
Graphical Approach for Combinatorial Problems

A.A. Lazarev∗, A.V.Baranov∗

∗Institute of Control Sciences RAS, lazarev@ipu.ru, av.baranov@physics.msu.ru

Dynamic programming is a general optimiza-
tion technique developed by Bellman [1]. It can
be considered as a recursive optimization proce-
dure which interprets the optimization problem
as a multi-step solution process. Bellman’s op-
timality principle can be briefly formulated as fol-
lows: Starting from any current step, an optimal
policy for the subsequent steps is independent of
the policy adopted in the previous steps. In the
case of a combinatorial problem, at some step j,
j = 2, . . . , n, sets of a particular size j are consid-
ered. To determine the optimal criterion value for
a particular subset of size j, one has to know the
optimal values for all necessary subsets of size j−1.
If the problem includes n elements, the number of
subsets to be considered is equal to O(2n). There-
fore, dynamic programming usually results in an
exponential complexity. However, if the problem
considered is NP -hard in the ordinary sense, it is
possible to derive pseudo-polynomial algorithms
[2, 3, 4].

In this paper, we give the basic idea of a graph-
ical modification of dynamic programming algo-
rithm (DPA), which is called Graphical Algo-
rithm (GA). This approach often reduces the
number of it states to be considered in each step
of the DPA. Moreover, in contrast to classical
DPA, it can also treat problems with non-integer
data without necessary transformations of the cor-
responding problem. In addition, for some prob-
lems, GA essentially reduces the time complexity.

For the knapsack problem DPA with the same
idea like in GA are known (e.g. see [5]). In such
DPA not all states t ∈ [0, C] are considered, but
only states, where a value of objective function is
changed. Thus, the time complexity of such DPA

is bounded by O(nFopt), where Fopt is the opti-
mal value of objective function. However, these
algorithms can be useful only for problems, where
Fopt < C, otherwise we can use the classical DPA.
We generalize the idea of such algorithms for the
objective function, for which Fopt ≫ C. We have
compared GA to algorithm BalKnap [3].

1 Graphical Algorithm

Usually in DPA, we have to compute the value
fj(t) of a particular function for each possible
state t at each stage j of a decision process, where
t ∈ [0, C] and t, C ∈ Z+. If this is done for any
stage j = 1, 2, . . . , n, where n is a size of the prob-
lem, the time complexity of such a DPA is typi-
cally O(nC). However, often it is not necessary to
store the result for any integer state since in the
interval [tl, tl+1), we have a functional equation
fj(t) = φ(t) (e.g. fj(t) = kj · t + bj , i.e., fj(t) a
continuous linear function when allowing also real
values t).

Assume that we have the following functional
equations in a DPA, which correspond to Bell-
man’s recursive equations:

fj(t) = min
j=1,2,...,n

{
Φ1(t) = αj(t) + fj−1(t− wj)
Φ2(t) = βj(t) + fj−1(t− bj)

(1)
with the initial conditions

f0(t) = 0, for t ≥ 0,
f0(t) = +∞, for t < 0.

(2)

In (1), function Φ1(t) characterizes a setting
xj = 1 while Φ2(t) characterizes a setting xj = 0

1



representing a yes/no decision, e.g. for an item, a
job [2, 7].

To compute function fj+1(t), we compare two
temporary functions Φ1(t) and Φ2(t).

The function Φ1(t) is a combination of the terms
αj+1(t) and fj(t − wj+1). Function fj(t − wj+1)
has the same structure, but all intervals [tl, tl+1)
have been replaced by [tl−wj+1, tl+1−wj+1), i.e.,
we shift the graph of function fj(t) to the right by
the value wj+1. If we can present function αj+1(t)
in the form with µ1 columns, we store function
Φ1(t) in the form with mj + µ1 columns. In an
analogous way, we store function Φ2(t) in the form
with mj + µ2 columns.

Then we construct function

fj+1(t) = min{Φ1(t),Φ2(t)}.

