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Abstract

In this note, we consider a single machine scheduling problem with
generalized total tardiness objective function. A pseudo-polynomial
time solution algorithm is proposed for a special case of this problem.
Moreover, we present a new graphical algorithm for another special
case, which corresponds to the classical problem of minimizing the
weighted number of tardy jobs on a single machine. The latter algo-
rithm improves the complexity of an existing pseudo-polynomial algo-
rithm by Lawler. Computational results are presented for both special
cases considered.
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1 Introduction
Two classical single machine scheduling problems are the problem of
minimizing total tardiness and the problem of minimizing the number
of tardy jobs which can be formulated as follows. Änderung.

Entsprechend
des
Gutacht-
ens fuer
max TT
Artikel

We are given a set N = {1, 2, . . . , n} of n independent jobs that
must be processed on a single machine. Job preemption is not allowed.
The machine can handle only one job at a time. All jobs are assumed to
be available for processing at time 0. For each job j ∈ N , a processing
time pj > 0 and a due date dj are given.

A feasible solution is described by a permutation π = (j1, j2, . . . , jn)

Änderung.
of the jobs of the set N from which the corresponding schedule can be
uniquely determined by starting each job as early as possible. Let
Cjk(π) =

∑k
l=1 pjl be the completion time of job jk in schedule π.

If Cj(π) > dj , then job j is tardy and we have Uj = 1, otherwise
Uj = 0. If Cj(π) ≤ dj , then job j is said to be on-time. Moreover,
let Tj(π) = max{0, Cj(π)− dj} be the tardiness of job j in the sched-
ule resulting from the sequence π. For the problem of minimizing the Änderung.
number of tardy jobs 1||∑Uj , the objective is to find an optimal job
sequence π∗ that minimizes the value

∑n
j=1 Uj(π) and for the prob-

lem of minimizing total tardiness 1||∑Tj , the objective is to find an
optimal job sequence π∗ that minimizes the value

∑n
j=1 Tj(π).

Problem 1||∑Uj can be solved in O(n log n) time by Moore’s al-
gorithm [1]. Problem 1 | | ∑Tj is NP-hard in the ordinary sense [2, 3].
A pseudo-polynomial dynamic programming algorithm of time com-
plexity O(n4

∑
pj) has been proposed by Lawler [4]. A summary of

polynomially and pseudo-polynomially solvable special cases can be
found e.g. in [5].

In this note, we consider a generalization of these two problems. In
addition to the above data, a quota of tardiness bj ≥ 0, a coefficient
of normal penalty vj ≥ 0 and a coefficient of abnormal penalty wj ≥ 0
are given for each job j ∈ N . We define the generalized tardiness as
follows:

GTj(π) =





0, if Cj(π)− dj ≤ 0,
vj · (Cj(π)− dj), if 0 < Cj(π)− dj ≤ bj ,
wj , if bj < Cj(π)− dj ,

where wj ≥ vjbj for all j ∈ N , and we define

F (π) =

n∑

j=1

GTj(π).

This means that, from a certain level of tardiness described by
parameter bj for job j, the penalty wj for exceeding the due date
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dj is constant and does no longer depend on the concrete value of
the tardiness. The objective is to find an optimal job sequence π∗

that minimizes the function F (π). We will denote this problem by
1||∑GTj . It is obvious that this problem is NP-hard. For the special
case of bj = 0, we have the classical problem 1||∑wjUj which is NP-
hard in the ordinary sense [6]. For problem 1||∑wjUj , there exists a
pseudo-polynomial solution algorithm with time complexity O(ndmax)
[7], where dmax is the maximal due date of the jobs. Moreover, it is
easy to show that already the special case of problem 1||∑GTj with
bj ∈ Z+ is also NP-hard.

In this note, we consider a special case of the generalized total
tardiness problem with

bj = pj , vj = 1, wj = pj , (1)

i.e., GTj(π) = min{max{0, Cj(π)−dj}, pj} for all j ∈ N . The problem
corresponds to the minimization of late work considered e.g. in [8, 9].
In [9], a pseudo-polynomial algorithm of complexity O(nUB) has been
given, where UB denotes an upper bound on the total late work. A
excellent overview of recent developments on problems with total late
work criteria has been given by Sterna [10]. In Section 3, we give a
pseudo-polynomial algorithm with time complexity O(ndmax) for this
special case which can be realized by a graphical algorithm in a more
effective way. In Section 3, we present another pseudo-polynomial
algorithm with time complexity O(ndmax) for problem 1||∑wjUj and
its graphical modification, which improves the running time and the
complexity of the latter algorithm. Some computational results with
the graphical variants of the two algorithms are presented in Section
4.

2 A Solution Algorithm for the Special
Case (1)
In this section, we present an exact pseudo-polynomial algorithm for
the special case (1).

