
Notes on Complexity of the Simple Assembly Line Balancing
Problem

Lazarev A.A., Gafarov E.R.

Institute of Control Sciences of the Russian Academy of Sciences, Profsoyuznaya st. 65, 117997
Moscow, Russia

Dolgui A.

Ecole Nationale Supérieure des Mines, FAYOL-EMSE, CNRS:UMR6158, LIMOS, F-42023
Saint-Etienne, France

Abstract

In this paper, we consider the assembly line balancing problem, for which it is necessary to
minimize the number of used machine for a given cycle time. We propose a special case of the
problem for which any Branch and Bound algorithm with any polynomial time computed Lower
Bound can't solve some instances even for n=60 operations in appropriate time. Additionally, we
analyze the worst maximal--station-load line balance and present a technique to reduce the graph
of precedence relations that provides some advantages.

Introduction

We consider a single-model paced assembly line (see [Scholl] for definitions and terminology)
which continuously manufactures a homogeneous product in large quantities (a mass
production).
The simple assembly line balancing problem (SALBP-1) is to find an optimal line balance for a
given cycle time c, i.e., to find a feasible assignment of the given operations to the stations in
such a way that the number of used stations m reaches its minimal value. The SALBP-1 is
defined as follows.

Given a set N={1, 2, …,n} of operations and K stations 1,2,…,K. Operations has to be
processed for time units. The cycle time is given.
Furthermore, finish-start precedence relations are defined between the operations
according to an acyclic directed graph $G.$ The objective is to assign each operation j, j=1, 2,
…,n, on a stations in such a way that:

• the number m <= M of used stations is minimized;
• for each station k = 1,2,…,m a total load time doesn't exceed c, where -- a set

of operations assigned on the station k;
• the given precedence relations are fulfilled, i.e. if and then .

The problem is NP-hard in the strong sense. Surveys about results for SALBP-1 are published
periodically (e.g. [Scholl]). There exists a special electronic library http://www.assembly
-line-balancing.de of experimental data to test solution algorithms for this problem. The best
known Branch and Bound algorithm is presented in [Sewell].

The rest of the paper is organized as follows. In the first section we present a special case for
which any Branch and Bound (B&B) algorithm with any polynomial time computed Lower
Bound has exponential run time and the best known algorithm [Sewell] is not able to solve some
instances of this special case even for n>=60 in an appropriate time. A simple assembly line
balancing problem, where a number of used machines is maximized on solutions with maximal

-000259-

station loads, is considered in Sections 2 and 3. A modification of a graph of precedence
relations to a planar one and the benefits of such the modification are presented in Section 4.

1. Run Time of a Branch and Bound Algorithm for a Special Case

The worst case analysis of a run time of $B\&B$ algorithms are presented, e.g., in
[Finkelstein,Posypkin] for the well-known Knapsack Problems. In these papers authors use
special cases, for which it's can be easy to find an optimal solution with a B&B algorithm, but to
prove its optimality we should consider almost all feasible solutions. The number of optimal
solutions for instances of the special cases

In [Posypkin], the following special case of the Knapsack Problem has been presented. For this
type of instances, we have a set of numbers which are used in the following
parameterized optimization instance:

For this special case any B&B algorithm with any Upper Bound computed in a polynomial time,
has an exponential number of nodes in a search tree, if [Posypkin], i.e. the complexity

time of the B&B algorithm is exponential and equals to [Posypkin]. In fact, in
an instance of this type, there is a sub-instance which is an instance of the NP-hard Partition
Problem with numbers , i.e. to compute a "good" Upper bound we should
solve an instance of the Partition Problem, that impossible to do in a polynomial time, if

. As a consequence, the reduction of nodes by rule "a local upper bound <= current
record" will be ineffective.

We use a similar idea to construct a special case of SALBP-1 for which any $B\&B$ algorithm
with any polynomial time computed Lower Bound has an exponential time complexity which
makes the algorithm ineffective for instances with n>=60 operations.