For example, let the columns of Table Φ1(t) con-
tain the intervals

[t10, t
1
1), [t

1
1, t

1
2), . . . , [t

1
(mj+µ1)−1, t

1
(mj+µ1)

]

and the columns of Table Φ2(t) contain the inter-
vals

[t20, t
2
1), [t

2
1, t

2
2), . . . , [t

2
(mj+µ2)−1, t

2
(mj+µ2)

].

To construct function fj+1(t), we compare the two
functions Φ1(t) and Φ2(t) on each interval, which
is formed by means of the points

{ t10, t
1
1, t

1
2, . . . , t

1
(mj+µ1)−1, t

1
(mj+µ1)

,

t20, t
2
1, t

2
2, . . . , t

2
(mj+µ2)−1, t

2
(mj+µ2)

},

and we determine the intersection points
t31, t

3
2, . . . , t

3
µ3
. Thus, in the table of function

fj+1(t), we have at most 2mj + µ1 + µ2 + µ3 ≤ C
intervals.

In fact, in each step j = 1, 2, . . . , n, we do not
consider all points t ∈ [0, C], t, C ∈ Z+, but only
points from the interval in which the optimal par-
tial solution changes or where the resulting func-
tional equation of the objective function changes.
For some objective functions, the number of such
points M is small and the new algorithm based on
this graphical approach has a time complexity of
O(nmin{C,M}) instead of O(nC) for the original
DPA.

Moreover, such an approach has some other ad-
vantages.

1. The GA can solve instances, where pj , wj ,
j = 1, 2, . . . , n, or/and C are not integer.

2. The running time of the GA for two instances
with the parameters {pj , wj , C} and {pj ·10α±
1, wj ·10α±1, C ·10α±1} is the same while the
running time of the DPA will be 10α times
larger in the second case. Thus, using the
GA, one can usually solve considerably larger
instances.

3. Properties of an optimal solution are taken
into account. For KP , an item with the
smallest value

pj
wj

may not influence the run-
ning time.

4. As we will show below, for several problems,
GA has even a polynomial time complexity
or we can at least essentially reduce the com-
plexity of the standard DPA.

Thus, the use of GA can reduce both the time
complexity and the running time for KP . The
application of GA to the partition problem is de-
scribed in detail in [6], where also computational
results are presented.

2 Graphical Algorithm for the
Knapsack Problem

In this section, we describe the application of this
approach to the one-dimensional knapsack prob-
lem [6].

One-dimensional knapsack problem
(KP ): One wishes to fill a knapsack of capacity
C with items having the largest possible total
utility. If any item can be put at most once into
the knapsack, we get the binary or 0−1 knapsack
problem. This problem can be written as the
following integer linear programming problem:

f(x) =
n∑

j=1
pjxj → max

n∑
j=1

wjxj ≤ C,

xj ∈ {0, 1}, j = 1, 2, . . . , n.

(3)

2



Here, pj gives the utility and wj the required
capacity of item j, j = 1, 2, . . . , n. The variable
xj characterizes whether item j is put into the
knapsack or not.

The DPA based on Bellman’s optimality prin-
ciple is one of the standard algorithms for theKP .
It is assumed that all parameters are positive in-
teger: C, pj , wj ∈ Z+, j = 1, 2, . . . , n.

For KP , Bellman’s recursive equations are as
follows:

fj(t) = max
j=1,2,...,n

{
Φ1(t) = pj + fj−1(t− wj)
Φ2(t) = fj−1(t),

(4)
where

f0(t) = 0, t ≥ 0,
f0(t) = +∞, t < 0.

Φ1(t) represents the setting xj = 1 (i.e., item j
is put into the knapsack) while Φ2(t) represents
the setting xj = 0 (i.e., item j is not put into
the knapsack). In each step j, j = 1, 2, . . . , n, the
function values fj(t) are calculated for each integer
point (i.e., ”state”) 0 ≤ t ≤ C. For each point
t, a corresponding best (partial) solution X(t) =
(x1(t), x2(t), . . . , xj(t)) is stored.

Exploring the algorithm can be seen that the
j-th step of the algorithm should calculate values
of objective function only in range of max{0, C −

n∑
k=j+1

wk} to min{C,
j∑

k=1
wk}

Taking into account this feature in DPA allow
decrease the number of calculating points due dy-
namic range of computing change. Shifted to the
left and right boundaries of the interval.

