Polynomial algorithm for Baptiste's problem for single machine with preemptions of jobs

Lazarev A.A., Arkhiov D.I

e-mail: jobmath@mail.ru miptrafter@gmail.com Institute of Control Sciences of the Russian Academy of Sciences, Russia

1 Keywords

one-machine scheduling, generalized Smith's rule

2 Abstract

We consider the following problem of scheduling theory. On a machine it is necessary to process a set of jobs $N = \{1, 2, ..., n\}$. Simultaneous processing is prohibited, but interrupts in processing jobs is possible. Each job *i* of the set *N* characterized by it's weight w_i , release date $r_i = i - 1$ and processing time $p_i = 2$. The only restriction is that weights w_i are non-decreasing. The objective function can be expressed as the sum of weighted completion times $\min \sum_{i=1}^{n} (w_i c_i)$.

We suggest the polynomial algorithm with complexity $O(n^4)$ which gives us the Pareto - optimal schedule π for each set of jobs N. In this algorithm we use generalized Smith's rule, to obtain particular schedules after moment r_n and to prove some important lemmas.