We use the following reduction from the Partition Problem to the special case of SALBP-1. Let's
modified an instance of the Partition problem as follows:

-000260-

So, any instance of the Partition problems can be in polynomial time transformed to an
equivalent instance of the modified problem. If the initial instance has the answer "YES" (and

the same answer has the modified instance) then contains one and only one number from
each pair . If the number is included in the set then is
included in , otherwise the number . Without lost of generality let us assume

.

In the special case of SALBP-1 we have 2n operations and . Let

. Processing times of operations are denoted as follows:

There are no precedence relations between operations.

It's obvious that if and only if the modified instance of the partition problem has the answer
"YES" then the minimal number of machines m*=2, otherwise m*=3. As a consequence, if

, there is no polynomial time computed Lower Bound with a relative error equal or less
than 3/2. That means, for any set of polynomial time computed Lower Bounds

, there is an modified instance of the Partition problem with an
answer "NO", for which , although m* = 3. For such an
Partition instance any feasible solution of the corresponding SALBP-1 instance is optimal, but to
prove its optimality we should consider almost all the feasible solutions.

Let's estimate the possible number of feasible solution. On the first machine there could be
processed at least n-1 operations then there is at least possible loads of the first machine,
i.e. the number of feasible solutions is greater than

To solve such the instance of SALBP-1 with 2n = 60 a computer must perform more than

operations. Let's assume that the fastest known computer performs operations per second,
or less than operations per day. Then a run time of an algorithm will be more than

 days! That means there are instances of SALBP-1 for which a B&B algorithms with
polynomial time computed lower bounds have a too big run time.

Let's us consider the best known B&B algorithm from the paper [Sewell]. This algorithms
solves all benchmark instances published online on http://www.assembly
-line-balancing.de in less than one second per instance. We analyze some of methods which are
used in the algorithm to reduce the search tree.

-000261-

1. Lower bounds. . is computed by
assigning a weight to each operation j:

then . For the considered instance of SALBP-1 LB1=2 and .
It is obvious that all of these Lower Bounds are useless for the proposed special case.

2. In the algorithm, to solve subproblems a B&B algorithms for the Bin-packing problem is
used. For the considered instance such the algorithm for the Bin-packing problem has an
exponential run time as well, i.e. with such technique the search tree will not be reduced
substantially.

3. Authors use a modification of breadth-first strategy of branching, which could be
unappropriated for such kind of instances in cause of big demand to memory.

We can conclude the following. Despite the algorithm [Sewell] solves all benchmark instances in
less than 1 second per instance, known B&B algorithms for SALBP-1 remains exponential and
can't solve some instances with the size n>60 in appropriate time. That's why we consider a work
in the field of exact algorithms for the general case of the problem unpromising. Researcher can
concentrate on special cases or on essentially new solution schemes.

2. Maximization of Number of Stations

To propose an essentially new solution scheme for SALBP-1, it is necessary to investigate
properties of optimal solutions. We can investigate not only properties of good solutions but
properties of worst solutions as well, to avoid solutions with such the properties. In this Section
in contrast to classical SALBP-1, where the number of used stations should be minimized we
consider an optimization problem with opposite objective criteria, namely we consider the
maximization of the number of stations.

To make the maximization problem not trivial we assume that all stations (instead the last one)
should be maximal loaded, i.e. for two stations there is no operation j
assigned on the station which can be assigned on station without violation of precedence
constraints or the feasibility's condition "total load time of the station doesn't exceed the cycle
time". Such solutions with maximal station loads we call {\em active} solutions.

Usually in solution algorithms or algorithms of computing of Upper bounds, such active
solutions are considered. Let m -- a number of stations for a feasible solution with maximal
station loads, -- a minimal number of stations and -- a maximal number. It is
known [Hackman] that and as a consequence .