Lemma 1 There exists an optimal job sequence π for the special case Änderung
(1) that can be represented as a concatenation (G,H), where all jobs
j ∈ H are tardy and GTj(π) = pj. For all jobs i ∈ G, we have
0 ≤ GTi(π) < pi. All jobs from the set G are processed in EDD (early
due date) order and all jobs from the set H are processed in LDD (last
due date) order.

Proof.
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1) Assume that there exists an optimal job sequence π∗ = (π1, j, π2).
If GTj(π) = pj , then sequence π′ = (π1, π2, j) is optimal, too. Thus,
there exists an optimal sequence of the type π = (G,H), where all
jobs j ∈ H are tardy and GTj(π) = pj . For all jobs i ∈ G, we have
0 ≤ GTi(π) < pi.

2) We consider an optimal job sequence π = (G,H), where all jobs
j ∈ H are tardy and GTj(π) = pj . For all jobs i ∈ G, we have
0 ≤ GTi(π) < pi. Now we prove that all jobs i ∈ G are processed
according to EDD order.

Assume that there exists an optimal sequence π = (π1, α, β, π2),
where jobs α, β ∈ G and dα > dβ . Then inequalities Cα(π)− dα < pα
and Cβ(π)− dβ < pβ hold.

We consider sequence π′ = (π1, β, α, π2). Denote C = Cβ(π) =
Cα(π

′). Then

F (π)− F (π′) = (GTα(π)−GTα(π
′)) + (GTβ(π)−GTβ(π

′)) =

= −min{pα,max{0, C − dα}}+min{pα,max{0, C − dβ}} ≥ 0

and sequence π′ is optimal as well.

3) We consider an optimal job sequence π = (G,H), where all jobs
j ∈ H are tardy and GTj(π) = pj . For all jobs i ∈ G, we have
0 ≤ GTi(π) < pi. Now, we prove that all jobs j ∈ H can be processed
in an LDD order in an optimal sequence. For all jobs j ∈ H, we have
dj ≤

∑n
l=1 pl −

∑
k∈H pk, otherwise, if dj >

∑n
l=1 pl −

∑
k∈H pk, then

sequence π′ = (G, j,H \ {j}) is better, and we have a contradiction.
Therefore, the jobs from H can be processed in any order.

¤
The following algorithm is based on Lemma 1.

Algorithm 1

1. Enumerate the jobs according to non-increasing due dates: d1 ≥
d2 ≥ . . . ≥ dn.

2. π1(t) := (1), F1(t) := min{p1,max{0, p1 + t− d1}} for all

t ∈ Z
⋂
[0,

n∑
j=2

pj ];

3. FOR l := 2 TO n DO

FOR t := 0 TO
∑n

j=l+1 pj (t ∈ Z) DO
π1 := (l, πl−1(t+ pl)), π2 := (πl−1(t), l);
F (π1) := min{pl,max{0, pl + t− dl}}+ Fl−1(t+ pl);

F (π2) := Fl−1(t) + min{pl,max{0,
l∑

j=1

pj + t− dl}};
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Fl(t) := min{F (π1), F (π2)};
πl(t) := argmin{F (π1), F (π2)}.

4. πn(0) is an optimal sequence with the objective function value
Fn(0).

πl(t) represents the best partial sequence of the jobs 1, 2, . . . , l when
the first job starts at time t, and Fl(t) denotes the corresponding gen-
eralized total tardiness.

Theorem 1 Algorithm 1 constructs an optimal sequence for the spe-
cial case (1) in O(n

∑
pj) time.

Proof. We prove the theorem indirectly. Assume that there exists
an optimal sequence of the form π∗ = (EDD,LDD), where F (π∗) <
F (πn(0)) = Fn(0).

Let π′ := π∗. For each l = 1, 2, . . . , n, we successively consider the
part π̄l ∈ π′, {π̄l} = {1, . . . , l} of the sequence. Let π′ = (πα, π̄l, πβ).
If π̄l 6= πl(t =

∑
i∈πα

pi) (for the notation, see the last row in Step
3 of Algorithm 1), then π′ := (πα, πl(

∑
i∈πα

pi), πβ). It is obvious
that F ((πα, π̄l, πβ)) ≥ F ((πα, πl(

∑
i∈πα

pi), πβ)). Analogously, step by
step, we modify the partial sequences π̄l corresponding to the subse-
quent values l. At the end, we have F (π∗) ≥ F (π′) = Fn(0). Thus,
sequence πn(0) is also optimal.

Obviously, the time complexity of Algorithm 1 is equal to
O(n

∑
pj).

