Metric for the total tardiness minimization problem
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Introduction

Suppose that we have a set N = {1,2,...,n} of n jobs to be processed on
a single machine. Preemptions are not allowed. The machine is available
since time ty = 0 and can handle only one job at a time. Job j € N is
available for processing since its release date r; > 0, its processing requires
processing time p; > 0 time units and should ideally be completed before
its due date d;. We will call an instance the set of given parameters:
release dates, processing times, and due dates. We will use superscripts
to distinguish parameters belonging to different instances. Note that an
instance A = {r{*,...,rA pft,... ,pA,d{,... d?} can be considered as a
vector in 3n-dimensional space.

Let S;(m) and C;(m) be the starting and the completion time of job j €
N in schedule 7, respectively. We will consider only early schedules, i.e.,
if 7= {j1,...,Jn}, then Sj = maX{Ovrjl}v Sj. = ma’X{Tjk’Cjk—l}?k =
2,3,...,n, and Cj(m) = S;j(7) + pj,7 € N. Thus an early schedule is
uniquely determined by a permutation of the jobs of set N. Then let
T;(m) = max{0,Cj(m) — d;} be a tardiness of job j in schedule =.

The objective is to find an optimal schedule @ which minimizes the
total tardiness, i.e., objective function is F(7) = > Tj(m). The problem
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is denoted by 1|r;| > T;.

In the paper we propose a new approach for the total tardiness mini-
mization problem. The approach is to construct a polynomially solvable
instance B and apply its solution to the given instance A. To evaluate
the error of the solution we construct a metric for the considered problem.



For the problem 1|r;| >~ T; we propose a metric p(A, B).

A
p(AB) =n-max|rit =17 +n- Y |pf = pf|+ ) |d} —df|.
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This function can be considered as a metric for the problem and bounds
difference between optimal values of objective functions of instances A
and B.

Metrical approach

Theorem 1. The function

p(A,B):n-r_r1€a1\>[<|rf—rf\+n-Z|p§l—p}3\+2|d§‘—df|.
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satisfies the metric axioms.

Theorem 2. Let 7 and 78 be an optimal schedules for instances A
and B, respectively. Moreover, let 78 be an approzimate schedule, subject
to

Y TPEP) - > TP(EP) <.
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Then

S THEP) =Y THEY) < 2p(A,B) + 6.
JEN JEN
The idea of the metrical approach is to find the least distanced in
the metric from the given instance A polynomially solvable instance B.
Then, by applying known polynomial algorithm to the instance B, one
obtains a schedule 72 which can be used as an approximate solution
for instance A with error no greater than 2p(A, B). One can also use
approximate solution for the instance B with an absolute error ¢ as an
approximate solution for instance A, in this case the error is not greater
that 2p(A, B) + 4.
Thereby, the problem 1|r;|" T} is reduced to the function p(A, B)
minimization problem .



Let us search for the instance B in the polynomially solvable class
defined by the system of linear inequalities

A-RP4+B-PBy+C-DP<H,

B rBYT PB = (pB .. pB)T DB = (dB,... d5)T,

0, j € N, T is transposition symbol, A,B,C — m x n
matrices, and H — a column of m elements.

Then the problem of finding the least distanced from A instance of the

given polynomially solvable class can be formulated as follows

minimize f =n- (y" —a") +n- Y (yf —af) + Y (yf — ),
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subject to

A-RE+B-PEP+C.-DP <H.

It is the problem of the linear programming, with 7n + 2 variables:
eraija dJB7 £E§, yfv Z’?, y;iv xrv yT7j = ]-7 sy N

However, it is not necessary to use algorithms of the linear program-
ming, if there are less complicated ways.

The metrical approach can be applied to other scheduling problems,
if a metric function with required properties is constructed.

Lemma 1. Consider the scheduling problem with following objective
function

F(r) = Z Gi(T, T, Ty D1y ey Py ).
jEN

Then the function

p(AB) =D > (Rilrs! =71+ Palpj! = pf) + 3 Dsld)! = d,
JENEN JEN



where Rj; > \% ,Pji > |aj7’j

problem, and the metrical approach can be applied to find an approzimate
solution of the problem.

,D; > |gz; |, can be used as a metric for the

Computational experiments

We used three polynomially solvable classes in computational experi-
ments. These classes are {PR : p; = p,r; = 1,5 € N}, {PD : p; =
p,d; =d,j € N}, {RD :r; =r,d; =d,j € N}. In the optimal sched-
ules for these classes jobs are processed in the increasing order the free
parameter.

Lemma 2. Minimum of the metric function p(A, B), where B €
{PR,PD,RD} can be found in O(n) operations.

To evaluate approximate solutions for both cases we have run compu-
tational experiments. For each value of n and each of used polynomially
solvable classes 10000 instances were generated. Experiments were per-
formed for n = 4,5,...,10. For each instance, processing times p; were
generated randomly in the interval [1,100], due dates d; were generated in
the interval [p;, > p;], and release dates r; were generated in the interval
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[0,d; — pj]. We used proposed approach to find an approximate solution
with value of objective function F, for each instance, and branch & bound
algorithm to find an optimal solution with value of objective function F,.
After we estimated experimental error 6 = F, — F, in percentage of the
theoretical error, which is doubled value of function p(A, B) .

All obtained distributions are bell-shaped. Obtained average errors
are shown in Table 1. In the PR-case experimental errors averages near
2,5% of the theoretical, in PD-case average error is near 4,5% and in
RD-case error grows from 20% to 30% with increasing of n

Conclusion

In the paper we have proposed the new approach to the total tardiness
minimization problem. The approach is based on search for the poly-
nomially solvable instance which has a minimal distance in the metric
from the original instance. In further research we are going to improve



Table 1: Average experimental error in percentage of the theoretical error
PR  PD RD

25% 4,6% 20,8%

2,6% 4,8% 23,1%

2,6% 4,6% 24,6%

26% 4,7% 26%

25% 4,6% 27%

24% 4,7% 27,9%

24% 4,6% 28,6%

—
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the approach by constructing new metrics and finding new polynomially
solvable cases of scheduling problems.
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