Polynomial algorithm for the scheduling problem

 $1|pmtn, p = 2, r_j = j - 1, w_j \le w_{j+1}|\sum w_j c_j$

A.A. Lazarev, D.I Arkhipov Institute of control science, Moscow Russian foundation for basic research jobmath@mail.ru, miptrafter@gmail.com

December 5, 2011

Abstract

In this paper, we consider the following scheduling problem. On the single machine need to process n jobs. Job j, j = 1, ..., n, characterized: release times $r_j = j - 1$; processing time $p_j = 2$; weight of jobs are non-decreasing $w_j \leq w_{j+1}$.

The objective function is min $\sum_{j=1}^{n} (w_j \cdot C_j)$, where C_i – completion time.

Statement 1. The machine does not idle without work. This statement follows from the fact that in each moment there is a job which is available to execute.

Statement 2. When the job j starts to realize there exists the job i which also started it's realization, and hasn't completed yet. Then job j should be completed before the job i continues it's execution.

Statement 3. All jobs are able to start it's execution only in integer times.

Corollary 1. a)According to 3 and 1 all jobs must start and finish only in integer times.

b)All jobs must process only in integer time intervals (1 or 2)

Statement 4. If the job does not get started in it release time, it would start after r_n .

Lemma 1. Assume the job *i* starts it's execution at moment r_i , and $c_i \leq r_n$. Then in interval $[r_i + 1, c_i - 1]$ all jobs is executed without interruption.

Definition 1. We define for each job *i* the variable $a_i = r_{\mu(i)}$ - receive time of the job $\mu(i)$ which satisfies the following inequality $w_{\mu(i)-1} \leq 2w_i \leq w_{\mu}$. If such job $\mu(i)$ doesn't exists we define $a_i = n$.

Lemma 2. The job i started it's execution at moment r_i , then was interrupted and completed at time $c_i > r_n$. Then, all jobs received in the interval $[r_i+1; a_i)$ can not execute in the interval $[n + 1; c_i)$

Lemma 3. Job i starts it's realization at the moment r_i , then was interrupted and completed at time $c_i > r_n$. Then there are no jobs which started it's execution in the interval $[r_i + 1; a_i)$, then were interrupted and competed it's execution before the moment a_i

Corollary 2. If the job *i* starts it realization at the moment r_i , then was interrupted and completed at time $c_i > r_n$. Then we have not more than one job which started in it's receive time r_j ($r_i < r_j < a_i$) and then was interrupted.

This job should be completed before the n + 1.

Algorithm 1. Now, let us show you the algorithm for constructing an optimal schedule.

We define $\pi(i)$ as the optimal schedule for the jobs with weights $\{w_i, w_{i+1} \dots w_n\}$ and release dates $\{r_i, r_{i+1} \dots r_n\}$. Note that our goal is to construct the schedule $\pi(1)$.

We will construct schedules $\pi(n), \pi(n-1) \dots \pi(1)$ step by step.

Step 1

 $\pi(n) = n; n$

Step n + 1 - i

We know the schedules $\pi(i+1), \ldots \pi(n-1), \pi(n)$. Let us show how to construct the schedule πi .

Let's consider some cases:

1)Both units of the job i complete instantly.

According to the Smith's rule and 4 we obtain that the optimal schedule is $\{i, i, \pi(i+2), i+1, i+1\}$.

2a) The job i starts it realization at the moment r_i , then was interrupted and continued its realization at the moment $t \leq r_n$.

According to 1 all jobs in the interval (r_i+1,t) couldn't be interrupted. Then, due to the Smith's rule and the 4 all jobs which were received but haven't started before the moment t must start their execution when all jobs with receive times $\geq t + 1$ will be completed.

We obtain that the optimal schedule for each t is: $\{i, i + 1, i + 1, i + 3, i + 3...t - 1, t - 1, i, \pi(t+2), t+1, t+1, t, t, ...i + 2, i+2\}$

2b) The job i starts it realization at the moment r_i , then was interrupted and continued its realization at the moment $t > r_n$.

2b.1) There are no interruptions in the interval $(r_i+1; a_i)$. The job $\mu(i)$ starts its execution at the moment moment $a_i = r_{\mu(i)}$.

Note that each job j such as $i < j < \mu(i)$ could either be completed at the moment a_i or start its execution after the moment c_i . Hence, in the interval $(a_i; c_i - 1)$ to execute only jobs $\{a_i + 1, \ldots n\}$. Hence, the optimal schedule for this case is:

 $\{i, i+1, i+1, i+3, i+3 \dots a_i - 1, a_i - 1, \pi(\mu(i)), i, a_i, a_i, \dots i+2, i+2\}$

2b.2) There are no interruptions in the interval $(r_i+1; a_i)$. The job $\mu(i)$ starts its execution at the moment moment $a_i = r_{\mu(i)} + 1$

We have the one difference between this case and 2b.1) related to parity of the interval $(r_i; r_{\mu(i)})$. So, the optimal schedule is:

 $\{i, i+1, i+1, i+3, i+3 \dots a_i, a_i, \pi(\mu(i)+1), \mu(i), \mu(i), i, a_i, a_i, \dots i+2, i+2\}$ 2b.3) There is an interruption in the interval $(r_i + 1, a_i)$.

According to the 2 & 2 that there are can be only one interrupted job $(r_i + 1, a_i)$ which must be completed before the moment n + 1. Let this job be performed beginning at t and continued its execution at t' < n. Note that there are no interruptions in the intervals $(r_i + 1; t) \& (t; t')$ (due to the 1). According to the Smith's rule, 2 and the fact that $t' \ge a_i$ we have the optimal schedule for each pair of jobs $\{t, t'\}$:

 $\{i, i+1, i+1, \ldots, t-1, t-1, t+1, t+2, t+2, t'-1, t'-1, t+1, \pi(t'+2), all jobs with the receive dates from the interval <math>(a_i, t'+2)$ (which haven't started yet), i, all jobs with receive dates lower than a_i (which haven't started yet)}

We obtained on each step:

1 schedule in case 1)

About n schedules (for each t) in case 2a)

1 schedule in case 2b.1) and 1 schedule in 2b.2)

About n^2 schedules schedules in 2b.3) (for each pair $\{t, t'\}$). So, we obtain about $O(n^2)$ schedules on each step and we also need O(n) operations to sort the jobs according to Smith's rule.

After n-1 steps we obtain the schedule $\pi(1)$.

So, the complexity of this algorithm equals $O(n^4)$.

References

- P. Baptiste Scheduling Equal-Length Jobs on Identical Parallel Machines. Discrete Appl. Math., Number 103, 2000, 21–32.
- [2] A.A. Lazarev, A.G. Kvaratskhelia Properties of Optimal Schedules for the Minimization Total Weighted Completion Time in Preemptive Equal-length Job with Release Dates Scheduling Problem on a Single Machine// Automation and Remote Control, Vol. 71, Number 10, 2010, 2085–2092.