¤
We can improve the running time of Algorithm 1, if for each l =

1, 2, . . . , n, we consider only the interval [0, dl] instead of [0,
∑n

j=l+1 pj ]
since for each t ≥ dl, job l is tardy in any partial sequence πl, where
πl(t) represents a partial sequence of the jobs 1, 2, . . . , l when the first
job starts at time t. Moreover, for t ≥ dl, we have GTl = pl. Thus,
the partial sequence π2 := (πl−1(t), l) (for the notation, see the first
row in Step 3 of Algorithm 1) is optimal. The time complexity of the
modified Algorithm 1 is equal to O(ndmax).

For a practical realization of the algorithm, we can use the idea from
[11, 12] resulting in a graphical algorithm with the same complexity
but often reducing the running time of Algorithm 1 (a brief sketch of
this graphical approach is described for another special case in Section
3, where it reduces the complexity).

We also note that the well-known algorithm by Lawler [4] for prob-
lem 1||∑Tj with time complexity O(n4

∑
pj) is not exact for the

special case (1) since the known rule by Emmons (if di < dj , pi < pj ,
then i → j) [4] does not hold.
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3 A Graphical Algorithm for the Special
Case 1||∑wjUj

We can propose a similar algorithm for the special case 1||∑wjUj .
The following lemma is an immediate consequence from [1, 7].

Lemma 2 There exists an optimal job sequence π for problem Änderung
1||∑wjUj that can be represented as a concatenation (G,H), where
all jobs j ∈ H are tardy and all jobs i ∈ G are on-time. All jobs from
the set G are processed in EDD (early due date) order and all jobs from
the set H are processed in LDD (last due date) order.

Note that in an optimal sequence, the on-time jobs can be scheduled
in EDD order while the tardy jobs can be scheduled in arbitrary order
[1, 7]. The following algorithm for problem 1||∑wjUj is based on
Lemma 2.

Algorithm 2

1. Enumerate the jobs according to non-increasing due dates: d1 ≥
d2 ≥ . . . ≥ dn.

2. π1(t) := (1). For each t ∈ Z
⋂
[0,

n∑
j=2

pj ], we compute:

if p1 + t− d1 > 0, then F1(t) := w1 else F1(t) := 0;

3. FOR l := 2 TO n DO

FOR t := 0 TO
∑n

j=l+1 pj (t ∈ Z) DO
π1 := (l, πl−1(t+ pl)), π2 := (πl−1(t), l);
If pl + t − dl > 0, then F (π1) := wl + Fl−1(t + pl) else
F (π1) := Fl−1(t+ pl);

If
l∑

j=1

pj + t − dl > 0, then F (π2) := Fl−1(t) + wl else

F (π2) := Fl−1(t);
Fl(t) := min{F (π1), F (π2)};
πl(t) := argmin{F (π1), F (π2)}.

4. πn(0) is an optimal sequence with the goal function value Fn(0).

Analogously to the proof of Theorem 1, we can prove the following
theorem.

Theorem 2 Algorithm 2 constructs an optimal sequence for problem
1||∑wjUj in O(n

∑
pj) time.

Analogously to the modification of Algorithm 1, we can propose a
modification of Algorithm 2, where for each l = 1, 2, . . . , n, we consider
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only the interval [0, dl − pl] instead of [0,
∑n

j=l+1 pj ] since for each
t > dl − pl, job l is tardy in any partial sequence πl(t) and the partial
sequence π2 := (πl−1(t), l) is optimal. Thus, the time complexity of
the modified Algorithm 2 is equal to O(ndmax).

Using the idea of the graphical approach from [11, 12], we obtain an
exact algorithm, which improves the running time and the complexity
of Algorithm 2. The idea of such a modified graphical algorithm is as
follows.

In each step of the graphical algorithm, we store function Fl(t)
in tabular form as given in Table 1, where t1 < t2 < . . . < tm and
W1 < W2 < . . . < Wm.

Table 1: Function Fl(t)
t t1 t2 . . . tm

Fl(t) W1 W2 . . . Wm

optimal partial sequence π1 π2 . . . πm

The above data means the following. For each value t ∈
(tk, tk+1], 1 ≤ k < m, we have an optimal partial sequence πk =
(G,H) = (EDD,LDD) and the objective function value Fl(t) = Wk =∑

j∈H wj . The points tk are called the break points, i.e., we have
Fl(t

′) < Fl(t
′′) for t′ ≤ tk < t′′.

