
Polynomial algorithm for the scheduling
problem

1|pmtn, p = 2, rj = j − 1, wj ≤ wj+1|
∑
wjcj

A.A. Lazarev, D.I Arkhipov
Institute of control science, Moscow

Russian foundation for basic research
jobmath@mail.ru, miptrafter@gmail.com

December 5, 2011

Abstract

In this paper, we consider the following scheduling problem. On
the single machine need to process n jobs. Job j, j = 1, . . . , n, char-
acterized: release times rj = j − 1; processing time pj = 2; weight of
jobs are non-decreasing wj ≤ wj+1.

The objective function is min
n∑
j=1

(wj · Cj), where Ci – completion time.

Statement 1. The machine does not idle without work.
This statement follows from the fact that in each moment there is a job which
is available to execute.

Statement 2. When the job j starts to realize there exists the job i which
also started it’s realization, and hasn’t completed yet. Then job j should be
completed before the job i continues it’s execution.

Statement 3. All jobs are able to start it’s execution only in integer times.

Corollary 1. a)According to 3 and 1 all jobs must start and finish only in
integer times.
b)All jobs must process only in integer time intervals (1 or 2)

Statement 4. If the job does not get started in it release time, it would start
after rn.

1

Lemma 1. Assume the job i starts it’s execution at moment ri, and ci ≤ rn.
Then in interval [ri + 1, ci − 1] all jobs is executed without interruption.

Definition 1. We define for each job i the variable ai = rµ(i) - receive time
of the job µ(i) which satisfies the following inequality wµ(i)−1 ≤ 2wi ≤ wµ. If
such job µ(i) doesn’t exists we define ai = n.

Lemma 2. The job i started it’s execution at moment ri,then was interrupted
and completed at time ci > rn. Then, all jobs received in the interval [ri+1; ai)
can not execute in the interval [n+ 1; ci)

Lemma 3. Job i starts it’s realization at the moment ri, then was interrupted
and completed at time ci > rn. Then there are no jobs which started it’s
execution in the interval [ri + 1; ai),then were interrupted and competed it’s
execution before the moment ai

Corollary 2. If the job i starts it realization at the moment ri, then was
interrupted and completed at time ci > rn. Then we have not more than
one job which started in it’s receive time rj (ri < rj < ai) and then was
interrupted.
This job should be completed before the n+ 1.

Algorithm 1. Now, let us show you the algorithm for constructing an opti-
mal schedule.
We define π(i) as the optimal schedule for the jobs with weights {wi, wi+1 . . . wn}
and release dates {ri, ri+1 . . . rn}. Note that our goal is to construct the sched-
ule π(1).
We will construct schedules π(n), π(n− 1) . . . π(1) step by step.

Step 1
π(n) = n;n
Step n + 1 - i
We know the schedules π(i+ 1), . . . π(n− 1), π(n). Let us show how to con-
struct the schedule πi.
Let’s consider some cases:
1)Both units of the job i complete instantly.
According to the Smith’s rule and 4 we obtain that the optimal schedule is
{i, i, π(i+ 2), i+ 1, i+ 1}.
2a)The job i starts it realization at the moment ri, then was interrupted and
continued its realization at the moment t ≤ rn.
According to 1 all jobs in the interval (ri+1, t) couldn’t be interrupted. Then,
due to the Smith’s rule and the 4 all jobs which were received but haven’t

2

started before the moment t must start their execution when all jobs with re-
ceive times ≥ t+ 1 will be completed.
We obtain that the optimal schedule for each t is: {i, i + 1, i + 1, i + 3, i +
3 . . . t− 1, t− 1, i, π(t+ 2), t+ 1, t+ 1, t, t, . . . i+ 2, i+ 2}
2b)The job i starts it realization at the moment ri, then was interrupted and
continued its realization at the moment t > rn.
2b.1)There are no interruptions in the interval (ri+1; ai). The job µ(i) starts
its execution at the moment moment ai = rµ(i).
Note that each job j such as i < j < µ(i) could either be completed at the
moment ai or start its execution after the moment ci. Hence, in the interval
(ai; ci − 1) to execute only jobs {ai + 1, . . . n}. Hence, the optimal schedule
for this case is:
{i, i+ 1, i+ 1, i+ 3, i+ 3 . . . ai − 1, ai − 1, π(µ(i)), i, ai, ai, . . . i+ 2, i+ 2}
2b.2)There are no interruptions in the interval (ri+1; ai). The job µ(i) starts
its execution at the moment moment ai = rµ(i) + 1
We have the one difference between this case and 2b.1) related to parity of
the interval (ri; rµ(i)). So, the optimal schedule is:
{i, i+1, i+1, i+3, i+3 . . . ai, ai, π(µ(i)+1), µ(i), µ(i), i, ai, ai, . . . i+2, i+2}
2b.3)There is an interruption in the interval (ri + 1, ai).
According to the 2 & 2 that there are can be only one interrupted job
(ri + 1, ai) which must be completed before the moment n + 1. Let this job
be performed beginning at t and continued its execution at t′ < n. Note that
there are no interruptions in the intervals (ri + 1; t)&(t; t′)(due to the 1).
According to the Smith’s rule, 2 and the fact that t′ ≥ ai we have the optimal
schedule for each pair of jobs {t, t′}:
{i, i+ 1, i+ 1 . . . t− 1, t− 1, t+ 1, t+ 2, t+ 2, t′ − 1, t′ − 1, t+ 1, π(t′ + 2), all
jobs with the receive dates from the interval (ai, t

′+2) (which haven’t started
yet), i, all jobs with receive dates lower than ai (which haven’t started yet)}

We obtained on each step:
1 schedule in case 1)
About n schedules (for each t) in case 2a)
1 schedule in case 2b.1) and 1 schedule in 2b.2)
About n2 schedules schedules in 2b.3) (for each pair {t, t′}). So, we obtain
about O(n2) schedules on each step and we also need O(n) operations to sort
the jobs according to Smith’s rule.
After n− 1 steps we obtain the schedule π(1).
So, the complexity of this algorithm equals O(n4).

3

References

[1] P. Baptiste Scheduling Equal-Length Jobs on Identical Parallel Ma-
chines. Discrete Appl. Math., Number 103, 2000, 21–32.

[2] A.A. Lazarev, A.G. Kvaratskhelia Properties of Optimal Schedules
for the Minimization Total Weighted Completion Time in Preemptive
Equal-length Job with Release Dates Scheduling Problem on a Single
Machine// Automation and Remote Control, Vol. 71, Number 10, 2010,
2085–2092.

4