Denote the maximization problem by max-SALBP-1.

On the one hand, the investigation of a particular problem with the {\it maximum} criterion is an
important theoretical task. Algorithms for such a problem with the maximum criterion can be
used

-000262-

to cut bad sub-problems in the branching tree of branch-and-bound algorithms, to compute
Upper and Lower Bounds for a bi-criterion problems [Aloulou2010]. On the other hand, such
problems have also practical interpretations and applications [Aloulou2004,Arkin,Gafarov].
Moreover a situation arises when the company is considered as a customer, and one wants to
know the worst variant of a line balance, which is computed in a `black box' (e.g. in a plant).

Lemma 1. max-SALBP-1 is NP-hard in the strong sense
Proof. By reduction from 3-Parition Problem

Lemma 2. max-SALBP-1 is not approximated with an approximation error 3/2, unlike P = NP.
Proof. By reduction from Parition Problem to the special case where m* = 2.

In [Queyranne], it was proved that for SALBP-1 any polynomial time heuristic has worst-case
ratio at least 3/2, i.e. there for a heuristic algorithm there is an instance for which . If
we consider SALBP-1 as a generalization of the Bin-Packing Problem (BP), then this
approximation result can be compared with known results for the BP (e.g., see [Queyranne]),
where are a heuristic, for which . For BP it's known that any polynomial time
heuristic has worst-case ratio at least 3/2, as well. But it's hold only for , i.e.
the absolute error equals 1. For we have a worst case . We can
conjecture, that the same relation holds for SALBP-1, too, but in [Queyranne], authors show that
worst-case ratio 3/2 holds for any absolute error, i.e., for any polynomial time heuristic, for any

, there is an instance for which .

Next we prove a similar result for max-SALBP-1.
Lemma 3. For any polynomial time heuristic for max-SALBP-1 , for any given absolute error

, there is an instance for which and .

3. Maximal Number of Stations for Benchmark Instances
In this section we propose some experimental results on benchmark instances. Although, it's
obvious that there are instances for which (e.g., see Lemma 2), and there are instances
for which [Scholl], it's interesting to compare the numbers on benchmark instances.
The goal of the experiments is to estimate the maximal number of station for some of benchmark
instances presented on http://www.assembly-line-balancing.de. To maximize the number of
machines we constructed a simple B&B, with deep-first branching strategy and a simple Upper
Bound which are based on the following observation:

We compute -- a set of all predecessors (not immediate, too) for an operation j=1,2,…,n.
Then the minimal number of the machine , to which the operation j=1,2,…,n, can be assigned,

is computed as . Denote is a minimal load of the station
k. Let and . Then

.

Some other trivial Upper Bounds are used, e.g., . Upper bounds are recomputed
for each subproblem.
Unfortunately, the proposed B&B can't solve the majority of benchmark instances in 10 minutes
on CPU INTEL CORE 2 DUO 2,4 Hz (only one processer is used), but the received results allow
us estimate the difference between the minimal number of machine and possible maximal
number.

In the following table the experimental results are presented:

-000263-

If the run time less than 600 then the presented is optimal. After 60 seconds or running of
the algorithm, we had the same values for all the instances, except Arcus2 (after 60 sec.

= 29) and Lutz1 (after 60 sec. = 12). The maximal founded deviation
doesn't exceed 20%.

4. Flat Graph of Precedence Relations

In [Lazarev] authors propose a transformation of graph with precedence constraints to a planar
graph for the well-known Resource-constrained Project Scheduling Problem. The same idea can
be used for SALBP-1.

Theorem 1. For any instance of SALBP-1 with n operations and v precedence relations, there
exists an analogous instance with a flat graph G' with n' operations and v' relations, where n + v
> n'+v'.

We obtain an analogous instance from the original one by adding "dummy" operations (with tj =
0) and deleting all the unnecessary relations.
The proof of the theorem follows from Lemmas 4 and 5.