Using the shift of left border in the GA allows to
essentially reduce the number of break points and
consequently the number of ”dummy” operations.
Shift of right border in GA is obtained in similar
manner.

Let consider calculations for DPA, modified
DPA (BalKnap [3]) and GA for follow instance:


5x1+7x2+6x3+5x4+4x5+8x6+6x7→max

2x1+3x2+5x3+4x4+2x5+3x6+4x7≤10,

xj∈{0,1}, j=1,...,7.

(5)

For DPA it should calculate table with 10 × 7
elements.

C 1 2 3 4 5 6 7 8 9 10

1 0 5 5 5 5 5 5 5 5 5

2 0 5 7 7 12 12 12 12 12 12

3 0 5 7 7 12 12 12 13 13 18

4 0 5 7 7 12 12 13 13 17 18

5 0 5 7 9 12 12 16 16 17 18

6 0 5 8 9 13 15 17 20 20 24

7 0 5 8 9 13 15 17 20 20 24

For modified DPA it should calculate 41 values.

C 1 2 3 4 5 6 7 8 9 10

1 0 5

2 0 5 7 7 12

3 0 5 7 7 12 12 12 13 13 18

4 0 5 7 7 12 12 13 13 17 18

5 7 9 12 12 16 16 17 18

6 15 17 20 20 24

7 24

And GA calculate only points with provide op-
timal solution. For this example it’s necessary just
14 elements.

C 1 2 3 4 5 6 7 8 9 10

1 0 5

2 7 12

3 13 18

4 13 17

5 9 16

6 15 17 20 24

7

So on this instance we obtain reduce calculation
in 80% for GA in contrast with DPA.

3 Concluding Remarks

The graphical approach can be applied to prob-
lems where a pseudo-polynomial algorithm exists
and Boolean variables are used in the sense that
yes/no decisions have to made (e.g. in the problem
under consideration, for KP , an item can be put

3



into the knapsack or not), for example for par-
tition and scheduling problems [6, 7]. However,
for the knapsack problem, the graphical algorithm
mostly reduces substantially the number of points
to be considered but the time complexity of the
algorithm remains pseudo-polynomial.

This approach can be used to k-dimensional
Knapsack Problem too.

Thus, the graphical approach has not only a
practical but also a theoretical importance. Fur-
thermore, graphical algorithm could be efficiently
implemented to various parallel architectures.

Acknowledgements

Partially supported by programs of Russian
Academy of Sciences and RFBR 11-08-01321. We
would like to thank Prof. Dr. Frank Werner and
Dr. Evgeny Gafarov for many discussions and
helpful suggestions.

References

[1] Bellman R., Dynamic Programming. Prince-
ton Univ. Press. Princeton, 1957.

[2] E.R. Gafarov, A.A. Lazarev, F. Werner, Al-
gorithms for Some Maximization Scheduling
Problems on a Single Machine. Automation
and Remote Control, Vol. 71, No. 10, 2070–
2084, 2010.

[3] H. Keller, U. Pferschy, D. Pisinger, Knapsack
Problems. Springer, Hidelberg, 2010.

[4] E.L. Lawler, J.M. Moore, A Functional Equa-
tion and its Application to Resource Alloca-
tion and Sequencing Problems. Management
Science, Vol. 16, No. 1, 77–84, 1969.

[5] Ch. Papadimitrou and K. Steiglitz, Combina-
torial Optimization: Algorithms and Complex-
ity. Dover Publications, INC, Mineola, New
York, 1998.

[6] A.A. Lazarev, F. Werner, A Graphical Real-
ization of the Dynamic Programming Method
for Solving NP -Hard Combinatorial Problems,

Computers and Mathematics with Applica-
tions, Vol. 58, No. 4, 619–631, 2009.

[7] A.A. Lazarev, F. Werner, Algorithms for Spe-
cial Cases of the Single Machine Total Tar-
diness Problem and an Application to the
Even-Odd Partition Problem. Mathematical
and Computer Modelling, Vol. 49, No. 9–10,
2061–2072, 2009.

4


