\ x_j^p &\leq p_j^A - p_j^B \leq y_j^p, \\ x_j^d &\leq d_j^A - d_j^B \leq y^d, \\ r_j^B &\geq 0, p_j^B \geq 0, j \in N, \\ \mathcal{A} \cdot R^B + \mathcal{B} \cdot P^B + \mathcal{C} \cdot D^B < H. \end{aligned}$$

It is the problem of the linear programming, with 7n + 2 variables: $r_j^B, p_j^B, d_j^B, x_j^{\hat{p}}, y_j^p, x_j^d, y_j^d, x^r, y^r, j = 1, \dots, n.$ However, it is not necessary to use algorithms of the linear program-

ming, if there are less complicated ways.

The metrical approach can be applied to other scheduling problems, if a metric function with required properties is constructed.

Lemma 1. Consider the scheduling problem with following objective function

$$F(\pi) = \sum_{j \in N} \phi_j(\pi, r_1, \dots, r_n, p_1, \dots, p_n, d_j).$$

Then the function

$$\rho(A,B) = \sum_{j \in N} \sum_{i \in N} (R_{ji} |r_j^A - r_j^B| + P_{ji} |p_j^A - p_j^B|) + \sum_{j \in N} D_j |d_j^A - d_j^B|,$$

		-	
٠		1	í
	1	1	i
	-	-	

where $R_{ji} \ge \left|\frac{\partial \phi_i}{\partial r_j}\right|, P_{ji} \ge \left|\frac{\partial \phi_i}{\partial p_j}\right|, D_j \ge \left|\frac{\partial \phi_j}{\partial d_j}\right|$, can be used as a metric for the problem, and the metrical approach can be applied to find an approximate solution of the problem.

Computational experiments

We used three polynomially solvable classes in computational experiments. These classes are $\{\mathcal{PR} : p_j = p, r_j = r, j \in N\}$, $\{\mathcal{PD} : p_j = p, d_j = d, j \in N\}$, $\{\mathcal{RD} : r_j = r, d_j = d, j \in N\}$. In the optimal schedules for these classes jobs are processed in the increasing order the free parameter.

Lemma 2. Minimum of the metric function $\rho(A, B)$, where $B \in \{\mathcal{PR}, \mathcal{PD}, \mathcal{RD}\}$ can be found in O(n) operations.

To evaluate approximate solutions for both cases we have run computational experiments. For each value of n and each of used polynomially solvable classes 10000 instances were generated. Experiments were performed for n = 4, 5, ..., 10. For each instance, processing times p_j were generated randomly in the interval [1, 100], due dates d_j were generated in the interval $[p_j, \sum_{j \in N} p_j]$, and release dates r_j were generated in the interval

 $[0,d_j-p_j].$ We used proposed approach to find an approximate solution with value of objective function F_a for each instance, and branch & bound algorithm to find an optimal solution with value of objective function F_o . After we estimated experimental error $\delta=F_a-F_o$ in percentage of the theoretical error, which is doubled value of function $\rho(A,B)$.

All obtained distributions are bell-shaped. Obtained average errors are shown in Table 1. In the \mathcal{PR} -case experimental errors averages near 2,5% of the theoretical, in \mathcal{PD} -case average error is near 4,5% and in \mathcal{RD} -case error grows from 20% to 30% with increasing of n

Conclusion

In the paper we have proposed the new approach to the total tardiness minimization problem. The approach is based on search for the polynomially solvable instance which has a minimal distance in the metric from the original instance. In further research we are going to improve

4

Table 1: Average experimental error in percentage of the theoretical error

		1	0
n	\mathcal{PR}	\mathcal{PD}	\mathcal{RD}
4	$2,\!5\%$	$4,\!6\%$	20,8%
5	$2,\!6\%$	$4,\!8\%$	$23,\!1\%$
6	$2{,}6\%$	$4,\!6\%$	$24,\!6\%$
7	$2,\!6\%$	4,7%	26%
8	$2{,}5\%$	$4,\!6\%$	27%
9	$2,\!4\%$	4,7%	$27,\!9\%$
10	$2,\!4\%$	$4,\!6\%$	$28,\!6\%$

the approach by constructing new metrics and finding new polynomially solvable cases of scheduling problems.

The authors were supported by the Russian Foundation for Basic Research (projects no. 11-08-01321 and 11-08-13121).

REFERENCES

- P. Baptiste. "Scheduling equal-length jobs on identical parallel machines," Discret. Appl. Math., No. 103, 21–32 (2000).
- J. Du, J.Y.-T. Leung. "Minimizing total tardiness on one machine is NPhard," Math. Oper. Res., No. 15(3), 483–495 (1990).
- R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnoy Kan. "Optimization and approximation in deterministic sequencing and scheduling: a survey," Ann. Discret. Math., No. 5, 287–326 (1979).
- E.L. Lawler. "A Pseudopolynomial Algorithm for Sequencing Jobs to Minimize Total Tardiness," Ann. Discret. Math., No. 1, 331–342 (1977).
- E.L. Lawler. "A fully polynomial approximation scheme for the total tardiness problem," Oper. Res. Lett., No. 1, 207–208 (1982).
- A.A. Lazarev, A.G. Kvaratskheliya. "Metrics in Scheduling Problems," Dokl. Math., No. 81, 497–499 (2010).
- A.A. Lazarev, F. Werner. "Algorithms for Special Single Machine Total Tardiness Problem and an Application to the Even-Odd Partition Problem," Math. and Comp. Model., No. 49, 2078–2089 (2009).

5