In the next step l + 1, we transform function Fl(t) into functions
F 1(t) and F 2(t) according to Step 3 of Algorithm 2 in O(m) operations.
In each of the tables for F 1(t) and F 2(t), we have at most m + 1
break points. Then we compute a new table of the function Fl+1(t) =
min{F 1(t), F 2(t)} in O(m) operations. In the new table of function
Fl+1(t), there are at most 2m + 2 break points (usually, this number
is smaller). In fact, we do not consider all points t from the interval
[0,min{dl−pl,

∑n
j=l+1 pj}], but only points from the interval in which

the objective function value changes.
In the graphical algorithm, in each step l = 1, 2, . . . , n, we have

to consider at most min{2l, dl − pl,
∑n

j=l+1 pj ,
∑l

j=1 wj , Fopt} break
points. Thus, the complexity time of the graphical algorithm is
O(nmin{dmax, 2

n, Fopt}), where Fopt is the optimal objective function
value.

Note that the running time of the algorithm is the same for the
instance with the parameters {pj , dj , wj , j ∈ N} and for the instance
with the parameters {p′j = pj ·106±1, dj ·106, wj}. This is in contrast
to usual dynamic programming, where the running time for the sec-
ond instance is larger than for the first one. Moreover, the graphical
algorithm can also solve instances with pj /∈ Z.

A numerical example for illustrating a graphical algorithm for the Änderung
single machine total tardiness maximization problem is presented in
[12].
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4 Computational Results
We have implemented the versions of the graphical algorithm for both
problems.

For the special case (1) of the problem 1||∑GTj , we have used
following set of instances, based on Potts and VanWassenhove’s scheme
[9]. The processing times are randomly generated from the interval
[1, 100], the due dates are randomly generated from the interval




n∑

j:=1

pj(1− TF −RDD/2),

n∑

j:=1

pj(1− TF +RDD/2)


 .

The parameters TF (average tardiness factor) and RDD (relative
range of due dates) are taken from the set {0.2, 0.4, 0.6, 0.8, 1}. For
each combination of the parameters (TF,RDD), 100 instances were
generated, i.e., 2500 instances for each value of n ∈ {4, 5, 6, . . . , 50}.
For each instance, we have computed the minimal (NBP-MIN), aver-
age (NBP-AVE) and maximal (NBP-MAX) number of break points
were computed. The results are summarized in Fig. 1(a). The results Änderung.

number of
break points

show that NBP-AVE is substantially smaller than NBP-MAX and that
NBP-AVE grows approximately until 3500 for the large problems.

For problem 1||∑wjUj , we have run two sets of instances for test-
ing the graphical variant of Algorithm 2. The first set is as follows: The
processing times are randomly generated from the interval [pmin, pmax],
the weights are randomly generated from the interval [1, wmax], and the
due dates are randomly generated from the interval [pj , pj+mmax]. The
following values of the parameters were used:

(pmin, pmax): (0,100), (25,75)
wmax: 1, 10, 100
mmax: 50, 200, 350, 500, 650

For each combination of the parameters and n ∈ {4, 5, . . . , 50}, a series
of 2500 test instances are generated.

The second set is generated as follows. The processing times are
randomly generated from the interval [0, 100], the weights are randomly
generated from the interval [1, wmax], and the due dates are randomly
generated from the interval [pj , pj +Kn]. The following values of pa-
rameters were used:

wmax: 10, 99
K: 1, 5, 10, 20

For each combination of the parameters and n ∈ {4, 5, . . . , 50}, a series
of 2500 test instances has been generated.

For each instance, we have computed the minimal (NBP-MIN), av-
erage (NBP-AVE) and maximal (NBP-MAX) number of break points. Änderung.

number of
break points8



(a)

(b) (c)

(d) (e)

Figure 1: Computational Results
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Fig. 1(b) and Fig. 1(c) present the results for two representative com-
binations of the first set, and Fig. 1(d) and Fig. 1(e) present the
results for two representative combinations of the second set. For the
instances of the first type, the number of break points only moder-
ately increases, and NBP-AVE is lower than 1000 even for the large
problems. Fig. 1(d) and Fig. 1(e) demonstrate the influence of the
parameter K on the number of break points. For K = 10, the number
of break points is roughly ten times as large as for K = 1,

From our detailed results we report the following additional ob-
servations. It follows that, as expected, the lengths of the intervals
considered has the strongest influence on the number of break points.
The largest numbers of break points were observed for instances with
mmax = 650 in the first set and for instances with K = 20 in the
second set. We also have observed that in the first set of instances
in the case of wmax = 1, i.e., all wj = 1 for all j ∈ N , the number
of break points may substantially differ from those of the other test
series. For instance, the average number of break points in the series
with wmax = 1,mmax = 50 is much smaller than the average number
of break points for the case wmax = 10,mmax = 50. When mmax is
large, e.g. when mmax = 500 or mmax = 650, the number of break
points in the series with wmax = 1 is considerably smaller than in the
series with other values of wmax. Änderung

Ich habe
den let-
zten Absatz
über Kom-
plexitaet
weggewor-
fen, weil
es jetzt die
Information
über n2 gibt
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