-000264-

Lemma4. If there is a subgraph that is isomorphic to the special graph , then we
can transform it into a flat subgraph by adding "dummy" jobs (with) and
deleting all the unnecessary relations.

 See the transformation rules shown in Figures 1,2.3.

Lemma5. If there is a subgraph that is isomorphic to the special graph , then
we can transform it into a flat subgraph by deleting all the unnecessary relations.

See the transformation rule shown in Figure 4.

The number of precedence relations influences on the run times of solution algorithms.
Complexity time of algorithms (including algorithms of calculating of lower and upper bounds)
the number of precedence relations is estimated by different authors as (i.e, the "Order
strength" on http://www.assembly-line-balancing.de is estimated according to the number n(n-1)
of precedence relations). If we consider only instances with a planar graph then the number of
relations is <=3n-6, i.e. .

So, the fact mentioned in Theorem 1 allows us reduce the run time of algorithms (by reduction of
unnecessary relations) and estimate the complexity exacter.

Conclusion

In this paper, we propose some complexity results for SALBP-1. Namely, we propose a special
case of the problem for which any Branch and Bound algorithm with any polynomial time
computed Lower Bound can't solve some instances even for n=60 operations in appropriate time.
Since the best known algorithm [Sewell] solves all benchmark instances in less than 1 second per
instances, we suggest for the future research not concentrating on exact algorithms which are
tested only on benchmark instances, but concentrate on algorithms for special cases with a good
theoretically estimated run time or on essentially new solution schemes.

-000265-

Additionally, we propose some results for the maximization version of problem of SALBP-1 and
present a technique to reduce the graph of precedence relations that provides some advantages.

The work was supported by 11-08-13121-офи-м-2011-РЖД.

References

Scholl A., Balancing and Sequencing of Assembly Lines, Physica Verlag, A Springer-Verlag
Company, 1999, 318 p.

Sewell E.C., Jacobson S.H., A Branch, Bound, and Remember Algorithm for the Simple
Assembly Line Balancing Problem, INFORMS Journal on Computing, doi
10.1287/ijoc.1110.0462, 2011, pp. 1--10.

Hackman S.T., Mgazine M.J., Wee T.S., Fast, Effective Algorithms for Simple Assembly Line
Balancing Problems, Operations Research, N 37, 1989, 916 -- 924.

Finkelstein Yu. Yu., Approximate Methods and Applied Problems of Discrete Optimization,
Nauka, Moscow, 1976 (in Russian).

Posypkin M.A., Sigal I. Kh., Speedup estimates for some variants of the parallel
implementations of the branch-and-bound method, Computational Mathematics and
Mathematical Physics, Vol. 46, N 12, 2006, 2189 --2 202.

Aloulou M.A. and Artigues C.,Flexible solutions in disjunctive scheduling: general formulation
and study of the flow-shop case. Computers and Operations Research, 37(5), 2010, 890 -- 898.

Aloulou M.A., Kovalyov M.Y., Portmann M.-C., Maximization Problems in Single Machine
Scheduling}, Annals of Operations Research, 129, 2004, 21 -- 32.

Arkin E.M., Bender M.A., Mitchell J.S.B., Skeinab S.S., The Lazy Bureaucrat Scheduling
Problem, Information and Computation, 184, 2003, 129 – 146.

Gafarov E.R., Lazarev A.A., Werner F., Transforming a Pseudo-Polynomial Algorithm for the
Single Machine Total Tardiness Maximization Problem into a Polynomial One, Annals of
Perations Research, 2011 (in print).

Queyranne M., Bounds for Assembly Line Balancing Heuristics, Operations Research, 33(6),
1985, 1353-1359.

Lazarev A.A., Gafarov E.R.,Transformation of the Network Graph of Scheduling Problems with
Precedence Constraints to a Planar Graph, Doklady Mathematics, 2009, Vol. 79, N 1, 1-3.

-000266-

